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Introduction

● conventional matter: low entanglement → mean field description
● conventional phases of matter ↔ local action of symmetries

● topological matter: global entanglement ↔ local characterization possible?

● Tensor Network States: local description unifying
physical and entanglement degrees of freedom

→ description of topological order via local symmetries
→ flesh out role of boundary for entanglement
→ framework to study topologically ordered systems

→ local modelling of strongly correlated physics



Entanglement structure: The area law

● Area law for ground states: [Hastings '07]

● Entanglement is distributed locally

● What is the entanglement structure of quantum many-body systems?



Projected Entangled Pair States

Tensor Network Notation:

● Projected Entangled Pair States (PEPS):

● faithful approximation of low-energy states of local Hamiltonians

local description of strongly correlated many-body states

[Hastings PRB '06; Molnar, Schuch, Verstraete, Cirac, PRB '14]
● powerful ansatz for numerical simulations

[Verstraete & Cirac, PRA '04]

[Verstraete & Cirac '04]



PEPS: Encoding physics locally
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[Perez-Garcia et al., NJP '10]
● PEPS allow to encode physical structure (symmetries) locally

● local parent Hamiltonian: ensure that states looks “locally correct”
    inherits all symmetries!⇒



PEPS models

Message 1: PEPS allow to encode local physics locally.

⇒ Framework to construct solvable PEPS models:



  

Bulk-edge correspondence in PEPS
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● Bipartition: entanglement carried by degrees of freedom at boundary

● Allows for direct derivation of entanglement Hamiltonian

lives on entanglement degrees of freedom

●           inherits all symmetries from tensor
[Cirac, Poilblanc, Schuch, Verstraete, PRB '11]

→          has natural 1D structure!



Structure of entanglement Hamiltonian

[Cirac, Poilblanc, Schuch, Verstraete, PRB '11]
[Rispler, Duivenvoorden, Schuch, PRB '15]
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● gapped phase:           short-ranged (exp. decay) 
(and mostly few-body) Ising-like PEPS model

e.g. 2D AKLT model:

●           diverges at phase transition

● symmetry broken phase:
→ short-range          restored by 
     considering symmetry broken states

● topological: in one moment … 



Edge physics

→ gapless edge modes live on entanglement degrees of freedom

● Low-energy degrees of freedom at edge:
parametrized by imposing boundary conditions on entanglement DoF

→ parent Hamiltonian: completely flat edge physics
→ perturbations: different phases at edge

[Yang, Lehman, Poilblanc, Van Acoleyen, Verstraete, Cirac, Schuch, PRL '14]



PEPS and the entanglement space

Message 2: PEPS provide an explicit 1D Hilbert space
for the entanglement and boundary degrees of freedom.
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Topological order and local symmetries
● Topological order in PEPS: Rooted in entanglement symmetry

=
● Toric Code

● Double Models of finite group G

● String-net models (with          given by the F-symbol)

=

“pulling through condition”

=

● ... [Sahinoglu et al. '14]

[Schuch, Cirac, Pérez-García '10]
[Buerschaper '13]● chiral fermionic PEPS

[Wahl, Haßler, Tu, Cirac, Schuch '14]

=

=



  

Symmetry vs. ground space structure
● pulling-through condition ⇒ Strings can be freely moved!

● parametrization of ground space
  based on symmetry of tensor

● Torus: closed strings yield different ground states

● allows to explicitly construct & 
  study ground states

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

⇒ Strings are invisible locally (e.g. to Hamiltonian)



  

Symmetry vs. excitations
●  Strings w/ open ends: 

●  dual excitations: 
   anti-commuting with string

→ excitations come in pairs
→ endpoints = excitations

● virtual symmetries: comprehensive modeling of anyonic excitations

●                        : mutual 
fermionic statistics!

● fully local description also at finite correlation length

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]



  

PEPS and topological order

Message 3: In PEPS, topological order originates from a 
local symmetry on the entanglement degrees of freedom.

==



  

Topological symmetries at the edge

● Entanglement symmetry inherited by the edge:

→ topological correction to entanglement entropy
→ topological anomaly in edge physics:

edge dynamics restricted to superselection sector
[Yang, Lehman, Poilblanc, Van Acoleyen, Verstraete, Cirac, Schuch, PRL '14]

= =

● global constraint (e.g. parity) on entanglement DoF:
 only states in trivial sector appear!



  

Entanglement Hamiltonian

boundary
condition

● Entanglement spectrum:

● Entanglement Hamiltonian has anomaly:

local
non-universal

universal
non-local

Toric Code w/ field

[Schuch, Poilblanc, Cirac, Perez-Garcia, PRL '13]

●          additionally couples to flux



  

Resonating Valence Bond states

singlets

● Resonating Valence Bond (RVB) state: candidate kagome spin liquid

● RVB has exact PEPS representation with       entanglement symmetry
  (in fact, it is the most natural SU(2)-invariant PEPS!)

[Verstraete, Wolf, Perez-Garcia, Cirac, PRL '06; Schuch, Poilblanc, Cirac, Perez-Garcia, PRB '12]

+=



RVB and dimer models
● RVB difficult to study: 
   - configurations not orthogonal, negative signs
   - Topological? Magnetically ordered? 
● resort to dimer models with orthogonal dimers

- can be exactly solved
- topologically ordered ( ≡ toric code)

● Interpolation in PEPS (w/ smooth Hamiltonian!):

RVB dimer model

[Schuch, Poilblanc, Cirac, Perez-Garcia, PRB '12]

(topological)(topological)
(physical)



Numerical study of the RVB state

⇒ RVB state on kagome lattice is a       topological spin liquid

no overlap of topological sectors
⇒ topologically ordered

● numerical study of interpolation RVB ↔ dimer model
● “transfer operator”: - governs all correlation functions

- topological sector labeled by symmetry

Finite correlation length
⇒ no long range order
⇒ spin liquid

RVB dimer
model

Eigenvalues of 
transfer operator

[Schuch, Poilblanc, Cirac, Perez-Garcia, PRB '12]

● can prove: RVB is (topo. degenerate) ground state of parent Hamiltonian



Numerical study of the RVB state

⇒ RVB state on kagome lattice is a       topological spin liquid

no overlap of topological sectors
⇒ topologically ordered

● numerical study of interpolation RVB ↔ dimer model
● “transfer operator”: - governs all correlation functions

- topological sector labeled by symmetry

Finite correlation length
⇒ no long range order
⇒ spin liquid

RVB dimer
model

Eigenvalues of 
transfer operator

[Schuch, Poilblanc, Cirac, Perez-Garcia, PRB '12]

● can prove: RVB is (topo. degenerate) ground state of parent Hamiltonian



Entanglement Hamiltonian of RVB

- topological symmetry:
- local             symmetry: 

→           has t-J-model type structure (+pairing)

●          inherits on-site & topological symmetries of PEPS

“fermionic” parity 
constraint at boundary!

[Poilblanc, Schuch, Perez-Garcia, Cirac, PRB '12]

● What is the entanglement spectrum + Hamiltonian of RVB?

● numerical study:
-           is approximately local (+topological term):

dominant NN hopping/pairing,
smaller Heisenberg & repulsion,
longer-range terms bosonic



Dispersion relations

S=0
S=1/2
S=1

spinons
visons / visons+spinons
trivial

● Ansatz for excitations → extract information about dispersion relation
  for different topological excitations from correlation functions

[Haegeman, Zauner, Schuch, Verstraete, Nat. Comm. '15]



  

Topological phases and anyon condensation
● Description of anyon on entanglement degrees of freedom:

● Does this describe a physically observable excitation?
→ depends on environment!

● What could “go wrong”?
- environment absorbs string → equal to original state: condensed
- environment orthogonal to string → ill-defined: confined

irrep-like endpoint

symmetry
action



Virtual vs. physical anyons
● Express as expectation values:

condensation confinement

● can serve as order parameters for topological phases



The transfer operator

=

      inherits symmetries from tensor:

symmetry group

● condensation/confimement order parameters → string order at boundary

● classification of anyon behavior ↔ classification of 1D phases of 

[Duivenvoorden, Iqbal, Haegeman, Verstraete, Schuch, in preparation]

● boundary state = fixed point of transfer operator

(symmetry breaking and SPT)



Case study:       symmetry
●       double: symmetry group      
● Symmetries of      (↔ 1D classification): 

Anyons:

0

double semion phase:
need to condense dyon

      double model

Toric Code Toric Code or 
Double Semion

trivial trivial trivial

symmetry:



  

Phase diagram of      -invariant PEPS

[Iqbal et al., in preparation]



  

Topological phase transitions

[Iqbal et al., in preparation]

double semion  ↔  trivial

double model  ↔  toric code



  

Toric Code – Doubled Semion transition

[Iqbal et al., in preparation]

2nd order

1st order



Summary

● topological order in PEPS ↔  local symmetry in entanglement

● PEPS: entanglement-based local description of many-body systems

=

● PEPS encode physical structure locally
● PEPS provide an explicit “entanglement space” at the boundary

● Application 1: Spin-liquid nature of RVB state

=

● Application 2: study of topological phases “holographically” 
 through 1D phases at the boundary


