

Tensor Network States for the study of strongly correlated quantum systems

Norbert Schuch

Max-Planck-Institute of Quantum Optics, Munich

Introduction

- conventional matter: low entanglement → mean field description
- topological matter: global entanglement

 local characterization possible?
- Tensor Network States: local description unifying physical and entanglement degrees of freedom
 - → **local modelling** of strongly correlated physics
 - → description of topological order via local symmetries
 - → flesh out **role of boundary** for entanglement
 - → framework to study topologically ordered systems

Entanglement structure: The area law

- What is the **entanglement structure** of quantum many-body systems?
- Area law for ground states: $S(
 ho_V) \sim \partial V$ [Hastings '07]

Entanglement is distributed locally

Projected Entangled Pair States

Projected Entangled Pair States (PEPS): [Verstraete & Cirac, PRA '04]
 local description of strongly correlated many-body states

Tensor Network Notation:

$$\frac{\alpha}{\delta} = A^{i}_{\alpha\beta\gamma\delta}$$

$$\frac{\alpha}{\delta} = A^{i}_{\alpha\beta\gamma\delta}$$

$$\frac{\alpha}{\delta} = \sum_{\gamma} A^{i}_{\alpha\beta\gamma\delta} A^{i'}_{\gamma\beta'\gamma'\delta'}$$

• faithful approximation of low-energy states of local Hamiltonians

[Hastings PRB '06; Molnar, Schuch, Verstraete, Cirac, PRB '14]

• powerful ansatz for numerical simulations [Verstraete & Cirac '04]

PEPS: Encoding physics locally

PEPS allow to encode physical structure (symmetries) locally

[Perez-Garcia et al., NJP '10]

$$= V_g^{\dagger} \bigvee_{V_g}^{\dagger} V_g$$

- local parent Hamiltonian: ensure that states looks "locally correct"
 - ⇒ inherits all symmetries!

$$H = \sum h_i$$

PEPS models

Message 1: PEPS allow to encode local physics locally.

⇒ Framework to construct solvable PEPS models:

Bulk-edge correspondence in PEPS

- Bipartition: entanglement carried by degrees of freedom at boundary
- Allows for direct derivation of entanglement Hamiltonian

$$e^{-H_{
m ent}} = \sigma$$
 | Iives on entanglement degrees of freedom

- $\rightarrow H_{\mathrm{ent}}$ has natural 1D structure!
- ullet $H_{
 m ent}$ inherits all symmetries from tensor

Structure of entanglement Hamiltonian

• gapped phase: H_{ent} short-ranged (exp. decay) (and mostly few-body)

e.g. 2D AKLT model:

$$H_{\mathrm{ent}} = \sum_{i} J_1 S_i \cdot S_{i+1} + J_2 S_i \cdot S_{i+2} + \dots$$

- $H_{
 m ent}$ diverges at phase transition
- symmetry broken phase:
 - → short-range H_{ent} restored by considering symmetry broken states
- topological: in one moment ...

[Cirac, Poilblanc, Schuch, Verstraete, PRB '11] [Rispler, Duivenvoorden, Schuch, PRB '15]

Edge physics

Low-energy degrees of freedom at edge:
 parametrized by imposing boundary conditions on entanglement DoF

- → gapless edge modes live on entanglement degrees of freedom
- → parent Hamiltonian: completely flat edge physics
- → perturbations: different phases at edge

PEPS and the entanglement space

Message 2: PEPS provide an explicit 1D Hilbert space for the entanglement and boundary degrees of freedom.

Topological order and local symmetries

Topological order in PEPS: Rooted in entanglement symmetry

"pulling through condition"

Toric Code

$$z - z = z - z$$

$$= Z - Z Z$$

• **Double Models** of finite group G

$$U_g = U_g$$

$$= U_g^{\dagger} \underbrace{U_g^{\dagger}}_{U_g} U_g$$

- String-net models (with —— given by the F-symbol)
- chiral fermionic PEPS

[Schuch, Cirac, Pérez-García '10]

[Buerschaper '13]

[Wahl, Haßler, Tu, Cirac, Schuch '14] [Sahinoglu et al. '14]

• ...

Symmetry vs. ground space structure

pulling-through condition ⇒ Strings can be freely moved!

⇒ Strings are **invisible locally** (e.g. to Hamiltonian)

Torus: closed strings yield different ground states

- parametrization of ground space based on symmetry of tensor
- allows to explicitly construct & study ground states

[Schuch, Cirac, Perez-Garcia, Ann. Phys. '10]

Symmetry vs. excitations

- Strings w/ open ends:
 - → endpoints = excitations
 - → excitations come in **pairs**

dual excitations:
 anti-commuting with string

• XZ = -ZX : mutual fermionic statistics!

- virtual symmetries: comprehensive modeling of anyonic excitations
- fully local description also at finite correlation length

PEPS and topological order

Message 3: In PEPS, topological order originates from a local symmetry on the entanglement degrees of freedom.

$$= Z \xrightarrow{Z} Z$$

Topological symmetries at the edge

Entanglement symmetry inherited by the edge:

- global constraint (e.g. parity) on entanglement DoF: only states in trivial sector appear!
 - → topological correction to entanglement entropy
 - → topological anomaly in edge physics: edge dynamics restricted to superselection sector

[Yang, Lehman, Poilblanc, Van Acoleyen, Verstraete, Cirac, Schuch, PRL '14]

Entanglement Hamiltonian

• Entanglement spectrum:

$$\rho = \begin{pmatrix} w_e \rho_e & \\ & w_o \rho_o \end{pmatrix}$$

Entanglement Hamiltonian has anomaly:

• $H_{
m loc}$ additionally couples to flux

Toric Code w/ field 10^{0} $\lambda=0.60$ $\lambda=0.65$ $\lambda=0.65$ $\lambda=0.65$ $\lambda=0.65$ $\lambda=0.65$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$ $\lambda=0.80$

[Schuch, Poilblanc, Cirac, Perez-Garcia, PRL '13]

Resonating Valence Bond states

• Resonating Valence Bond (RVB) state: candidate kagome spin liquid

• RVB has exact PEPS representation with \mathbb{Z}_2 entanglement symmetry (in fact, it is the most natural SU(2)-invariant PEPS!)

$$= \frac{1}{2} \oplus 0$$

$$\frac{1}{2} \oplus 0$$

$$\frac{1}{2} \oplus 0$$

$$\frac{1}{2} \oplus 0$$

RVB and dimer models

MPO

- RVB difficult to study:
 - configurations not orthogonal, negative signs
 - Topological? Magnetically ordered?

- resort to dimer models with orthogonal dimers
 - can be exactly solved
 - topologically ordered (= toric code)

$$\left\langle \left\langle \right\rangle \right| \left\langle \right\rangle \right\rangle = 0$$

Interpolation in PEPS (w/ smooth Hamiltonian!):

Numerical study of the RVB state

- numerical study of interpolation RVB ↔ dimer model
- "transfer operator": governs all correlation functions
 topological sector labeled by symmetry

- \Rightarrow RVB state on kagome lattice is a \mathbb{Z}_2 topological spin liquid
- can prove: RVB is (topo. degenerate) ground state of parent Hamiltonian

- \Rightarrow RVB state on kagome lattice is a \mathbb{Z}_2 topological spin liquid
- can prove: RVB is (topo. degenerate) ground state of parent Hamiltonian

Entanglement Hamiltonian of RVB

- What is the **entanglement spectrum** + Hamiltonian of RVB?
- $H_{\rm ent}$ inherits on-site & topological symmetries of PEPS
 - topological symmetry: Z = diag(-1, -1, 1)
 - local SU(2) symmetry: $\frac{1}{2} \oplus 0 \equiv \{|\uparrow\rangle, |\downarrow\rangle, |\mathrm{vac}\rangle\}$
 - $\rightarrow H_{\rm ent}$ has t-J-model type structure (+pairing)
- numerical study:
 - H_{ent} is approximately local (+topological term): dominant NN hopping/pairing, smaller Heisenberg & repulsion, longer-range terms bosonic

"fermionic" parity constraint at boundary!

Dispersion relations

 Ansatz for excitations → extract information about dispersion relation for different topological excitations from correlation functions

Topological phases and anyon condensation

• **Description of anyon** on entanglement degrees of freedom:

- Does this describe a physically observable excitation?
 - → depends on environment!
- What could "go wrong"?
 - environment absorbs string → equal to original state: condensed
 - environment orthogonal to string → ill-defined: confined

Virtual vs. physical anyons

• Express as expectation values:

condensation

confinement

can serve as order parameters for topological phases

The transfer operator

condensation/confimement order parameters → string order at boundary

• boundary state = fixed point of transfer operator T

Tinherits symmetries from tensor:

$$= U_g^{\dagger} \qquad \Rightarrow \quad [\mathbb{T}, U_g^{\otimes N} \otimes \bar{U}_{g'}^{\otimes N}] = 0$$

$$\text{symmetry group } G \times G$$

• classification of **anyon behavior** \leftrightarrow classification of **1D phases of** $G \times G$ (symmetry breaking *and* SPT)

Case study: \mathbb{Z}_4 symmetry

- \mathbb{Z}_4 double: symmetry group \mathbb{Z}_4
- Symmetries of \mathbb{T} (\leftrightarrow 1D classification): $\mathbb{Z}_4 \times \mathbb{Z}_4$

\mathbb{Z}_4 double model

symmetry: $\mathbb{Z}_4 \cong \{00, 11, 22, 33\}$

double semion phase: need to condense dyon

Toric Code

$$\mathbb{Z}_2 \cong \{00, 22\}$$

Toric Code or **Double Semion**

$$\mathbb{Z}_4 \times \mathbb{Z}_2 \cong \{00, 11, 22, 33, 02, 13, 20, 31\}$$

trivial

$$\mathbb{Z}_1 \cong \{00\}$$

trivial

$$\mathbb{Z}_1 \cong \{00\}$$
 $\mathbb{Z}_2 \times \mathbb{Z}_2 \cong \{00, 02, 20, 22\}$

trivial

$$\mathbb{Z}_4 \times \mathbb{Z}_4$$

Phase diagram of \mathbb{Z}_4 -invariant PEPS

Topological phase transitions

Toric Code – Doubled Semion transition

2nd order

Summary

- PEPS: entanglement-based local description of many-body systems
- PEPS encode physical structure locally
- PEPS provide an explicit "entanglement space" at the boundary
- topological order in PEPS ↔ local symmetry in entanglement

$$= V_g^{\dagger} V_g^{\dagger} V_g$$

$$= U_g^{\dagger} V_g^{\dagger} U_g$$

$$=U_g^{\dagger} U_g^{\dagger}$$

- Application 1: Spin-liquid nature of RVB state
- Application 2: study of topological phases "holographically" through 1D phases at the boundary

