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1. Identifying hidden multipolar order in triangular lattice magnet

2. Symmetry enriched U(1) spin liquids, field-driven  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Table 1. Summary of ongoing contemporary experiments to characterise the heavy fermion precursor, the HO
transition and the HO and superconducting states of URu2Si2.

Angular resolved photoemission (ARPES) [7–11]
Quantum oscillations (QO) [12–14]
Elastic and inelastic neutron scattering [15–19]
Nuclear magnetic and quadrupolar resonance (NMR, NQR) [20–22]
Scanning tunneling microscopy (STM) and spectroscopy (STS) [23, 24]
Ultrafast time-resolved ARPES and reflection spectroscopy [25, 26]
Phononic Raman [27] and electronic Raman spectroscopy [28]
Optical spectroscopy [29–31]
Polar Kerr e↵ect [32]
Magnetic torque measurements [5, 33]
Cyclotron resonance [34]
X-ray di↵raction [35, 36]
X-ray resonant scattering (XRS) [37, 38]
Point contact spectroscopy (PCS) [39–41]
Resonance ultrasonics [42]
Core-level spectroscopy (XAS, EELS) [43]
Elasto-resistivity [44]

Table 2. Summary of analytic theories and models proposed to explain the HO, with an emphasise on the recent
contributions. For proposals of specific multipolar magnetic order on the U ions, see Table 3.

Barzykin & Gorkov (1995) three-spin correlations [45]
Kasuya (1997) uranium dimerisation [46]
Ikeda & Ohashi (1998) d-spin density wave [47]
Okuno & Miyake (1998) CEF & quantum fluctuations [48]
Chandra et al. (2002) orbital currents [49]
Viroszek et al. (2002) unconv. spin density wave [50]
Mineev & Zhitomirsky (2005) staggered spin density wave [51]
Varma & Zhu (2006) helicity (Pomeranchuk) order [52]
Elgazzar et al. (2009) dynamical symmetry breaking [53]
Kotetes et al. (2010) chiral d-density wave [54]
Dubi & Balatsky (2011) hybridization wave [55]
Pepin et al. (2011) modulated spin liquid [56]
Fujimoto (2011) spin nematic order [57]
Riseborough et al. (2012) unconv. spin-orbital density wave [58]
Das (2012) spin-orbital density wave [59]
Chandra et al. (2013) hastatic order [60]
Hsu & Chakravarty (2013) singlet-triplet d-density wave [61]

Every quantum material is a universe, and our telescopes are the experimental probes. 
More telescopes can be applied if there are more kinds of degrees of freedom.
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Throughout the past three decades the hidden order (HO) problem in URu2Si2 has remained
a “hot topic” in the physics of strongly correlated electron systems with well over 600 publica-
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various experimental results embedded within electronic structure calculations using density
functional theory (DFT) to give a consistent description of the itinerant behaviour of the HO
transition and its low temperature state. Here we review six di↵erent experiments: ARPES,
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Table 3. Summary of proposals for a specific multipolar magnetic ordering on the uranium ion to explain the
HO, with an emphasise on the recent contributions. Note that di↵erent symmetries are possible for high-rank
multipoles, therefore some kind of multipoles appear more than once.

Nieuwenhuys (1987) dipole (21) order [62]
Santini & Amoretti (1994) quadrupolar (22) order [63]
Kiss & Fazekas (2005) octupolar (23) order [64]
Hanzawa & Watanabe (2005) octupolar order [65]
Hanzawa (2007) incommensurate octupole [66]
Haule and Kotliar (2009) hexadecapolar (24) order [67]
Cricchio et al. (2009) dotriacontapolar (25) order [68]
Harima et al. (2010) antiferro quadrupolar order [69]
Thalmeier & Takimoto (2011) E(1, 1)-type quadrupole [70]
Kusunose & Harima (2011) antiferro hexadecapole[71]
Ikeda et al. (2012) E�-type dotriacontapole [72]
Rau & Kee (2012) E-type dotriacontapole [73]
Ressouche et al. (2012) dotriacontapolar order [16]

LMAF

X M

Γ

Σ"

M

(b) 

(c) 

Figure 1. (a) ARPES spectral weight measured in the kz = 0 (�) plane at the Fermi energy (EF) for
T=12 K, after Meng et al. [7]. The superimposed DFT calculated FS cross-sections (light blue lines)
[53] for the nonmagnetic phase are also shown. (b) DFT computed FS cross-sections of the LMAF phase
in the simple tetragonal Brillouin zone. Note the lack of intensity in the [110] (⌃) directions indicating
the opening of an energy gap. (c) Enlarged view of the ARPES intensity around the M point (yellow),
with superimposed DFT cross-section (red dotted lines). The structure reveals two overlaying pockets,
evidencing thus downfolding over Q0 = [0 0 1] in the HO.

Various theoretical proposals,
still unresolved



How to identify the nature of the “hidden orders”?

Yaodong Li, Xiaoqun Wang, GC, PRB (R) 94, 201114 (2016): hidden octupolar order 
Changle Liu, Yaodong Li, GC, PRB 98, 045119 (2018): hidden quadrupolar order



How to identify the nature of the “hidden orders”?

Our simple proposal :  Orthogonal operator approach

Yaodong Li, Xiaoqun Wang, GC, PRB (R) 94, 201114 (2016): hidden octupolar order 
Changle Liu, Yaodong Li, GC, PRB 98, 045119 (2018): hidden quadrupolar order



How to identify the nature of the “hidden orders”?

Our simple proposal :  Orthogonal operator approach

Find physical observables whose operators do not commute with  
the “proposed” hidden order operators, and these observables 
are easier to detect experimentally. The dynamic correlations or  
spectra reveals the structure and the nature of the hidden orders.

Yaodong Li, Xiaoqun Wang, GC, PRB (R) 94, 201114 (2016): hidden octupolar order 
Changle Liu, Yaodong Li, GC, PRB 98, 045119 (2018): hidden quadrupolar order



Intertwined multipolar structure in TmMgGaO4 

Jun Zhao
(Fudan)

Yao Shen
(Fudan)

Changle Liu
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[To appear in Nature Communications]
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.

This material is not our motivation, but our application. 
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.

Tm in TmMgGaO4 looks like non-Kramers doublets

Y Shen, Changle Liu, …, GC, Jun Zhao, arXiv 1810.05054 
[To appear in Nature Communications]
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.

Tm in TmMgGaO4 looks like non-Kramers doublets

Transverse components are hidden, only the z component is visible 
in magnetic fields. 

Y Shen, Changle Liu, …, GC, Jun Zhao, arXiv 1810.05054 
[To appear in Nature Communications]
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.

Tm in TmMgGaO4 looks like non-Kramers doublets

Transverse components are hidden, only the z component is visible 
in magnetic fields. 
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FIG. 1: Thermodynamic property and neutron diffraction measurements of TmMgGaO4 single crystals. a, Temperature depen-
dence of the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and
perpendicular to the c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization
at T = 2 K. Linear fitting of the magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and
magnetic entropy measured under zero field. The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with
the non-magnetic reference compound LuMgGaO4. The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a
Schottky anomaly is observed below 0.4 K, which is likely caused by the strong hyperfine interactions. d, Q-scans across the magnetic
Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the indicated temperatures. e, Temperature dependence of the fitted
peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across the magnetic multipolar Bragg peak Q = (1, 0, 0) along the
transverse direction at indicated temperatures. g, Temperature dependence of the intensity of the Q = (1, 0, 0) peak. The solid and
dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg peak at 0.05 K. The white dashed lines
indicate the zone boundaries. i, L dependence of the peak intensity at Q = (1/3, -2/3, L). j, Schematic of the three-sublattice magnetic
structure of TmMgGaO4. The data shown in d, f and g were measured on PANDA and the data in h and i were measured on LET. The
wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; a. u., arbitrary unit; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute.

(FC) data can be distinguished, suggesting the absence of phase transition above 2 K. When the magnetic field along
the c axis increases, the system is driven into a nearly polarized state marked by the saturated magnetization above 5 T
(Fig. 1b). The corresponding Landé-g factor for effective S =1/2 state is around 12.11 which is close to the upper limit of
2JgJ = 14. This indicates a dominant Jz = ±6 components in the wave functions of the low-lying two singlets, leading to
a strong Ising character, consistent with previous report21. In a sharp contrast, when the field is applied in the ab plane, a
much weaker magnetic response is observed (Fig. 1a, b). The heat capacity measurement shows an anomaly at ⇠ 1 K,

The system orders antiferromagnetically
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FIG. 1: Thermodynamic property and neutron diffraction measurements of TmMgGaO4 single crystals. a, Temperature depen-
dence of the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and
perpendicular to the c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization
at T = 2 K. Linear fitting of the magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and
magnetic entropy measured under zero field. The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with
the non-magnetic reference compound LuMgGaO4. The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a
Schottky anomaly is observed below 0.4 K, which is likely caused by the strong hyperfine interactions. d, Q-scans across the magnetic
Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the indicated temperatures. e, Temperature dependence of the fitted
peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across the magnetic multipolar Bragg peak Q = (1, 0, 0) along the
transverse direction at indicated temperatures. g, Temperature dependence of the intensity of the Q = (1, 0, 0) peak. The solid and
dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg peak at 0.05 K. The white dashed lines
indicate the zone boundaries. i, L dependence of the peak intensity at Q = (1/3, -2/3, L). j, Schematic of the three-sublattice magnetic
structure of TmMgGaO4. The data shown in d, f and g were measured on PANDA and the data in h and i were measured on LET. The
wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; a. u., arbitrary unit; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute.

(FC) data can be distinguished, suggesting the absence of phase transition above 2 K. When the magnetic field along
the c axis increases, the system is driven into a nearly polarized state marked by the saturated magnetization above 5 T
(Fig. 1b). The corresponding Landé-g factor for effective S =1/2 state is around 12.11 which is close to the upper limit of
2JgJ = 14. This indicates a dominant Jz = ±6 components in the wave functions of the low-lying two singlets, leading to
a strong Ising character, consistent with previous report21. In a sharp contrast, when the field is applied in the ab plane, a
much weaker magnetic response is observed (Fig. 1a, b). The heat capacity measurement shows an anomaly at ⇠ 1 K,

The system orders antiferromagnetically
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FIG. 1: Thermodynamic property and neutron diffraction measurements of TmMgGaO4 single crystals. a, Temperature depen-
dence of the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and
perpendicular to the c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization
at T = 2 K. Linear fitting of the magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and
magnetic entropy measured under zero field. The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with
the non-magnetic reference compound LuMgGaO4. The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a
Schottky anomaly is observed below 0.4 K, which is likely caused by the strong hyperfine interactions. d, Q-scans across the magnetic
Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the indicated temperatures. e, Temperature dependence of the fitted
peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across the magnetic multipolar Bragg peak Q = (1, 0, 0) along the
transverse direction at indicated temperatures. g, Temperature dependence of the intensity of the Q = (1, 0, 0) peak. The solid and
dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg peak at 0.05 K. The white dashed lines
indicate the zone boundaries. i, L dependence of the peak intensity at Q = (1/3, -2/3, L). j, Schematic of the three-sublattice magnetic
structure of TmMgGaO4. The data shown in d, f and g were measured on PANDA and the data in h and i were measured on LET. The
wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; a. u., arbitrary unit; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute.

(FC) data can be distinguished, suggesting the absence of phase transition above 2 K. When the magnetic field along
the c axis increases, the system is driven into a nearly polarized state marked by the saturated magnetization above 5 T
(Fig. 1b). The corresponding Landé-g factor for effective S =1/2 state is around 12.11 which is close to the upper limit of
2JgJ = 14. This indicates a dominant Jz = ±6 components in the wave functions of the low-lying two singlets, leading to
a strong Ising character, consistent with previous report21. In a sharp contrast, when the field is applied in the ab plane, a
much weaker magnetic response is observed (Fig. 1a, b). The heat capacity measurement shows an anomaly at ⇠ 1 K,
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Fig. 2: Measured and calculated momentum dependence of the spin excitations in TmMgGaO4 at the indicated energies and T = 0.05
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contamination from the sample environment close to the direct beam. g-l, Calculated spin excitations using the model specified in the text.

The dashed lines indicate the zone boundaries. The measurements were performed on LET spectrometer with Ei = 4.8 meV. The color bars

indicate scattering intensity in arbitrary unit in linear scale.
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3

where S ± = S x
± iS y and J1 and J2 are nearest and next-nearest neighboured magnetic interactions, respectively, as

illustrated in Supplementary Fig. 2a. The three-fold magnetic twins are included for all calculations.
We consider the isotropic Heisenberg model (Jzz

1 = 2J±1 = 0.9 meV, Jzz
2 = 0 meV) and anisotropic XY model (Jzz

1 = Jzz
2 =

0 meV, J±1 = 0.4 meV) that support the 120 degree Néel order and lead to strong magnetic Bragg peaks at K points. We
calculate both the total scattering function (S xx + S yy + S zz) and the longitudinal component (S zz) for both of the models
(Supplementary Fig. 3a-d). Although the calculated spin waves catch the feature of Goldstone mode stemmed from K
points, the branches around � points go as a minimum in the calculation instead of a maximum which is observed in the
neutron experiments. Moreover, the branches around the M points are located at higher energies than the experimental
data.

Another scenario is the Ising model with a stripe order that has been proposed in a recent research2. The parameters are
chosen to be Jzz

1 = 0.8 meV and Jzz
2 = 0.076 meV. The fact that the stripe structure would introduce magnetic Bragg peaks

at M points disagrees with our neutron diffraction result. Furthermore, since all spins are aligned along the c direction, the
S zz sector vanishes for local spins and the transverse components are essentially dispersionless, clearly inconsistent with
our data (Supplementary Fig. 3e).

We also calculate the scattering function based on the quasi-doublet scenario that is proposed in the main text. We
show that the longitudinal excitations (S zz channel) of the intertwined multipolar order are in excellent agreement with our
data (Fig. 2g-l, Fig. 3b).

Finally, we consider the intertwined multipolar order raised from a non-Kramers doublet system3. It is described by the
Hamiltonian

H =
X

hi ji

[Jzz
1 S z

i S
z
j + J±1 (S +i S �j + S �i S +j ) + J±±1 (�i jS +i S +j + �

⇤

i jS
�

i S �j )] +
X

hhi jii

Jzz
2 S z

i S
z
j (3)

where �i j are phase factors that depend on the directions of the bonds. In this scenario, the effective spin components S x

and S y show hidden quadrupolar behavior while the out-of-plane component S z shows dipolar behavior, similar to the quasi-
doublet scenario that is proposed for TmMgGaO4 in the main text. However, the observed large Landé g-factor (12.11)
is inconsistent with a non-Kramers doublet state. Moreover, the heat capacity of the highly diluted Tm0.04Lu0.96MgGaO4

shows a finite zero-temperature limit of Cm/T, which is consistent with the quasi-doublet state, but inconsistent with the
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In TmMgGaO4, the low energy degrees of freedom of Tm3+ ions is a pair of nearly degenerated singlets (denoted as
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where our definition of the spin operators here is a bit different from the conventional choice. Our choice is designed for
the particular bases and the wavefunctions of two singlet states.

We find that the transverse components S x and S y are time-reversal even and related to (J±)12 processes. This im-
plies that the S x and S y operators behave as multipolar moments that do not directly couple to external magnetic field.

Actually, they are not non-Kramers doublets
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spin-orbit coupling (SOC), and therefore the spin and orbital degrees of freedom should be described by the

total angular momentum J. The crystalline electric field (CEF) further splits the total angular momentum

J, and the low-lying crystal field states can form rather complex ground states, including spin liquids1–7,

spin ices8–10, and hidden ordered phases11–13. In most circumstances, the hidden-order phase transition is

signaled by the change of bulk properties such as the magnetic susceptibility and heat capacity14; but un-

veiling its microscopic nature is di�cult because the hidden-order parameter cannot be directly disclosed

by microscopic probes such as neutron di↵raction or muon spin rotation/relaxation11. E↵orts have been

made through the study of the collective excitations associated with the hidden orders15–19. For example,

in the canonical hidden-order material URu2Si2, the antiferromagnetic spin excitations appear at both the

commensurate and incommensurate wavevectors, and exhibit spin gaps in the hidden order phase18. In the

case of CeB6, complex ferromagnetic and antiferromagnetic spin excitations were observed along with a

spin exciton19. However, whether or how these collective modes drive the hidden order phase transition

remains a matter of debate.

The recent discovered rare-earth magnet TmMgGaO4 may provide a new opportunity to examine the

exotic ordering phenomenon of f-electrons20. This material has the same crystal structure as the spin liquid

candidate YbMgGaO4 which crystallizes in the R3̄m space group with a quasi-two-dimensional triangular

lattice1. In TmMgGaO4, the Tm3+ ion possess an electron configuration 4 f 12, in which the orbital and

spin angular momentum (L = 5, S = 1) are entangled into the total angular momentum J = 6 due to

the strong SOC. The corresponding 13 states are further split under the D3d CEF. It was suggested that

the relevant low energy degrees of freedom in Tm3+ ion is a pair of nearly degenerate singlets that are

well separated from other CEF levels, resulting in a quasi-doublet state21. This indicates the magnetic

interaction of TmMgGaO4 should be di↵erent from that of YbMgGaO4 where Yb3+ ions are Kramers

ions22. The thermodynamic and magnetic susceptibility measurements in TmMgGaO4 further revealed a
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Transverse field Ising model is a common model in quantum magnetism and is often illustrated
as an example for quantum phase transition. Its physical origin in quantum magnets, however, is
actually not quite well-understood. The quantum mechanical properties of this model on frustrated
systems are not well-understood either. We here clarify the physical origin, both extrinsic one and
intrinsic one, for the transverse field of the quantum Ising model, and then explain the quantum
e↵ects in the Kagome system. We discuss the quantum plaquette order and the possible deconfined
phase transition out of this ordered state in the rare-earth Kagome magnets. Our specific results
can find their relevance in the rare-earth tripod Kagome magnets.

I. INTRODUCTION

The classical Ising model is a textbook model in the
field of magnetism and statistical physics. The exact
solution by Lars Onsager for the two-dimensional Ising
model is a milestone of modern statistical physics and
proved the very existence of continuous phase transitions
with only short-range interactions1. The far-reaching im-
pact of Onsager’s solution goes much beyond the origi-
nal motivation2,3. Its quantum extension, the transverse
field Ising model, contains the ingredient of the quantum
phase transition and emergent low-energy quantum field
theories at the criticality4. For the unfrustrated Ising in-
teraction on systems like a square lattice, the tranverse
field Ising model can be well-understood from the high-
dimensional classical Ising model and its thermal transi-
tion. On the frustrated systems, however, new ingredi-
ents may arise from the interplay between the quantum
fluctuation and the geometrical frustration of the under-
lying lattices.

Besides the interesting physical properties of the trans-
verse field Ising models, the physical origin of the trans-
verse field Ising models is actually not well understood.
This is related to the physical realization of this simple
and important model. The Ising model requires a strong
spin anisotropy in the spin space, and this almost im-
mediately implies that, the magnetic system must have
a strong spin-orbit coupling. Indeed, the localized mo-
ments of the proposed Ising magnets, such as quasi-1d
magnets CoNb2O6, BaCo2V2O8, SrCo2V2O8 and various
2d/3d rare-earth magnets, do arise from the strong spin-
orbit entanglement, and the local moments have a strong
orbital character5–12. In the case of the Co2+ local mo-
ment, the ion has a 3d7 electron configuration and has one
hole in the lower t2g shell, and the spin-orbit coupling is
active here. As a result, the ion has a total spin S = 3/2
and an e↵ective orbital angular momentum L = 1, and
the resulting total moment is given by the spin-orbit-
entangled Kramers doublet. Because of the involvement
of the orbital degrees of freedom, the exchange interac-
tion between the Kramers doublet has to be anisotropic.

This is indeed the underlying driving force for the Ki-
taev interactions in the Co-based honeycomb magnets
Na2Co2TeO6 and Na3Co2SbO6

13,14, and the anisotropic
interaction in the pyrochlore cobaltate NaCaCo2F7

15–17.
For the case of quasi-1d magnets CoNb2O6, BaCo2V2O8

and SrCo2V2O8, because of the local Co2+ environment
and the special lattice geometry, the system realizes the
Ising interactions between the local moments. The trans-
verse field is then introduced externally by applying a
magnetic field normal to the Ising spin direction. This
is feasible because the Co2+ local moment is a Kramers
doublet and all the three components of the moments are
magnetic. This is the external origin of the transverse
field.

Is there an intrinsic origin of the transverse field?
Our successful modelling20 of the intertwined multipolar
physics in the triangular lattice magnet TmMgGaO4

18,19

suggests a positive answer. We start from our early un-
derstanding about the Tm3+ ion in TmMgGaO4 and
then give an answer for the general cases. The 4f elec-
trons of the Tm3+ ion has a total spin S = 1 and orbital
angular momentum L = 5, then the spin-orbit coupling
leads to a total moment J = 6. As we show in Fig. 1,
the two lowest crystal field states of the Tm3+ ion are

FIG. 1. The Tm3+ magnetic ions in TmMgGaO4 form a
triangular lattice18–20. The lowest two crystal field singlets
can be modelled as an e↵ective spin-1/2 degree of freedom,
and the weak crystal field splitting is modelled as a transverse
field. This aspect of microscopics and physical model have
been clarified in Ref. 20.
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where S ± = S x
± iS y and J1 and J2 are nearest and next-nearest neighboured magnetic interactions, respectively, as

illustrated in Supplementary Fig. 2a. The three-fold magnetic twins are included for all calculations.
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0 meV, J±1 = 0.4 meV) that support the 120 degree Néel order and lead to strong magnetic Bragg peaks at K points. We
calculate both the total scattering function (S xx + S yy + S zz) and the longitudinal component (S zz) for both of the models
(Supplementary Fig. 3a-d). Although the calculated spin waves catch the feature of Goldstone mode stemmed from K
points, the branches around � points go as a minimum in the calculation instead of a maximum which is observed in the
neutron experiments. Moreover, the branches around the M points are located at higher energies than the experimental
data.

Another scenario is the Ising model with a stripe order that has been proposed in a recent research2. The parameters are
chosen to be Jzz

1 = 0.8 meV and Jzz
2 = 0.076 meV. The fact that the stripe structure would introduce magnetic Bragg peaks

at M points disagrees with our neutron diffraction result. Furthermore, since all spins are aligned along the c direction, the
S zz sector vanishes for local spins and the transverse components are essentially dispersionless, clearly inconsistent with
our data (Supplementary Fig. 3e).

We also calculate the scattering function based on the quasi-doublet scenario that is proposed in the main text. We
show that the longitudinal excitations (S zz channel) of the intertwined multipolar order are in excellent agreement with our
data (Fig. 2g-l, Fig. 3b).

Finally, we consider the intertwined multipolar order raised from a non-Kramers doublet system3. It is described by the
Hamiltonian
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where �i j are phase factors that depend on the directions of the bonds. In this scenario, the effective spin components S x

and S y show hidden quadrupolar behavior while the out-of-plane component S z shows dipolar behavior, similar to the quasi-
doublet scenario that is proposed for TmMgGaO4 in the main text. However, the observed large Landé g-factor (12.11)
is inconsistent with a non-Kramers doublet state. Moreover, the heat capacity of the highly diluted Tm0.04Lu0.96MgGaO4

shows a finite zero-temperature limit of Cm/T, which is consistent with the quasi-doublet state, but inconsistent with the
non-Kramers doublet state2.

III. Construction of the spin Hamiltonian of quasi-doublet.
Here we clarify the definition of the effective spin operators and construct the effective spin Hamiltonian for the quasi-

doublets.
In TmMgGaO4, the low energy degrees of freedom of Tm3+ ions is a pair of nearly degenerated singlets (denoted as

| ±i, Supplementary Fig. 2b). The large g-factor in the magnetization experiments indicate strong Ising character of the
Tm3+ ions, and that the wave functions of these two singlets are dominated by Jz = ±6 components2. In order to respect
all the crystal symmetries, the wave functions of the singlets must take the form of

| +i ⇠ |Jz = 6i + |Jz = �6i + ..., (4)

| �i ⇠ |Jz = 6i � |Jz = �6i + ... (5)

and we define the effective spin-1/2 operators S µi (µ = x, y, z) that act on quasi-doublet | ±i:
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where our definition of the spin operators here is a bit different from the conventional choice. Our choice is designed for
the particular bases and the wavefunctions of two singlet states.

We find that the transverse components S x and S y are time-reversal even and related to (J±)12 processes. This im-
plies that the S x and S y operators behave as multipolar moments that do not directly couple to external magnetic field.
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0 meV, J±1 = 0.4 meV) that support the 120 degree Néel order and lead to strong magnetic Bragg peaks at K points. We
calculate both the total scattering function (S xx + S yy + S zz) and the longitudinal component (S zz) for both of the models
(Supplementary Fig. 3a-d). Although the calculated spin waves catch the feature of Goldstone mode stemmed from K
points, the branches around � points go as a minimum in the calculation instead of a maximum which is observed in the
neutron experiments. Moreover, the branches around the M points are located at higher energies than the experimental
data.

Another scenario is the Ising model with a stripe order that has been proposed in a recent research2. The parameters are
chosen to be Jzz

1 = 0.8 meV and Jzz
2 = 0.076 meV. The fact that the stripe structure would introduce magnetic Bragg peaks

at M points disagrees with our neutron diffraction result. Furthermore, since all spins are aligned along the c direction, the
S zz sector vanishes for local spins and the transverse components are essentially dispersionless, clearly inconsistent with
our data (Supplementary Fig. 3e).

We also calculate the scattering function based on the quasi-doublet scenario that is proposed in the main text. We
show that the longitudinal excitations (S zz channel) of the intertwined multipolar order are in excellent agreement with our
data (Fig. 2g-l, Fig. 3b).

Finally, we consider the intertwined multipolar order raised from a non-Kramers doublet system3. It is described by the
Hamiltonian

H =
X

hi ji

[Jzz
1 S z

i S
z
j + J±1 (S +i S �j + S �i S +j ) + J±±1 (�i jS +i S +j + �

⇤

i jS
�

i S �j )] +
X

hhi jii

Jzz
2 S z

i S
z
j (3)

where �i j are phase factors that depend on the directions of the bonds. In this scenario, the effective spin components S x
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Tm3+ ions, and that the wave functions of these two singlets are dominated by Jz = ±6 components2. In order to respect
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where our definition of the spin operators here is a bit different from the conventional choice. Our choice is designed for
the particular bases and the wavefunctions of two singlet states.

We find that the transverse components S x and S y are time-reversal even and related to (J±)12 processes. This im-
plies that the S x and S y operators behave as multipolar moments that do not directly couple to external magnetic field.
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To describe the momentum and energy dependence of the spin excitation spectra, we adopt the linear

spin wave theory (LSW). For conventional magnetic systems in which all S µi components exhibit dipolar

properties, neutron scattering will probe all three spin channels, S xx, S yy and S zz, since the neutron is

scattered by the magnetic moment through dipole-dipole interactions. Correspondingly, we calculate the

spin wave excitations using the spinw program24 for the pure Ising model, XY model and Heisenberg model

(Supplementary Note 2). However, none of these models with a dipolar order is consistent with our data.

For example, for the XY model that supports the 120 degree Néel order with magnetic Bragg peaks at K

points, the spin wave dispersion around � points should exhibit a minimum instead of a maximum that is

observed in our experiments. In addition, the Ising model with a stripe-type order that has been proposed in

ref. 21, however, will lead to magnetic Bragg peaks at M points and dispersionless spin excitations, clearly

inconsistent with our data.

On the other hand, an intertwined multipolar and dipolar order is in excellent agreement with the exper-

imental data. In TmMgGaO4, the large g-factor in the magnetization experiments indicates strong Ising

character of the Tm3+ ions, suggesting that the wave functions are dominated by Jz = ±6 components21.

Under the D3d symmetric CEF, these Jz = ±6 dominated components are not allowed to form a symmetry

protected doublet. Instead, they must hybridize into two non-magnetic singlets and open an energy gap.

The full singlet wave functions dictating the D3d CEF symmetry must take the following form:

| +i i ⇠c6 (| + 6ii + | � 6ii) + c3 (| + 3ii � | � 3ii) + c0|0ii, (1)

| �i i ⇠c06 (| + 6ii � | � 6ii) + c03 (| + 3ii + | � 3ii) (2)

Here, these two singlets, | +i i and | �i i, carry A1g and A2g representation of the D3d group, respectively.

| jzi denotes for Jz = jz states at site i and c6, c3, c0, c06 and c03 are real numbers with |c6| ⇡ |c06| � c3, c03, c0.

For simplicity, in the following the site index i will be omitted. The local moment can be constructed by

the following spin-1/2 operators acting on the quasi-doublet:
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Transverse field Ising model is a common model in quantum magnetism and is often illustrated
as an example for quantum phase transition. Its physical origin in quantum magnets, however, is
actually not quite well-understood. The quantum mechanical properties of this model on frustrated
systems are not well-understood either. We here clarify the physical origin, both extrinsic one and
intrinsic one, for the transverse field of the quantum Ising model, and then explain the quantum
e↵ects in the Kagome system. We discuss the quantum plaquette order and the possible deconfined
phase transition out of this ordered state in the rare-earth Kagome magnets. Our specific results
can find their relevance in the rare-earth tripod Kagome magnets.

I. INTRODUCTION

The classical Ising model is a textbook model in the
field of magnetism and statistical physics. The exact
solution by Lars Onsager for the two-dimensional Ising
model is a milestone of modern statistical physics and
proved the very existence of continuous phase transitions
with only short-range interactions1. The far-reaching im-
pact of Onsager’s solution goes much beyond the origi-
nal motivation2,3. Its quantum extension, the transverse
field Ising model, contains the ingredient of the quantum
phase transition and emergent low-energy quantum field
theories at the criticality4. For the unfrustrated Ising in-
teraction on systems like a square lattice, the tranverse
field Ising model can be well-understood from the high-
dimensional classical Ising model and its thermal transi-
tion. On the frustrated systems, however, new ingredi-
ents may arise from the interplay between the quantum
fluctuation and the geometrical frustration of the under-
lying lattices.

Besides the interesting physical properties of the trans-
verse field Ising models, the physical origin of the trans-
verse field Ising models is actually not well understood.
This is related to the physical realization of this simple
and important model. The Ising model requires a strong
spin anisotropy in the spin space, and this almost im-
mediately implies that, the magnetic system must have
a strong spin-orbit coupling. Indeed, the localized mo-
ments of the proposed Ising magnets, such as quasi-1d
magnets CoNb2O6, BaCo2V2O8, SrCo2V2O8 and various
2d/3d rare-earth magnets, do arise from the strong spin-
orbit entanglement, and the local moments have a strong
orbital character5–12. In the case of the Co2+ local mo-
ment, the ion has a 3d7 electron configuration and has one
hole in the lower t2g shell, and the spin-orbit coupling is
active here. As a result, the ion has a total spin S = 3/2
and an e↵ective orbital angular momentum L = 1, and
the resulting total moment is given by the spin-orbit-
entangled Kramers doublet. Because of the involvement
of the orbital degrees of freedom, the exchange interac-
tion between the Kramers doublet has to be anisotropic.

This is indeed the underlying driving force for the Ki-
taev interactions in the Co-based honeycomb magnets
Na2Co2TeO6 and Na3Co2SbO6

13,14, and the anisotropic
interaction in the pyrochlore cobaltate NaCaCo2F7

15–17.
For the case of quasi-1d magnets CoNb2O6, BaCo2V2O8

and SrCo2V2O8, because of the local Co2+ environment
and the special lattice geometry, the system realizes the
Ising interactions between the local moments. The trans-
verse field is then introduced externally by applying a
magnetic field normal to the Ising spin direction. This
is feasible because the Co2+ local moment is a Kramers
doublet and all the three components of the moments are
magnetic. This is the external origin of the transverse
field.

Is there an intrinsic origin of the transverse field?
Our successful modelling20 of the intertwined multipolar
physics in the triangular lattice magnet TmMgGaO4

18,19

suggests a positive answer. We start from our early un-
derstanding about the Tm3+ ion in TmMgGaO4 and
then give an answer for the general cases. The 4f elec-
trons of the Tm3+ ion has a total spin S = 1 and orbital
angular momentum L = 5, then the spin-orbit coupling
leads to a total moment J = 6. As we show in Fig. 1,
the two lowest crystal field states of the Tm3+ ion are

FIG. 1. The Tm3+ magnetic ions in TmMgGaO4 form a
triangular lattice18–20. The lowest two crystal field singlets
can be modelled as an e↵ective spin-1/2 degree of freedom,
and the weak crystal field splitting is modelled as a transverse
field. This aspect of microscopics and physical model have
been clarified in Ref. 20.
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Meanwhile, the longitudinal component S z acts proportional to Jz projected in the quasi-doublet manifold, indicating that S z

behaves as dipolar moment along the c axis.
The crystalline electric field opens an energy gap h between the singlets | ±i i (Supplementary Fig. 3b). This gap can

be captured by a transverse field term along y axis (�h
P

i S y
i ). Considering the strong Ising nature of the spins here,

we only take into account the Ising-type interactions between the effective spins. Up to the second nearest neighboured
interactions, the effective Hamiltonian reads

H =
X

hi ji

Jzz
1 S z

i S
z
j +
X

hhi jii

Jzz
2 S z

i S
z
j � h
X

i

S y
i . (9)

IV. Magnetic form factor.
For conventional dipolar moments, the magnetic form factor decreases with increasing Q while the multipoles may

display an anisotropic and non-monotonic Q-dependence of the magnetic form factor, because multipoles have complex
magnetization density4. In Supplementary Fig. 4, we present the constant energy slices of the simulated spin wave
excitations considering a dipolar Tm3+ form factor. The simulated spin excitation signal in the second Brillouin zone is
considerably weaker than that of the first zone, which is clearly inconsistent with the measured data in Fig. 2a-f. The
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where hi ji and hhi jii denote the nearest and next-nearest neighbours, respectively (Supplementary Fig. 2a).

Despite the strong Ising nature, the CEF splitting term can create strong quantum fluctuations upon the

spins. Based on this model, we re-calculate the spin wave dispersion and find a set of parameters that

can accurately describe our data: Jzz
1 =0.54(2) meV, Jzz

2 =0.026(6) meV, h=0.62(2) meV. The calculated E-k

relationship shows excellent agreement with the experimental observation (Fig. 2g-l, 3b). The correspond-

ing magnetic structure is a three-sublattice structure in which the hidden components form a preformed

ferro-multipolar order along the y direction in the e↵ective spin space due to the polarization e↵ect from

the transverse field while the out-of-plane dipole moments order antiferromagnetically at K points (Fig. 1j).

The out-of-plane dipolar order (spin-up, spin-down, spin-0 in the three sublattices, respectively) shows no

macroscopic magnetization and is indicated by our neutron di↵raction measurements that reveal a magnetic

Bragg peak at the K point. The multipoles, however, do not linearly couple to neutrons and therefore are

hidden in the neutron di↵raction measurements.

Although these multipolar components are not directly visible, the elementary excitations of the multi-

polar components can be accessible in inelastic neutron experiments. As the multipolar components do not

commute with the dipolar ones, measuring the S z moment will induce spin-flipping events on the multi-

polar components, leading to coherent multipolar spin wave excitations25,26. As a result, the LSW theory

remains a valid description for the excitations but only the longitudinal S zz channel is involved.

Because multipoles have a complex magnetization density with no spatially uniform magnetization, the

multipolar spin wave may display an anisotropic and non-monotonic Q-dependence of the magnetic form

factor which is di↵erent from a conventional dipole spin wave11,27. Indeed, Fig. 2 shows that the spin exci-

tations in the second Brillouin zone are not weaker than those of the first Brillouin zone, in stark contrast

to a conventional dipolar form factor of Tm3+ that decreases with increasing Q. This further confirms the
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the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across
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Meanwhile, the longitudinal component S z acts proportional to Jz projected in the quasi-doublet manifold, indicating that S z

behaves as dipolar moment along the c axis.
The crystalline electric field opens an energy gap h between the singlets | ±i i (Supplementary Fig. 3b). This gap can
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i ). Considering the strong Ising nature of the spins here,

we only take into account the Ising-type interactions between the effective spins. Up to the second nearest neighboured
interactions, the effective Hamiltonian reads

H =
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IV. Magnetic form factor.
For conventional dipolar moments, the magnetic form factor decreases with increasing Q while the multipoles may

display an anisotropic and non-monotonic Q-dependence of the magnetic form factor, because multipoles have complex
magnetization density4. In Supplementary Fig. 4, we present the constant energy slices of the simulated spin wave
excitations considering a dipolar Tm3+ form factor. The simulated spin excitation signal in the second Brillouin zone is
considerably weaker than that of the first zone, which is clearly inconsistent with the measured data in Fig. 2a-f. The
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where hi ji and hhi jii denote the nearest and next-nearest neighbours, respectively (Supplementary Fig. 2a).

Despite the strong Ising nature, the CEF splitting term can create strong quantum fluctuations upon the

spins. Based on this model, we re-calculate the spin wave dispersion and find a set of parameters that

can accurately describe our data: Jzz
1 =0.54(2) meV, Jzz

2 =0.026(6) meV, h=0.62(2) meV. The calculated E-k

relationship shows excellent agreement with the experimental observation (Fig. 2g-l, 3b). The correspond-

ing magnetic structure is a three-sublattice structure in which the hidden components form a preformed

ferro-multipolar order along the y direction in the e↵ective spin space due to the polarization e↵ect from

the transverse field while the out-of-plane dipole moments order antiferromagnetically at K points (Fig. 1j).

The out-of-plane dipolar order (spin-up, spin-down, spin-0 in the three sublattices, respectively) shows no

macroscopic magnetization and is indicated by our neutron di↵raction measurements that reveal a magnetic

Bragg peak at the K point. The multipoles, however, do not linearly couple to neutrons and therefore are

hidden in the neutron di↵raction measurements.

Although these multipolar components are not directly visible, the elementary excitations of the multi-

polar components can be accessible in inelastic neutron experiments. As the multipolar components do not

commute with the dipolar ones, measuring the S z moment will induce spin-flipping events on the multi-

polar components, leading to coherent multipolar spin wave excitations25,26. As a result, the LSW theory

remains a valid description for the excitations but only the longitudinal S zz channel is involved.

Because multipoles have a complex magnetization density with no spatially uniform magnetization, the

multipolar spin wave may display an anisotropic and non-monotonic Q-dependence of the magnetic form

factor which is di↵erent from a conventional dipole spin wave11,27. Indeed, Fig. 2 shows that the spin exci-

tations in the second Brillouin zone are not weaker than those of the first Brillouin zone, in stark contrast

to a conventional dipolar form factor of Tm3+ that decreases with increasing Q. This further confirms the
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.
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Intrinsic transverse field in frustrated quantum Ising magnets:
its physical origin and quantum e↵ects

Gang Chen
Department of Physics and Center of Theoretical and Computational Physics,

the University of Hong Kong, Hong Kong, China

(Dated: August 3, 2019)

Transverse field Ising model is a common model in quantum magnetism and is often illustrated
as an example for quantum phase transition. Its physical origin in quantum magnets, however, is
actually not quite well-understood. The quantum mechanical properties of this model on frustrated
systems are not well-understood either. We here clarify the physical origin, both extrinsic one and
intrinsic one, for the transverse field of the quantum Ising model, and then explain the quantum
e↵ects in the Kagome system. We discuss the quantum plaquette order and the possible deconfined
phase transition out of this ordered state in the rare-earth Kagome magnets. Our specific results
can find their relevance in the rare-earth tripod Kagome magnets.

I. INTRODUCTION

The classical Ising model is a textbook model in the
field of magnetism and statistical physics. The exact
solution by Lars Onsager for the two-dimensional Ising
model is a milestone of modern statistical physics and
proved the very existence of continuous phase transitions
with only short-range interactions1. The far-reaching im-
pact of Onsager’s solution goes much beyond the origi-
nal motivation2,3. Its quantum extension, the transverse
field Ising model, contains the ingredient of the quantum
phase transition and emergent low-energy quantum field
theories at the criticality4. For the unfrustrated Ising in-
teraction on systems like a square lattice, the tranverse
field Ising model can be well-understood from the high-
dimensional classical Ising model and its thermal transi-
tion. On the frustrated systems, however, new ingredi-
ents may arise from the interplay between the quantum
fluctuation and the geometrical frustration of the under-
lying lattices.

Besides the interesting physical properties of the trans-
verse field Ising models, the physical origin of the trans-
verse field Ising models is actually not well understood.
This is related to the physical realization of this simple
and important model. The Ising model requires a strong
spin anisotropy in the spin space, and this almost im-
mediately implies that, the magnetic system must have
a strong spin-orbit coupling. Indeed, the localized mo-
ments of the proposed Ising magnets, such as quasi-1d
magnets CoNb2O6, BaCo2V2O8, SrCo2V2O8 and various
2d/3d rare-earth magnets, do arise from the strong spin-
orbit entanglement, and the local moments have a strong
orbital character5–12. In the case of the Co2+ local mo-
ment, the ion has a 3d7 electron configuration and has one
hole in the lower t2g shell, and the spin-orbit coupling is
active here. As a result, the ion has a total spin S = 3/2
and an e↵ective orbital angular momentum L = 1, and
the resulting total moment is given by the spin-orbit-
entangled Kramers doublet. Because of the involvement
of the orbital degrees of freedom, the exchange interac-
tion between the Kramers doublet has to be anisotropic.

This is indeed the underlying driving force for the Ki-
taev interactions in the Co-based honeycomb magnets
Na2Co2TeO6 and Na3Co2SbO6

13,14, and the anisotropic
interaction in the pyrochlore cobaltate NaCaCo2F7

15–17.
For the case of quasi-1d magnets CoNb2O6, BaCo2V2O8

and SrCo2V2O8, because of the local Co2+ environment
and the special lattice geometry, the system realizes the
Ising interactions between the local moments. The trans-
verse field is then introduced externally by applying a
magnetic field normal to the Ising spin direction. This
is feasible because the Co2+ local moment is a Kramers
doublet and all the three components of the moments are
magnetic. This is the external origin of the transverse
field.

Is there an intrinsic origin of the transverse field?
Our successful modelling20 of the intertwined multipolar
physics in the triangular lattice magnet TmMgGaO4

18,19

suggests a positive answer. We start from our early un-
derstanding about the Tm3+ ion in TmMgGaO4 and
then give an answer for the general cases. The 4f elec-
trons of the Tm3+ ion has a total spin S = 1 and orbital
angular momentum L = 5, then the spin-orbit coupling
leads to a total moment J = 6. As we show in Fig. 1,
the two lowest crystal field states of the Tm3+ ion are

FIG. 1. The Tm3+ magnetic ions in TmMgGaO4 form a
triangular lattice18–20. The lowest two crystal field singlets
can be modelled as an e↵ective spin-1/2 degree of freedom,
and the weak crystal field splitting is modelled as a transverse
field. This aspect of microscopics and physical model have
been clarified in Ref. 20.

GC, unpublished 2019

Extrinsic quantum Ising model
R Coldea, Sungbin Lee, Balents,… 
Bella Lake, Congjun Wu, Alois Loidl  

Jianda Wu….. 



Orthogonal operator: Sz

The 3-sublattice Sz order [at K] is a quantum effect, arising from the geometrical  
frustration and quantum order by disorder. [known from weak field limit, Sondhi, Moessner]

Transverse components are hidden.
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.
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Orthogonal operator: Sz

The 3-sublattice Sz order [at K] is a quantum effect, arising from the geometrical  
frustration and quantum order by disorder. [known from weak field limit, Sondhi, Moessner]

Transverse components are hidden.
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.
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Fig. 1: Thermodynamic property and neutron di↵raction measurements of TmMgGaO4 single crystals. a, Temperature dependence of

the magnetic susceptibility � measured under ZFC and FC conditions with external fields of 10 kOe applied parallel and perpendicular to the

c axis. The inset shows the linear fitting of the inverse susceptibility. b, Field dependence of the magnetization at T = 2 K. Linear fitting of the

magnetization at high field indicates the Landé-g factor of 12.11(5). c, Magnetic heat capacity and magnetic entropy measured under zero field.

The phonon contribution is subtracted by comparing measurements of TmMgGaO4 with the non-magnetic reference compound LuMgGaO4.

The magnetic entropy is obtained by integrating C/T from 0.25 K. Indication of a Schottky anomaly is observed below 0.4 K, which is likely

caused by the strong hyperfine interactions. d, Q-scans across the magnetic Bragg peak Q = (1/3, 1/3, 0) along the transverse direction at the

indicated temperatures. e, Temperature dependence of the fitted peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Q-scans across

the magnetic multipolar Bragg peak Q = (1, 0, 0) along the transverse direction at indicated temperatures. g, Temperature dependence of the

intensity of the Q = (1, 0, 0) peak. The solid and dashed lines in d-f are guides to the eye. h, Momentum dependence of the magnetic Bragg

peak at 0.05 K. The white dashed lines indicate the zone boundaries. i, L dependence of the peak intensity at Q = (2/3, -1/3, L). The color bars

indicate scattering intensity in arbitrary unit in linear scale. j, Schematic of the three-sublattice magnetic structure of TmMgGaO4. S y forms

ferro-multipolar order along y direction (black dashed lines) and S z forms dipolar order (spin up-red, spin 0-blue, spin down-green). The red

and green arrows are tilted from the xy plane by ⇠ 32 degrees. The data shown in d, f and g were measured on PANDA and the data in h and

i were measured on LET. The wavevector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; r.l.u., reciprocal lattice unit; cts· min�1, counts per minute;

error bars, 1 s.d.
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Dynamic measurement: only Sz is visible by neutron spin.

CHANGLE LIU, YAO-DONG LI, AND GANG CHEN PHYSICAL REVIEW B 98, 045119 (2018)

Here we present our linear spin-wave method that applies
to multisublattice configurations [40– 42]. Let us assume that
the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
Primakoff transformation for the spin operator Srs ,

ns · Srs = S − b†
rsbrs , (4)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs , (5)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (6)

After performing Fourier transformation

brs =
√

M

N

∑

k∈BZ

bkse
iRrs ·k, (7)

the spin Hamiltonian can be rewritten in terms of boson
bilinears as

Hsw = E0 + 1
2

∑

k∈BZ

[
!(k)†h(k)!(k) − 1

2
tr h(k)

]
, (8)

where E0 is the mean-field energy,

!(k) = [bk1, . . . ,bkM,b
†
−k1, . . . ,b

†
−kM ]T , (9)

and h(k) is a 2M × 2M Hermitian matrix, and BZ is the
magnetic Brillouin zone. Hsw can be diagonalized via a
standard Bogoliubov transformation !(k) = Tk"(k) where

"(k) = [βk1, . . . ,βkM,β
†
−k1, . . . ,β

†
−kM ]T , (10)

and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]

SU (M,M) = {g ∈ C2M×2M : g†$g = $, det g = 1}, (11)

where $ is the metric tensor and given as

$ =
(

IM×M 0
0 −IM×M

)
. (12)

It is straightforward to prove that such transformation preserves
the boson commutation rules. The diagonalized Hamiltonian
reads

Hsw = E0 + 1
2

∑

k∈BZ

[
"(k)†E(k)"(k) − 1

2
tr h(k)

]

= E0 + Er +
∑

k∈BZ

ωksβ
†
ksβks , (13)

where E(k) = diag[ωk1, . . . ,ωkM,ω−k1, . . . ,ω−kM ] and

Er = 1
4

∑

k∈BZ

tr [E(k) − h(k)] (14)

is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞

−∞
dt eiq·(ri−rj )−iωt

〈
Sz

i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes

045119-6

as if it is polarized neutron scattering. Changle Liu, Yaodong Li, GC,  
PRB 98, 045119 (2018)



Summary-1

1. The interplay between geometrical frustration and multipolar local moments 
leads to rich phases and excitations.  

2. The manifestation of the hidden multipolar orders is rather non-trivial, both 
in the static and dynamic measurements. 

3. The orthogonal operator approach can be used to reveal the dynamics of 
hidden orders. This is general and can be adapted to many other hidden order 
systems. Think about URu2Si2.  



2. Symmetry enriched U(1) spin liquid,  
    field-driven Anderson-Higgs transition, …… 



Candidate Quantum Spin Liquid in the Ce3 þ Pyrochlore Stannate Ce2 Sn2 O7
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ % 3=2
states. The fitted coefficients result in energy levels at 50 %
5 meV and 75 % 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25 % 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828
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p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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suppression for T < 1 K relative to those for T > 1 K
supports the development of antiferromagnetic interactions.
Finally, the drop of the effective magnetic moment at low
temperature is corroborated by the linear fits to the low-field
part of the MðHÞ data [see inset of Fig. 3(b)].
Heat capacity data, CpðTÞ [see inset of Fig. 2(c)], show

that the decrease of the effective magnetic moment at low
temperature is accompanied by a rise in the heat capacity,
which is usual when entering a short-range correlated state
(see, e.g., the quantum spin-ice candidates Pr2Zr2O7 [26]
and Yb2Ti2O7 [43]). This corroborates our claim that the
variations observed in the magnetization data at subkelvin
temperatures are associated with cooperative phenomena.
Given the energy levels derived from the fits to the
susceptibility, it is unlikely that a Schottky anomaly is at
the origin of the low-temperature upturn in CpðTÞ (as was
proposed for Ce2Zr2O7 [44]), nor is any nuclear contribu-
tion expected for Ce2Sn2O7 since all isotopes of cerium
have nuclear spin of zero.
The ac-susceptibility (not shown) follows the MðTÞ=H

curve, has no frequency dependence down to 0.07 K in the
range 1.11–211 Hz, and the out-of-phase signal remains
unobservable in our experiments. The absence of any
signature of magnetic freezing means, in the absence of
long-range order, that the magnetic fluctuations are faster
than the correlation times probed by the technique. μSR
measurements were made in order to extend our study to
lower temperatures and higher frequencies. Zero-field
spectra were recorded at several temperatures between
0.02 K and 0.8 K. The zero-field data can be fitted with
a stretched exponential relaxation, giving 1=T1∼0.05MHz
and a stretched exponent β ∼ 0.5 [Fig. 4(a)]. No temper-
ature dependence of the extracted 1=T1 and β values was
observed. The spin correlations are dynamic at low temper-
atures, because the relaxation function does not change in
the presence of external longitudinal fields [see Fig. 4(a)].
In Fig. 4(b), we show the frequency shift observed in
transverse magnetic fields. It behaves like the magnetic
susceptibility, indicating that the muon does not

significantly perturb the system and that both techniques
probe the same fluctuations, with differences at low-field
which may be due to sensitive differences in internal field at
the muon site and external field.
Classical spins on the pyrochlore lattice with h111i aniso-

tropy together with competing Heisenberg exchange and
dipolar interactions [45] lead to spin ices when the dipolar
interaction (DNN) dominates, while a strong antiferromag-
netic exchange (Jeff) stabilizes all-in–all-out long-range
order. InCe2Sn2O7, using themoderate temperature effective
moment, we can calculate DNN ¼ ð5μ0μ2Þ=ð12πr3nnÞ∼
0.025 K, while the energy scale of the antiferromagnetic
interactions, jJeff j, obtained from the whole set of magneti-
zation measurements is about 0.5 K. Therefore, the resulting
nearest-neighbor interactionJNN ¼ jJeff j þ DNN ∼ jJeff j, so
that the system should be deep in the antiferromagnetic
regime and a phase transition is expected at a temperature
where the correlations become strong, around 0.5 K.
Ce2Sn2O7 does not conform to this prediction, suggesting
that “quantum fluctuations” allow the system to evade the
classically predictedmagnetic order and to retain a correlated
dynamical state down to a temperature at least 1 order of
magnitude smaller than the temperature at which correlations
are established. In Ce2Sn2O7, the small value of the moment
and its Kramers nature significantly enhance the quantum
fluctuations on the pyrochlore lattice.
In summary, we suggest that Ce2Sn2O7 is a model system

to study a strongly correlated short-range antiferromagnetic
state on the pyrochlore lattice. The magnetism features
several important characteristics of exchange-based spin
liquids—h111i Ising spins coupled antiferromagnetically
which become correlated but remain disordered to the lowest
temperatures. Ce2Sn2O7 is structurally well ordered and
based on an isolated Kramers doublet featuring a small
moment. This strongly Ising character of the localized
magnetic moment is particularly important since all other
pyrochlore materials with antiferromagnetic interactions
featuring Kramers doublets either have XY character
(e.g., Er2Ti2O7 [46–48]) and/or larger moments (e.g.,
Nd2Zr2O7 which appears to order below 300 mK [49]),
while non-Kramers systems with magnetic doublets such as
those based on Tb3þ are further complicated by low-lying
crystal fields [37]. Although classical calculations for the
multiaxis Ising antiferromagnet on the pyrochlore lattice
predict a conventional magnetic order, our data suggest that
quantum fluctuations play an important role in destabilizing
this ordering. It would be most interesting if theory could
further our understanding of the Ising antiferromagnet on the
pyrochlore lattice in the extreme quantum limit.
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FIG. 4 (color online). Muon spin relaxation (μSR) experiments.
(a) Zero-field and longitudinal-field data in the usual histogram
form AðtÞ; the blue line is a fit to the function AðtÞ ¼
A0 exp½−ðt=T1Þβ& þ Abg. (b) Frequency shift (K) between the
external field (Bext) and the local field at the muon site (Bμþ )
plotted at 0.1 K as a function of the external transverse field and
scaled to the derivative of MðHÞ at 0.09 K.
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.
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Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ % 3=2
states. The fitted coefficients result in energy levels at 50 %
5 meV and 75 % 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25 % 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828
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p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.
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Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ % 3=2
states. The fitted coefficients result in energy levels at 50 %
5 meV and 75 % 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25 % 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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We point out that the Ce local moment in the newly discovered quantum spin liquid (QSL)
candidate material Ce2Sn2O7 is a dipole-octupole doublet. The generic spin model that describes
the interaction between these unusual doublets on a pyrochlore lattice has two distinct symmetry
enriched U(1) QSL ground states in the corresponding quantum spin ice regime. These two U(1)
QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has
been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry
properties of the DO doublets, we predict the peculiar physical properties of the octupolar U(1)
QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We predict the
Anderson-Higgs’ transition from the octupolar U(1) QSL driven by the external magnetic fields. We
explain the experimental relevance with the QSL candidate material Ce2Sn2O7 and other dipole-
octupole doublet systems.

Introduction.—The interplay between symmetry and
topology is the frontier subject in modern condensed
matter physics [1–3]. At the single particle level, the non-
trivial realization of time reversal symmetry in electron
band structure has led to the great discovery of topo-
logical insulator [4, 5]. For the intrinsic topological order
such as Z2 toric code and chiral Abelian topological order,
a given symmetry of the system could enrich the topolog-
ical order into distinct phases that cannot be connected
without passing a phase transition [6–9]. The experi-
mentally relevant symmetry enriched topological order,
however, is extremely rare. In this work, we explore one
physical realization of symmetry enriched U(1) topologi-
cal order via dipole-octupole doublets on the pyrochlore
lattice and predict the experimental consequences of dis-
tinct symmetry enrichment.

Dipole-octupole (DO) doublet is a special Kramers’
doublet in the D3d crystal field environment [10, 11]. Due
to the peculiar forms of the wavefunction, both states
of the DO doublet transform as the one-dimensional ir-
reducible representations (�+

5
or �+

6
) of the D3d point

group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quan-
tum spin liquid (QSL) ground states [10]. These distinct
U(1) QSLs are the symmetry enriched U(1) topological
orders [12] and are enriched by the symmetries of the
pyrochlore lattice.

The Ce3+ local moment in Ce2Sn2O7 is such a DO
doublet on the pyrochlore lattice, although it was not
noticed before. As we show in Fig. 1, the strong atomic
spin-orbit coupling (SOC) of the 4f1 electron in the Ce3+

ion first entangles the electron spin (S = 1/2) with the
orbital angular momentum (L = 3) into a J = 5/2 total
moment. The six-fold degeneracy of the J = 5/2 to-
tal moment is further splitted into three Kramers’ dou-
blets by the D3d crystal field. Since the ground state
doublet wavefunctions are combinations of J

z = ±3/2

FIG. 1. The electron configuration and the D3d crystal elec-
tric field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The
CEF ground state wavefunctions are combinations of Jz =
±3/2 states [13], thus the CEF ground state is a DO doublet.
� is the CEF gap and was fitted to be � = 50± 5meV [13].

states [13], this doublet is precisely the DO doublet that
we defined. Since the crystal field gap is much larger than
the interaction energy scale of the local moments and the
temperature scale in the experiments, the low tempera-
ture magnetic property of Ce2Sn2O7 is governed by the
ground state doublets. No magnetic order was detected
down to 0.02K [13], making Ce2Sn2O7 the first Ce-based
QSL candidate in the pyrochlore family.
Motivated by the experiments on Ce2Sn2O7 and more

generally by the experimental consequences of the dis-
tinct symmetry enriched U(1) QSL for the DO doublets,
in this Letter, we explore the peculiar properties of the
DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for
the DO doublets, we find that the external magnetic field
directly couples to the spinons and modifies the spinon
dispersions. This e↵ect allows us to directly control the
spinon excitations with the magnetic fields. The lower
excitation edge of the spinon continuum in the dynamic
spin structure factors can thus be modified by the mag-
netic fields, which gives a sharp prediction for the inelas-
tic neutron scattering experiments. When the magnetic
field exceeds the critical value and closes the spinon gap,
the spinons are condensed, driving the system through an

This doublet is dipole-octupole doublet 
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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and
the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of
the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole doublet. The generic model for
these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding
quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While
the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the
symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar
U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the
Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the
experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1– 3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6– 9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10– 12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and
the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of
the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole doublet. The generic model for
these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding
quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While
the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the
symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar
U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the
Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the
experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1– 3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6– 9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10– 12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1– 3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6– 9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10– 12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1– 3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6– 9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10– 12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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One can then build up an effective spin-1/2 degree of freedom.
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XYZ model is the generic model that describes the interaction  
between DO doublets. 
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x

r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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FIG. 3. (Color online). Left: Unit cube in (J̃x, J̃y, J̃z) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃z = 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃x + J̃y � 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃x + J̃y < 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃z = 1 and
J̃x = 1 faces, while oQSI occurs on the J̃y = 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T 3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets [23] Cv ⇠ T 3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets [22] Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [31].

background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [31]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar

U(1) QSL.
In the U(1) QSL, the spinon excitation has two

branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. (7),
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [31].
The INS measures the dynamic spin structure factor

h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧

z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !i(k1) + !j(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a rare example
that one can control the spinon excitations in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [34–41], which makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was argued
in Ref. 13 that an antiferromagnetic ⇥CW cannot support
a QSL in the spin ice regime. This conclusion is certainly
true for the usual Kramers’ doublet, but is not the case
for the DO doublets. For the DO doublets, what ⇥CW

measures is Jz, not J̃z nor J̃x [31]. What determines the
phase diagram of HXYZ are J̃µ’s, not the sign or value of

Infinite anisotropic g-factor
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How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not ? 

Here we apply external magnetic field, and expect 
a field-driven Higgs transition to magnetic ordering 
as the field only couples to the matter field (spinons).
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧

x and ⌧
z trans-

form as the dipole moments under the space group sym-
metry, while the ⌧

y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X

hiji

J̃x⌧̃
x
i ⌧̃

x
j + J̃y ⌧̃

y
i ⌧̃

y
j + J̃z ⌧̃

z
i ⌧̃

z
j , (1)

where ⌧̃
x and ⌧̃

z (J̃x and J̃z) are related to ⌧
x and ⌧

z

(Jx and Jz) by a rotation around the y direction in the
pseudospin space, and ⌧̃

y ⌘ ⌧
y
, J̃y ⌘ Jy. When one of

the couplings, J̃µ, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃y is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃µ⌧̃
µ
i ⌧̃

µ
j �

X

i

h (n̂ · ẑi) ⌧zi , (2)

where n̂ is the direction of the magnetic field and ẑi is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is

Hsim =
X
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where we define ⌧
±
i = ⌧

z
i ± i⌧

x
i and n̂ is the direction

of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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h (n̂ · ẑi) ⌧zi , (2)

where n̂ is the direction of the magnetic field and ẑi is
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of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]

Hring = Jring

X

7

⇥
⌧
+

i ⌧
�
j ⌧

+

k ⌧
�
l ⌧

+

m⌧
�
n + h.c.

⇤
, (4)

2

0.00 0.05 0.10 0.15 0.20 0.25
0.0
0.5
1.0
1.5
2.0
2.5
3.0

(b)

U(1) QSL

Phase diagram for h k [001]

J±/Jy

h/
J y

FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧

x and ⌧
z trans-

form as the dipole moments under the space group sym-
metry, while the ⌧

y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with
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(Jx and Jz) by a rotation around the y direction in the
pseudospin space, and ⌧̃

y ⌘ ⌧
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, J̃y ⌘ Jy. When one of

the couplings, J̃µ, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃y is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is
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where n̂ is the direction of the magnetic field and ẑi is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not ? 

Here we apply external magnetic field, and expect 
a field-driven Higgs transition to magnetic ordering 
as the field only couples to the matter field (spinons).
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧

x and ⌧
z trans-

form as the dipole moments under the space group sym-
metry, while the ⌧

y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with
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(Jx and Jz) by a rotation around the y direction in the
pseudospin space, and ⌧̃
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, J̃y ⌘ Jy. When one of

the couplings, J̃µ, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃y is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is
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where n̂ is the direction of the magnetic field and ẑi is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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where we define ⌧
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i and n̂ is the direction

of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧

x and ⌧
z trans-

form as the dipole moments under the space group sym-
metry, while the ⌧

y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with
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(Jx and Jz) by a rotation around the y direction in the
pseudospin space, and ⌧̃

y ⌘ ⌧
y
, J̃y ⌘ Jy. When one of

the couplings, J̃µ, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃y is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is
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where n̂ is the direction of the magnetic field and ẑi is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧

x and ⌧
z trans-

form as the dipole moments under the space group sym-
metry, while the ⌧

y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with
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, J̃y ⌘ Jy. When one of

the couplings, J̃µ, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃y is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is
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where n̂ is the direction of the magnetic field and ẑi is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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h (n̂ · ẑi) ⌧zi , (3)

where we define ⌧
±
i = ⌧

z
i ± i⌧

x
i and n̂ is the direction

of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic Jy favors the
⌧
y components to be in the ice manifold and requires a

“two-plus two-minus” ice constraint for the ⌧
y configu-

ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
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Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T 3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T 3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧

z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !i(k1) + !j(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is Jz, not J̃z nor J̃x [29]. The sign or
value of Jz is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of Jz. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

JyQ
2
r

2
�

X

r

X

µ 6=⌫

J±�
†
r+⌘reµ

�r+⌘re⌫
s
�⌘r
r,r+⌘reµ

⇥ s
+⌘r
r,r+⌘re⌫

�
X

hrr0i

h

2
(n̂ · ẑi)(�†

r�r0s
+

rr0 + h.c.). (7)
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
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4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T 3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T 3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧

z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !i(k1) + !j(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is Jz, not J̃z nor J̃x [29]. The sign or
value of Jz is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of Jz. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the

Lower excitation edge of 2-spinon continuum
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Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T 3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T 3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧

z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !i(k1) + !j(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is Jz, not J̃z nor J̃x [29]. The sign or
value of Jz is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of Jz. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as
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rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r
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(a) Lower excitation edge for h = 0

h = 0

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

JyQ
2
r

2
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X
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h = 1.5Jy

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

JyQ
2
r

2
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X

r

X

µ 6=⌫

J±�
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(c) Lower excitation edge for h k [001]
h = 1.0Jy
h = 1.5Jy

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧

±
i is identified as the gauge

string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧
+

i = �†
r�r0s

+

rr0 , ⌧
y
i = s

y
rr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ ⌧

y
r,r+⌘reµ

is im-
posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
eµ’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±i
creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±i creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

JyQ
2
r

2
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(d) Lower excitation edge for h k [110]
h = 1.0Jy
h = 2.5Jy

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧zi i =
1

2

⇥
h⌧+i i+ h⌧�i i

⇤
(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧zi i is non-zero even in the

Lower excitation edge of 2-spinon continuum

4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T 3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T 3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T 3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧

z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !i(k1) + !j(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is Jz, not J̃z nor J̃x [29]. The sign or
value of Jz is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of Jz. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-

Yao-Dong Li, GC,  PRB Rapid Comm 2017
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Abstract

The heat capacity of cerium zirconate pyrochlore, Ce2Zr2O7, was measured from 0.4 to 305K by hybrid adiabatic relaxation method
for various magnetic field strengths. Magnetisation measurements were performed on the sample also. The results revealed a low-
temperature anomaly that showed Schottky-type characteristics with increasing magnetic field strength. The estimated entropy due to the
magnetic ordering of the two Ce3+ moments is 1.37R, close to the theoretical value for a doublet ground state (1.39R). The enthalpy
increments relative to 298.15K were measured by drop calorimetry from 531 to 1556K. The obtained results significantly differ from
those reported in the literature; the origin of the discrepancy is due to the probable oxidation of the pyrochlore structure into fluorite.
r 2007 Elsevier Ltd. All rights reserved.

Keywords: A1. Oxides; D1. Magnetic properties; D2. Thermodynamic properties

1. Introduction

Zirconates with pyrochlore structure are very interesting
compounds from many scientific and technological points
of view because of their electronic and magnetic pro-
perties. They have found a broad range of applications as
high-temperature heating elements, oxidation catalysts,
fuel cells, oxygen sensors, and thermal barriers, among
others [1].

In the nuclear field, pyrochlores are considered both as
potential ceramics for inert matrix fuel as well as a nuclear
waste form for immobilisation of weapons-grade pluto-
nium and minor actinides [2,3]. The A2B2O7 pyrochlore
structure can accommodate the transuranium elements Pu,
Am, Cm, Bk and Cf [4–6] as trivalent cations in the ‘‘A’’
position. Also, tetravalent transuranium cations can be
incorporated in combination with a charge balance with
divalent cations, for example, Ca. The pyrochlore structure
shows a relatively high stability under a-irradiation,
transforming into a fluorite structure at high radiation
doses [7]. In severe reaction conditions (1mol l!1 HCl or

CaCl2, 14 days at 448K), the natural pyrochlore (crystal-
line and heavily self-irradiation-damaged) transforms into
a defect-pyrochlore phase with a larger unit cell [8].
In a previous study, we have reported the low-

temperature heat capacity of some lanthanide zirconates
[9]. In that work, it was found that the experimental results
of Bolech et al. [10] for Ce2Zr2O7 do not fit with the trend
of the Ln2Zr2O7 series (Ln ¼ La to Gd) that can be
described as the sum of the lattice and electronic (Schottky)
contributions. The aim of the present study is to resolve
this discrepancy by re-measuring the low-temperature
properties (magnetic susceptibility and heat capacity) of
Ce2Zr2O7.

2. Experimental

2.1. Sample preparation and characterisation

All trials to obtain Ce2Zr2O7 starting from ZrOCl2 or
ZrO2, as proposed by Bolech et al. [10], failed and
systematically yielded a small amount of impurity of the
fluorite phase. The pure compound was only obtained by
solid-state reaction using stoichiometric amounts of ZrN
(Alfa Aesar, 99.5%; Hf content, 0.35%) and CeO2 (Alfa
Aesar, 99.99%), which were ground in a Retsch zirconia
ball mill (10min at 20Hz) and heated in air at 1173K for
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Ce2Zr2O7: a non-spin-ice pyrochlore U(1) spin liquid

Our suggestion [YD Li & GC, 1902.07075]:  this material is in U1B phase !
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A quantum spin liquid (QSL) state, where interacting quantum 
spins in a crystalline solid form a disordered state at zero 
temperature in much the same way as liquid water is in a dis-

ordered state, originates from Anderson’s 1973 proposal that valence 
bonds between neighbouring spins in a two-dimensional (2D) tri-
angular lattice can pair into singlets and resonate without forming 
long-range magnetic order1. As such a state may be important to 
the microscopic origin of high-transition-temperature supercon-
ductivity2,3 and useful for quantum computation4,5, the experimen-
tal realization of a QSL is a long-sought goal in condensed-matter 
physics. Although models supporting QSLs have been developed 
for 2D spin-1/2 kagome, triangular, honeycomb and 3D pyrochlore 
lattice systems6–10, a common feature to all QSLs is the presence of 
deconfined spinons, the elementary excitations from the entangled 
ground state that carry spin S = ½ and thus are fractionalized quasi-
particles, fundamentally different from the S = 1 spin waves in con-
ventional 3D ordered magnets..

m

.

m

.

m

.

m

.

m

In 1D antiferromagnetic spin-1/2 chain compounds such as 
KCuF3, the deconfined spinons have been unambiguously mea-
sured as a spin excitation continuum by inelastic neutron scatter-
ing experiments11. In 2D spin-1/2 triangular organic salts such as 
κ-(ET)2Cu2(CN)3 (ref. 12) and EtMe3Sb[Pd(dmit)2]2(ref. 13), while 

Q3 Q4

Q5 Q6

Q7

nuclear magnetic resonance measurements indicate the presence 
of a QSL, there have been no inelastic neutron scattering experi-
ments to search for a spin excitation continuum due to the lack of 
large single crystals. While continua of spin excitations are seen 
by inelastic neutron scattering in the 2D spin-1/2 kagome lattice 
ZnCu3(OD)6Cl2 (refs. 14,15) and in an effective spin-1/2 triangular 
lattice magnet YbMgGaO4 (refs. 16,17), the magnetic/non-magnetic 
site disorder in the kagome lattice18 and non-magnetic site dis-
order in the triangular lattice19 case complicate the interpreta-
tion of the data15,20–24. Recently, the Heisenberg quantum magnet 
Ca10Cr7O28, where the spin-1/2 Cr5+ ions form a distorted kagome 
bilayer structure, revealed clear evidence for a 3D QSL25. There are 
also signatures of a 3D QSL in the hyperkagome lattice compound 
PdCuTe2O6 (ref. 26) and the spin-1 antiferromagnet NaCaNi2F7 
(ref. 27). Nevertheless, there is no consensus on the experimental 
confirmation of a QSL with spin quantum number fractionalization 
in a 3D pyrochlore lattice spin-1/2 magnet..

m

.

m

In 3D rare-earth pyrochlores such as Ho2Ti2O7, Ising-like mag-
netic moments decorate a lattice of corner-sharing tetrahedra 
(Fig. 1a) and form the ‘2-in/2-out’ spin ice arrangement, analogous 
to the ‘2-near/2-far’ rule of the covalent 2H+–O2−  bonding distances 
in water ice, to stabilize classical spin liquids28,29. A key feature of 

Q8 Q9

Experimental signatures of a three-dimensional 
quantum spin liquid in effective spin-1/2 Ce2Zr2O7 
pyrochlore
Bin Gao1,11, Tong Chen1,11, David W. Tam! !1, Chien-Lung Huang! !1, Kalyan Sasmal2,  
Devashibhai T. Adroja3, Feng Ye4, Huibo Cao4, Gabriele Sala! !4, Matthew B. Stone! !4,  
Christopher Baines5, Joel A. T. Barker5, Haoyu Hu1, Jae-Ho Chung1,6, Xianghan Xu7,  
Sang-Wook Cheong7, Manivannan Nallaiyan8, Stefano Spagna8, M. Brian Maple2, 
Andriy H. Nevidomskyy1, Emilia Morosan1, Gang Chen! !9,10 and Pengcheng Dai! !1*

A quantum spin liquid is a state of matter where unpaired electrons’ spins, although being entangled, do not show magnetic order 
even at the zero temperature..

m
 The realization of a quantum spin liquid.

m
 is a long-sought goal in condensed-matter physics. Although 

neutron scattering experiments on the two-dimensional spin-1/2 kagome lattice ZnCu3(OD)6Cl2 and triangular lattice YbMgGaO4 
have found evidence for the hallmark of a quantum spin liquid at very low temperature (a continuum of magnetic excitations), the 
presence of magnetic and non-magnetic site chemical disorder complicates the interpretation of the data. Recently, the three-
dimensional Ce3+ pyrochlore lattice Ce2Sn2O7 has been suggested as a clean, effective spin-1/2 quantum spin liquid candidate, but 
evidence of a spin excitation continuum is still missing. Here we use thermodynamic, muon spin relaxation and neutron scattering 
experiments on single crystals of Ce2Zr2O7, a compound isostructural to Ce2Sn2O7, to demonstrate the absence of magnetic order-
ing and the presence of a spin excitation continuum at 35!mK. With no evidence of oxygen deficiency and magnetic/non-magnetic 
ion disorder seen by neutron diffraction and diffuse scattering measurements, Ce2Zr2O7 may be a three-dimensional pyrochlore 
lattice quantum spin liquid material with minimum magnetic and non-magnetic chemical disorder.
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classical spin ice systems is the presence of low-temperature residual 
magnetic entropy (equivalent to a ground-state entropy per spin of 
1/2In(3/2)) analogous to the Pauling estimate of the residual entropy 
for water ice29,30. Due to the extensive ground-state degeneracy, the 
magnetic entropy Smag of a classical spin ice without a magnetic 
field does not saturate to Rln2 for an effective spin-1/2 system and 
is instead set by = − ∕ ∕S R n(l 2 1 2ln(3 2))agm  in the high-temperature 
limit, where R is the ideal gas constant29,30. In the presence of quan-
tum fluctuations, a QSL state could emerge in the so-called quantum 
spin ice regime characterized by the emergent U(1) quantum elec-
trodynamics30. Here, the QSL state has a U(1) gauge degree of free-
dom, similar to the gauge symmetry of Maxwell’s equations, and the 
emergent photon-like gapless excitations31. Up to now, most works 
have considered the degenerate spin ice manifold in the classical 
limit as the starting point for realizing the U(1) QSL on introduc-
ing quantum fluctuation. However, within a mean-field theory, the 
U(1) QSL could extend much beyond the ice limit and thus does not 
necessarily produce any phenomena related to classical spin ice in 
the finite-temperature regime. Thus, the candidate pyrochlore QSL 
materials that do not show classical spin ice characteristics such as 
the Pauling entropy at finite temperatures may still be a U(1) QSL or 
other QSL not far from it32.

Recently, the Ce-based pyrochlore stannate Ce2Sn2O7 has been 
proposed as a 3D QSL from thermodynamic and muon spin 
relaxation (μSR) measurements on powder samples33. The Ce 
local moment in Ce2Sn2O7 is the peculiar dipole–octupole dou-
blet that may support distinct symmetry-enriched U(1) QSLs34,35. 
However, in the absence of single crystals of Ce2Sn2O7, there have 
been no inelastic neutron scattering experiments to search for the 
expected spin excitation continua. To overcome this problem, we 
used the floating-zone method to grow high-quality single crystals 

of Ce2Zr2O7 (see  Methods and Supplementary Fig.  1), an isoelec-
tronic/isostructural compound of Ce2Sn2O7 (ref. 36). In the stoichio-
metric Ce2Zr2O7 pyrochlore structure with the Fd m3  space group, 
cerium ions stabilize in the magnetic Ce3+ ∕f F(4 , )1 2

5 2  state in the 
crystal field of eight oxygen anions (Supplementary Fig. 2a). Ce3+ 
with J = 5/2 has an odd number of f electrons and the crystal elec-
tric field (CEF) potential from oxygen will split them into three 
Kramers doublets10. Figure 1b shows the inelastic neutron scattering 
spectra from the Ce3+ CEF levels (see also Supplementary Fig. 5), 
revealing two excited states at ~55 and ~110 meV. Based on the 
point-group symmetry at the Ce3+ atomic site and using the Stevens 
operator formalism (see Methods), the CEF Hamiltonian with the 
quantization axis along the local [1, 1, 1] direction can be written as 

= + + + + +H B Ô B Ô B Ô B Ô B Ô B ÔEFC 2
0

2
0

4
0

4
0

4
3

4
3

6
0

6
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6
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6
6

6
6, where B2

0, B4
0 

and B6
0are the second-, fourth- and sixth-order CEF parameters, and 

Ô2
0, Ô4

0 and Ô6
0 are the corresponding Stevens operator equivalents, 

respectively10. Since Ce3+ has J = 5/2 for the ground-state multiplet, 
the maximum allowed terms in the CEF Hamiltonian are less than 
2J, meaning that the sixth-order terms are zero: = = =B B B 06

0
6
3

6
6 .  

Using the CEF Hamiltonian to fit the two inelastic excitations in 
Fig.  1b, we find = − .B 1 272

0 , = .B 0 324
0  and = − .B 1 86 meV4

3  (see 
inset of Fig. 1c), with the Ce3+ground-state doublet being Jz = ±3/2, 
where Jz is along the [1, 1, 1] direction (Fig. 1a). As each state in the 
doublet is a 1D irreducible representation of the D3d point group, 
the Ce3+ ground-state doublet in Ce2Zr2O7 is the dipole–octupole 
doublet, identical to that of Ce2Sn2O7 (ref. 34). The degeneracy of the 
Ce3+ ground-state doublet here is protected by time-reversal sym-
metry. The Ce3+ dipole–octupole doublet is very different from the 
Kramers doublet of the Yb3+ ground state in Yb2Ti2O7 and the non-
Kramers doublet of the Pr3+ ground state in Pr2Zr2O7, where the 
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Fig. 1 | Summary of crystal structure, CEF levels, d.c. susceptibility and specific heat of Ce2Zr2O7. a, A schematic of the structure of Ce2Zr2O7 with lattice 
parameters a!=!b!=!c!=!10.71!Å. The blue ions are magnetic Ce3+ (A site) and the red ions are non-magnetic Zr4+ (B site). b, Inelastic neutron scattering 
from powder samples of Ce2Zr2O7 with an incident neutron beam energy of Ei!=!250!meV at 5!K. Phonons and other background scattering measured in 
the non-magnetic analogue La2Zr2O7 were subtracted. Two Kramers doublets at 55.8 and 110.8!meV are clearly seen. c, The d.c. magnetic susceptibility 
χ (blue) and 1/χ (red). The applied field is 1!kOe along the [1, 1, 1] direction. The black dashed lines are the low–high temperature Curie–Weiss fit to the 
data. The red curve in the inset shows the energy dependence of the CEF levels for integrated wavevectors from 4 to 6!Å− 1. The solid black lines in the inset 
and main panel are CEF fits to the data. d, Magnetization (M) as a function of applied magnetic field (H) in tesla along the [1, 1, 1] direction at different 
temperatures. e, The magnetic contribution to the specific heat Cmag for different magnetic fields along the [1, 1, 1] direction. The lattice contribution Cphonon 
has been subtracted. f, Cmag/T versus T plot and the magnetic entropy Smag calculated from Cmag/T in zero field. Smag reaches the entropy for a two-level 
system (Rln2) instead of the spin ice entropy (1!− !(1/2)(ln(3/2)/ln2) Rln2. The inset shows a C/T versus T2 plot. The data between 10 and 20!K are fitted 
with Cphonon/T!=!βT2!+!αT4.
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Summary-2

We have used some fundamental ideas to predict novel experiments: 

translation symmetry enrichment       ->  spectral periodicity enhancement 
electromagnetic duality                      -> “magnetic monopole” continuum  
                                                            ->  topological thermal Hall effect 
spin fractionalization and multipolarness  
                                                            ->  emergent Anderson Higgs transition 
 

The model, that we derive, can be understood  
by us theoretically and solved mostly by QMC.  

“Real model, no sign problem and non-trivial phase”. 



What does inelastic neutron scattering measure  
in a pyrochlore U(1) quantum spin liquid in general ?  

Spinon deconfinement

SpinonJzz

energy

“Magnetic monopoles”
J3
±

J2
zz

gapless  
gauge photon

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge
Figs from Moessner&Schiffer,2009

illustration for XXZ model Hermele, Fisher, Balent 2004 
Nic Shannon, etc 2012 

Lucile Savary, Balents, 2012 
Bruce Gaulin, 



I(!) ⇠ !

emergent U(1) photon in U(1) QSL

Hermele etc 2004 
N Shannon etc 2012, 

L Savary, Balents 2012

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet L

z
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2 -magnetization
plateau state of a spin- 12 XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2 -magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8 -filled case is also a
U(1)ch FCL with the same low energy excitations as the
1
4 -filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8 -filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

He↵ = �J
e
ring

X

hexagon

X

↵��

(c†1↵c2↵c
†
3�c4�c

†
5�c6�

+c
†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where J
e
ring = 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)ch FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1
4 -filling, there ex-

ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling Jex =
4t2

U�V + 8t3

V 2 . Since this energy scale Jex is larger than or
comparable to the electron ring hopping amplitude Je

ring,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)ch gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)ch and U(1)sp
gauge fields, and the fermionic spinons coupled to the
U(1)sp gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)sp) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn(!) ⇠ !
4 instead of

!
2 as in the half-filled case[7].

The low energy U(1)ch gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ L

z
r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1
2 )

eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)ch gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T

⇤ ⇠
max[Je

ring, J
ex] in the Mott regime. In the temperature

range T
⇤ <⇠ T <⇠ V , the cluster electron occupation-

number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1
4 - or

1
8 -filled pyrochlore lattice systems. Various spinels
such as LiV2O4 (with V3.5+:d1.5)[10], CuIr2S4 (with
Ir3.5+:d5.5)[13] and GaTa4Se8 (with Ta3.25+:d1.75)[11]
may be good candidates for 1

4 - and
1
8 -filling cases. The �-

pyrochlore system CsW2O6 (with W5.5+: d
0.5)[12] may

also be a promising system where the physics discussed
here can be explored.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the S

z corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ
�q,�!E

⌫
q,!i ⇠ [�µ⌫ � q

µ
q
⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the S

z correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the S

x

or S
y operator. For the non-Kramers’ doublet systems,

the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian HLGT

13,44,55. This standard procedure yields the
following dual theory

Hdual = �t

X

hRR0i

e
�i2⇡↵RR0�†

R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r

2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the S

z component for
non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the S

z component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s
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“monopole” excitations have the following enlarged spec-
tral periodicity such that

Lm(q) = Lm(q+ 2⇡(100))

= Lm(q+ 2⇡(010))

= Lm(q+ 2⇡(001)), (20)

where Lm(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠µ(Q · R), (21)

where R 2 I sublattice of the dual diamond lattice, and
R+ eµ 2 II sublattice of the dual diamond lattice with
eµ (µ = 0, 1, 2, 3) the nearest-neighbor vectors connecting
two sublattices. Here e0 = 1

4 (111), e1 = 1
4 (11̄1̄), e2 =

1
4 (1̄11̄), e3 = 1

4 (1̄1̄1), (⇠0, ⇠1, ⇠2, ⇠3) = (0, 1, 1, 0) and Q =
2⇡(100).

Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,

HMFT = �t

X

hRR0i

e
�i2⇡h↵RR0 i�†

R�R0 � µ

X

R

�†
R�R,(22)

where the “monopole” spectrum is found to be

⌦+
±(q) = +t[4± 2(3 + CxCy � CxCz + CyCz)

1
2 ]

1
2 � µ,

⌦�
±(q) = �t[4± 2(3 + CxCy � CxCz + CyCz)

1
2 ]

1
2 � µ,

where Cµ = cos qµ (µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.

FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.

From the momentum and the energy conservation, we
have for the two “monopoles”

q = q1 + q2 +Q, (23)

E = ⌦i1
j1
(q1) + ⌦i2

j2
(q2), (24)

where q and E are the momentum and energy transfer
of the neutrons, q1 and q2 are the crystal momenta of
the two “monopoles”, and the o↵set Q arises from the
dual gauge link that is present in the “monopole” cur-
rent. The minimum (maximum) of the energy E is ob-
tained when i1 = i2 = � and j1 = j2 = + (i1 = i2 = +
and j1 = j2 = +). In Fig. 2, we depict the upper and
lower excitation edges of the “monopole” continuum for
a specific choice of “monopole” hopping and chemical po-
tential. Clearly, the spectral periodicity is enhanced in
both plots.

VI. DISCUSSION

A. Non-Kramers doublets

We discuss the application of our results to vari-
ous pyrochlore ice systems. We begin with the non-
Kramers doublets. The continuous excitations have ac-
tually been observed from the INS measurements on
Pr2Zr2O7, Tb2Ti2O7 and Pr2Hf2O7

32,59,60. In partic-
ular, in the INS result for Pr2Hf2O7

59, besides the very
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Suggestion 1: effect of the external magnetic field 3

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the S

z corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,
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where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the S

z correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the S

x

or S
y operator. For the non-Kramers’ doublet systems,

the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian HLGT

13,44,55. This standard procedure yields the
following dual theory
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where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the S

z component for
non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the S

z component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

HZeeman = ~B ·
X

i

S
z
i ẑi

The weak magnetic field polarizes Sz slightly, and thus modifies the background electric field 
distribution. This further modulates monopole band structure, creating “Hofstadter” monopole 
band, which may be detectable in inelastic neutron.

This is also the origin of topological thermal Hall effect for “magnetic monopoles”.

Xiao-Tian Zhang, YH Gao, CX Liu, GC, arXiv 1904.08865



Suggestion 2: combine thermal transport with inelastic neutron
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
          ( R. Sibille, et al, arXiv 1706.03604). Nature Physics

This is a non-Kramers doublet version of pyrochlore U(1) spin liquid candidate. 


