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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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FIG. 3: (Color online) Examples of the structural units
formed by 90◦ TM-O-TM bonds and corresponding spin-
coupling patterns. Grey circles stand for magnetic ions, and
small open circles denote oxygen sites. (a) Triangular unit cell
of ABO2-type layered compounds, periodic sequence of this
unit forms a triangular lattice of magnetic ions. The model
(3) on this structure is a realization of a quantum compass
model on a triangular lattice: e.g., on a bond 1-2, laying per-
pendicular to x-axis, the interaction is Sx

1 Sx
2 . (b) Hexagonal

unit cell of A2BO3-type layered compound, in which magnetic
ions (B-sites) form a honeycomb lattice. (Black dot: nonmag-
netic A-site). On an xx-bond the interaction is Sx

i Sx
j , etc. For

this structure the model (3) is identical to the Kitaev model.

model on a honeycomb lattice [26]. It shows a number
of fascinating properties such as anyonic excitations with
exotic fractional statistics, topological degeneracy, and,
in particular, it is relevant for quantum computation [18].
This generated an enormous interest in a possible realiza-
tion of this model in real systems, with current proposals
based on optical lattices [27]. Here we outline how to
“engineer” the Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90◦

bonds together with “compass” interactions that follow
from Eq. (3). Such a structure is common for a num-
ber of oxides, e.g., layered compounds ABO2 (where A
and B are alkali and TM ions, respectively). The trian-
gular lattice of magnetic ions in an ABO2 structure can
be depleted down to a honeycomb lattice (by periodic
replacements of TM ions with non-magnetic ones). One
then obtains an A2BO3 compound, which has a hexago-
nal unit shown in Fig. 3(b). There are three nonequiva-
lent bonds, each being perpendicular to one of the cubic
axes x, y, z. Then, according to Eq. (3) the spin coupling,
e.g., on a (x)-bond is of Sx

i Sx
j type, precisely as in the

Kitaev model. The honeycomb lattice provides a par-
ticularly striking example of new physics introduced by
strong SO coupling: the Heisenberg model is converted
into the Kitaev model with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-
one Ru4+ with spin one-half Ir4+ ions, one may realize a
strongly spin-orbit coupled Mott insulator with low en-
ergy physics described by the Kitaev model.

“Weak” ferromagnetism of Sr2IrO4.– As an example
of a spin-orbit coupled Mott insulator, we discuss the
layered compound Sr2IrO4, a t2g analog of the undoped
high-Tc cuprate La2CuO4. In Sr2IrO4, a square lattice

π/8 π/4 3π/8 π/2
θ

0

0.5

1

1.5

2

φ
/α spin−flop

canted

c>ac<a
cubic 

φ

collinear || 

α

z

y
xz

z

FIG. 4: The spin canting angle φ (in units of α) as a function
of the tetragonal distortion parameter θ. Inset shows a sketch
of an IrO2-plane. The oxygen octahedra are rotated by an
angle ±α about z-axis forming a two sublattice structure. In
the cubic case, θ ≃ π/5, one has φ = α exactly. The spin-flop
transition from the in-plane canted spin state to a collinear
Néel ordering along z-axis occurs at θ = π/4.

of Ir4+ ions is formed by corner-sharing IrO6 octahe-
dra, elongated along the c-axis and rotated about it by
α ≃ 11◦ [19] (see Fig. 4). The compound undergoes a
magnetic transition at ∼ 240 K displaying a weak FM,
which can be ascribed to a Dzyaloshinsky-Moriya (DM)
interaction. The puzzling fact is that “weak” FM mo-
ment is in fact unusually large, MFM ≃ 0.14µB [20] which
is two-orders of magnitude larger than that in La2CuO4

[29]. A simple estimate gives a spin canting angle φ ≃ 8◦

which is close to α, i.e., the ordered spins seem to rigidly
follow the staggered rotations of octahedra. Here we
show that the strong SO coupling scenario gives a natural
explanation of this observation.

We first show the dominant part of the Hamiltonian
for Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find:

H = JS⃗i · S⃗j + JzS
z
i Sz

j + D⃗ ·
[

S⃗i × S⃗j

]

. (4)

Here, the isotropic coupling J = ν1(t2s − t2a), where
ts = sin2 θ + 1

2 cos2 θ cos 2α, and ta = 1
2 cos2 θ sin 2α.

The second and third terms describe the symmetric and
DM anisotropies, with Jz = 2ν1t2a, D⃗ = (0, 0,−D), and
D = 2ν1tsta. [For α = 0, these terms vanish and we
recover J1-term of the 180◦ result (2)]. As it follows
from Eq. (4), the spin canting angle is given by a ratio
D/J ≃ 2ta/ts ∼ 2α which is independent of λ, and is
solely determined by lattice distortions. This explains
the large spin canting angle φ ∼ α in Sr2IrO4.

As in the case of weak SO coupling [30], the Hamilto-
nian (4) can in fact be mapped to the Heisenberg model
⃗̃Si · ⃗̃Sj where operators ⃗̃S are obtained by a staggered

rotation of S⃗ around the z-axis by an angle ±φ, with
tan(2φ) = D/J . Thus, at JH = 0, there is no true mag-
netic anisotropy. Once JH -corrections are included, the
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The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose
unambiguous confirmation is yet to be reached despite intensive experimental e↵orts on numerous
candidate materials. The challenge is derived from the di�culty of formulating realistic theoretical
models for these materials and interpreting the corresponding experimental data. Here we study a
theoretical model with bond-dependent interactions, directly motivated by recent experiments on
two-dimensional correlated materials with strong spin-orbit coupling. We show numerical evidence
for the existence of an extended family of quantum spin liquids, which are possibly connected to the
Kitaev spin liquid state. These results are used to provide an explanation of the scattering continuum
seen in neutron scattering on ↵-RuCl3. Implications of these results to three-dimensional materials
such as hyperhoneycomb iridate, �-Li2IrO3, are also discussed.

Introduction — The role of strong interaction between
electrons in the emergence of topological phases of mat-
ter, where both theoretical and experimental understand-
ing is far from complete compared to weakly interacting
systems, has recently been a topic of intensive research.
The archetypal example of a topological phase with strong
electron interaction is the quantum spin liquid1, in which
the elementary excitations are charge-neutral fractional-
ized particles. While a lot of progress has been made on
the theoretical understanding of the quantum spin liquid
phase, its direct experimental confirmation has remained
elusive despite various studies on a number of candidate
materials2–6. Significant progress, however, has recently
been made due to the availabilty of a new class of corre-
lated materials, where strong spin-orbit coupling leads to
various bond-dependent spin interactions7–9. These mate-
rials are Mott insulators with 4d and 5d transition metal
elements, which include iridates and ruthenates with two-
dimensional honeycomb lattice10,11 and three-dimensional
variants12,13.

Magnetic frustration in these new systems arises from
bond-dependent interactions7,14–18 rather than relying on
the geometric frustration of the underlying lattice struc-
ture used in earlier approaches. These materials are of
great interest because they may intrinsically generate the
Kitaev interaction which, in the absence of other interac-
tions, would lead to a material realization of an exactly
solvable model for the quantum spin liquid phase19. This
raises the question for the stability of the Kitaev spin liq-
uid against other perturbations always present in a real
material. In some known models, the Kitaev spin liquid
phase is stable only for su�ciently small magnitudes of
other interactions14,20–24, making its experimental realiza-
tion a challenging endeavor.

In this work, we analyze a theoretical model that may
host an extended family of quantum spin liquid phases
and make connections to recent experiments on a num-
ber of 4d and 5d transition metal oxide materials. We
consider the following nearest-neighbor (n.n.) model on a

two-dimensional honeycomb lattice:

H =
X

�2x,y,z

H
�
, (1)

where

H
z =

X

hiji2z�bond

[KzS
z
i S

z
j + �z(S

x
i S

y
j + S

y
i S

x
j )] (2)

and H
x,y are defined similarly with corresponding Kx,y

and �x,y. Each H
� represents the n.n spin interactions

along one of the three bond directions, � = x, y, z. The
model is parameterized by Kz = �(1 + 2a) cos�, Kx,y =
�(1 � a) cos�, �x,y,z = sin�, with a characterizing bond
anisotropy. When � = 0,⇡ (i.e. �� = 0), this model re-
duces to the exactly solvable Kitaev model with a quantum
spin liquid ground state. Moreover, a recent analysis in the
� = ⇡/2 limit (i.e. K� = 0) revealed a macroscopically de-
generate ground state in the classical model25.

The above model is directly motivated by experiments
on ↵-RuCl3 (RuCl3) and earlier ab initio computations. In
RuCl3, Ru3+ ions carry a spin-orbit entangled pseudospin-
1/2 degree of freedom and sit on a two-dimensional hon-
eycomb lattice. Ab initio computations suggest that the
dominant spin exchange interactions are given by K� < 0
and �� > 0 with comparable magnitude as well as a non-
negligible 3rd n.n. antiferromagnetic Heisenberg interac-
tion J3 > 026–29. In addition, it was found that both K�

and �� are slightly anisotropic and that J3 may promote
the zig-zag magnetic order observed experimentally27,28.
On the other hand, a recent inelastic neutron scattering
experiment observed finite energy scattering continua rem-
iniscent of the excitation spectra in quantum spin liquid
phases, both above and below the magnetic ordering tran-
sition temperature, potentially indicating proximity to a
quantum spin liquid phase30. While this interpretation is
natural, it is not obvious what kind of quantum spin liquid
may be nearby given that the relevant microscopic model
is far from the ideal Kitaev limit.

Here we take the Hamiltonian in Eq. (1) as the mini-
mal model for the putative quantum spin liquid phase and
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The spin liquid phase is one of the prominent strongly interacting topological phases of matter whose
unambiguous confirmation is yet to be reached despite intensive experimental e↵orts on numerous
candidate materials. The challenge is derived from the di�culty of formulating realistic theoretical
models for these materials and interpreting the corresponding experimental data. Here we study a
theoretical model with bond-dependent interactions, directly motivated by recent experiments on
two-dimensional correlated materials with strong spin-orbit coupling. We show numerical evidence
for the existence of an extended family of quantum spin liquids, which are possibly connected to the
Kitaev spin liquid state. These results are used to provide an explanation of the scattering continuum
seen in neutron scattering on ↵-RuCl3. Implications of these results to three-dimensional materials
such as hyperhoneycomb iridate, �-Li2IrO3, are also discussed.
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electrons in the emergence of topological phases of mat-
ter, where both theoretical and experimental understand-
ing is far from complete compared to weakly interacting
systems, has recently been a topic of intensive research.
The archetypal example of a topological phase with strong
electron interaction is the quantum spin liquid1, in which
the elementary excitations are charge-neutral fractional-
ized particles. While a lot of progress has been made on
the theoretical understanding of the quantum spin liquid
phase, its direct experimental confirmation has remained
elusive despite various studies on a number of candidate
materials2–6. Significant progress, however, has recently
been made due to the availabilty of a new class of corre-
lated materials, where strong spin-orbit coupling leads to
various bond-dependent spin interactions7–9. These mate-
rials are Mott insulators with 4d and 5d transition metal
elements, which include iridates and ruthenates with two-
dimensional honeycomb lattice10,11 and three-dimensional
variants12,13.

Magnetic frustration in these new systems arises from
bond-dependent interactions7,14–18 rather than relying on
the geometric frustration of the underlying lattice struc-
ture used in earlier approaches. These materials are of
great interest because they may intrinsically generate the
Kitaev interaction which, in the absence of other interac-
tions, would lead to a material realization of an exactly
solvable model for the quantum spin liquid phase19. This
raises the question for the stability of the Kitaev spin liq-
uid against other perturbations always present in a real
material. In some known models, the Kitaev spin liquid
phase is stable only for su�ciently small magnitudes of
other interactions14,20–24, making its experimental realiza-
tion a challenging endeavor.

In this work, we analyze a theoretical model that may
host an extended family of quantum spin liquid phases
and make connections to recent experiments on a num-
ber of 4d and 5d transition metal oxide materials. We
consider the following nearest-neighbor (n.n.) model on a
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�(1 � a) cos�, �x,y,z = sin�, with a characterizing bond
anisotropy. When � = 0,⇡ (i.e. �� = 0), this model re-
duces to the exactly solvable Kitaev model with a quantum
spin liquid ground state. Moreover, a recent analysis in the
� = ⇡/2 limit (i.e. K� = 0) revealed a macroscopically de-
generate ground state in the classical model25.

The above model is directly motivated by experiments
on ↵-RuCl3 (RuCl3) and earlier ab initio computations. In
RuCl3, Ru3+ ions carry a spin-orbit entangled pseudospin-
1/2 degree of freedom and sit on a two-dimensional hon-
eycomb lattice. Ab initio computations suggest that the
dominant spin exchange interactions are given by K� < 0
and �� > 0 with comparable magnitude as well as a non-
negligible 3rd n.n. antiferromagnetic Heisenberg interac-
tion J3 > 026–29. In addition, it was found that both K�

and �� are slightly anisotropic and that J3 may promote
the zig-zag magnetic order observed experimentally27,28.
On the other hand, a recent inelastic neutron scattering
experiment observed finite energy scattering continua rem-
iniscent of the excitation spectra in quantum spin liquid
phases, both above and below the magnetic ordering tran-
sition temperature, potentially indicating proximity to a
quantum spin liquid phase30. While this interpretation is
natural, it is not obvious what kind of quantum spin liquid
may be nearby given that the relevant microscopic model
is far from the ideal Kitaev limit.

Here we take the Hamiltonian in Eq. (1) as the mini-
mal model for the putative quantum spin liquid phase and
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Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je↵ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o↵-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120� and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je↵ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di�cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je↵ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o↵-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
X

hi ji2↵�(�)

h
J~S i · ~S j + KS �i S �j + �

⇣
S ↵i S �j + S �i S ↵j

⌘i
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o↵-diagonal exchange. On each
bond we distinguish one spin direction �, labeling the bond

yx

z

zx(y)

yz(x)

xy(z)

Ir4+

O2�A+

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

↵�(�) where ↵ and � are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120� order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e↵ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le↵ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je↵ = 1/2 doublet and filled je↵ = 3/2 states. Because of
significant on-site interactions, localized je↵ = 1/2 spins pro-
vide an e↵ective model for the low-energy physics. To per-
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|L,MLi basis

|1,+1i = |zxi + i |yzip
2

(D.11a)

|1, 0i = i |xyi (D.11b)

|1,�1i = |zxi � i |yzip
2

(D.11c)

where we have chosen the phases so that under time-reversal |L,MLi ! (�1)L+ML |L,�MLi.
The six ground states are then simply of the form |1, 1, 1/2; ML,MS i = |+1,MLi |MS i where
ML = 0,±1 and MS = ±1/2 (or " and #). As discussed in the overview, we only consider the
je↵ = 1/2 doublet states

���+1
2

E
=

r
1
3

(|yzi |#i + i |zxi |#i + |xyi |"i)

=

r
2
3
|1,+1i |#i � i

r
1
3
|1, 0i |"i (D.12a)

����1
2

E
=

r
1
3

(|yzi |"i � i |zxi |"i � |xyi |#i)

=

r
2
3
|1,�1i |"i + i

r
1
3
|1, 0i |#i (D.12b)

The other non-trivial states we need to construct are those of the N = 2 manifold. These are
simple to construct using standard Clebsch-Gordon tables. We adopt an abbreviated notation,
factoring out the spin and orbital parts and writing the two electron states as |1,M1i |1,M2i ⌘
|M1,M2i and similarly for spin. The two spin states are broken into a singlet and three triplets,
and will be denoted as

|si = |"#i � |#"ip
2

|t+i = |""i |t0i =
|"#i + |#"ip

2
|t�i = |##i (D.13)

The L = 0, S = 0 case is the simplest, with only a single state

|2, 0, 0; 0, 0i = 1p
3

(|+1,�1i � |0, 0i + |�1,+1i) |si (D.14a)
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Jeff  = 1/2 basis

mixture of different orbitals and different spins

How to get bond-dependent spin interaction?
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"# � #"

(a) Ir-Ir overlap for t1 (b) Ir-O-Ir overlap for t2

(c) Ir-Ir overlap for t2 (d) Ir-Ir overlap for t3

FIG. 2: Schematic visual representation of the types orbital overlap contributing to the hoppings

t1, t2 and t3 in Eq. 4 for the xy(z) bond.

giving the most general hopping matrix allowed by symmetry. We will discuss two possibilities

relevant for Na2IrO3and Li2IrO3: direct overlap between the d orbitals and hopping mediated

through the O2� ions.

t1 =
1
2

(tdd⇡ + tdd�) (4)

t2 =
1
2

(tdd⇡ � tdd�) +
t2
pd⇡

�pd
(5)

t3 =
1
4

(3tdd� + tdd�) (6)

The three parameters tdd�, tdd⇡ and tdd� are the usual Slater-Koster parameters for direct d-orbital

overlap, with one expecting |tdd�| > |tdd⇡| > |tdd�|. The oxygen mediated hopping is through the tpd⇡

overlap with �pd being the chemical potential difference between the Ir4+ and O2� ions. A visual

representation of these overlaps is shown in Fig. 2.

II. STRONG COUPLING EXPANSIONS

To derive the effective Hamiltonian for the je↵ = 1/2 states we consider two forms of strong

coupling expansion. The first is the conventional case, where we take U, JH � � � t. We consider

3one particle

zx
yz
xy

-1/2-1/2

Jz =

t2

t3

connect up-up and down-down Jz states:

S+
1 S+

2 � S�
1 S�

2 / i(Sx
1S

y
2 + Sy

1S
x
2 )

example: 



2

(a) Classical phase diagram with � > 0

(b) AFM (c) FM (d) Stripy

(e) Zigzag (f) 120� (g) | ~Q| in the IS

FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ~Q in the IS phase.

Kanamori form[26]:

H0 =
X

i

"
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i �
JH

2
L2

i

#
, (2)

where Ni, S i and Li are the total number, spin and (effec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH � � � t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je↵ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-
orbtials and hopping mediated through the oxygen atoms. For

our purposes, we focus on nearest-neighbour bonds where we
then have
X

hi ji2↵�(�)

h
t1
⇣
d†i↵d j↵ + d†i�d j�

⌘
+ t2
⇣
d†i↵d j� + d†i�d j↵

⌘
+ t3d†i�di�

i
,

where d†i↵ = (d†i↵" d†i↵#) and di↵ are the creation and annihila-
tion operators for the t2g state ↵ at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ! yz, y ! zx and z ! xy. The
parameters t1, t2 and t3 are given by

t1 =
tdd⇡ + tdd�

2
, t2 =

t2
pd⇡

�pd
+

tdd⇡ � tdd�

2
, t3 =

3tdd� + tdd�

4
,

where tdd�, tdd⇡, tdd� and tpd⇡ are Slater-Koster[27] parameters
for the direct Ir � Ir overlap and Ir � O overlap while �pd is
the Ir�O gap[28]. Treating the kinetic terms as a perturbation
yields the Hamiltonian in Eq. 1 with

J =
4

27

"
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2

U � JH
+

(2t1 + t3)2

U + 2JH

#
, (3)

K =
8JH

9

2
66664

(t1 � t3)2 � 3t2
2

(U � 3JH)(U � JH)

3
77775 , (4)

� =
16JH

9

"
t2(t1 � t3)

(U � 3JH)(U � JH)

#
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[29, 30] and can be re-
lated to the truncated dipolar exchange[31, 32] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence the � term is a generic feature of
je↵ = 1/2 models with edge-shared octahedra. To confirm
this, the strong coupling expansion was also carried out in the
limit where U, � � JH � t, with the contributions of JH in-
cluded in the excited states perturbatively. While energies of
the virtual states involve � instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings
t1, t2 and t3 unchanged. While Kitaev limit can be naturally
accessed when t2 � t1, t3, leaving this limit introduces both
J and � making it difficult to reach the HK limit[33]. Fine-
tuning could in principle render � small, but the dominant
contributions to t1 ⇠ tdd⇡ and t3 ⇠ tdd� are of opposite sign
making any such tuning implausible. Further applications to
wider classes of iridium oxides is left for future work.

Classical phase diagram: To understand the effects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. Parametrize the exchanges using an-
gles � and ✓

J = sin ✓ cos �, K = sin ✓ sin �, � = cos ✓, (6)

fixing the energy scale so that
p

J2 + K2 + �2 = 1. By map-
ping ~S i ! �~S i on one sublattice, we send � ! �� and
✓ ! ⇡ � ✓, so we can consider only � > 0. To obtain the clas-
sical phase diagram, the Luttinger-Tisza approximation[34] is
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a single xy(z) type bond placing the Ir4+ ions at the origin and along ŷ� x̂ direction as shown in
Figure 4.3. The remaining bonds can generated by cyclically permuting the x, y and z indices
to exploit the C3 symmetry present at each site. We denote the corresponding t2g electron
operators as d†i = (d†i,yz d†i,zx d†i,xy) and d†j = (d†j,yz d†j,zx d†j,xy). The hopping Hamiltonian on the
bond is then written

T z + (T z)† = d†i T z
i jd j + d†j (T

z
i j)
†di. (4.6)

Since there is inversion about the bond center and time-reversal symmetry, this hopping ma-
trix T z

i j is real and symmetric in the t2g basis. The overall form can first be motivated using
symmetry arguments. If only the two Ir4+ ions and the octahedra of O2� ions are included then
the form of T z

i j is tightly constrained by the C2 symmetries present on the bond. Explicitly, we
have a C2z symmetry about the bond center and a C2 rotation through the bond itself. These
constrain T z

i j to be

T z
i j =

0
BBBBBBBBBBB@

t1 t2 0
t2 t1 0
0 0 t3

1
CCCCCCCCCCCA
, (4.7)

with the three independent real parameters t1, t2 and t3. With the form of the hopping matrix
determined, we can now work out how the physical processes contribute to each allowed hop-
ping element. The oxygen mediated part is illustrated in Figure 4.4a. This process proceeds by
hopping from the dyz orbital on site i into a pz orbital on one of the oxygens. From the pz orbital
the electron only overlaps with the dzx orbital on site j. Each d to p hopping amplitude is given
by the Slater-Koster overlap tpd⇡ while the energy cost to the virtual state is the Ir-O charge gap
�pd. We see then that the oxygen mediated term is purely inter-orbital, contributing only to
t2. The direct 5d overlap terms can also be computed using the Slater-Koster approach[161] as
illustrated in Figures 4.4b, 4.4c and 4.4d. These are parametrized in terms of the Slater-Koster
parameters tdd�, tdd⇡ and tdd�. Roughly, one expects that tdd� : tdd⇡ : tdd� ⇠ 6 : �4 : 1. These
direct overlaps contribute t1, t2 and t3, including intra-orbital dzx � dzx, dyz � dyz and dxy � dxy

hoppings as well as the inter-orbital dyz � dzx terms. Putting this together one has

t1 =
1
2

(tdd⇡ + tdd�) , (4.8a)

t2 =
1
2

(tdd⇡ � tdd�) +
t2
pd⇡

�pd
, (4.8b)

t3 =
1
4

(3tdd� + tdd�) . (4.8c)

If we include higher order process such as hopping through the Na or Li atom then corrections
to these can appear. We also note that if a full symmetry analysis is conducted then an addi-
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je↵ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond dependent off-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120� and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–9] has attracted
a considerable amount of attention [10–17] due to the possi-
bility they lie near a realization of Kitaev’s exactly solvable
spin-1/2 honeycomb model[18]. This model hosts a number
of remarkable features: a Z2 spin liquid with gapless Majorana
fermions and (non-abelian) anyonic excitations under an ap-
plied magnetic field. No symmetry principle excludes terms
besides the Kitaev, so additional interactions are generically
expected. From microscopic calculations of exchange medi-
ated through the edge-shared oxygen octahedra, it has been
proposed that a pure Kitaev model of je↵ = 1/2 spins was
the appropriate description[19]. It was further suggested that
direct overlap of the d-orbital generalizes this to a Heisenberg-
Kitaev (HK) model[11], linearly interpolating between an
isotropic Heisenberg model and Kitaev’s bond-dependent ex-
change Hamiltonian. Extensive study of the HK model[20–
25] has shown a variety of fascinating phenomena, including
an extended spin liquid phase and quantum phase transitions
into several well-understood magnetic ground states. While
present, the zigzag phase seen in Na2IrO3 [2, 5] is difficult to
stabilize within the HK model; one must resort to additional
t2g�eg exchange paths[16] or further neighbour hoppings[12].
In light of this puzzle one may question whether the HK model
provides an adequate description of the honeycomb iridates
even at the nearest neighbour level.

In this letter we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je↵ = 1/2 spin model from a multi-orbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric off-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
X

hi ji2↵�(�)

h
J~S i · ~S j + KS �i S �j + �

⇣
S ↵i S �j + S �i S ↵j

⌘i
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange
and � denotes the symmetric off-diagonal exchange. On each
bond we distinguish one spin direction �, labelling the bond
↵�(�) where ↵ and � are the two remaining directions. Ex-

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white and A = Na2+,Li2+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find with the inclu-
sion of � new magnetic phases are stabilized near the Kitaev
limits: an incommensurate spiral (IS) and 120� order, in addi-
tion to extended regions of zigzag and stripy order.

Microscopics: We first construct a minimal model of a hon-
eycomb lattice of Ir4+ ions surrounded by a network of edge-
sharing oxygen octahedra. The Ir4+ 5d levels are split into an
eg doublet and t2g triplet by large crystal field effects, leaving
a single hole in the t2g states. Within the t2g manifold the or-
bital angular momentum behaves as an le↵ = 1 triplet, with
large spin-orbit coupling splitting this into an active je↵ = 1/2
doublet and filled je↵ = 3/2 states. Due to significant on-
site interactions localized je↵ = 1/2 spins provide an effec-
tive model for the low-energy physics. To perform the strong
coupling expansion we consider an atomic Hamiltonian of

(a) Ir-Ir overlap for t1 (b) Ir-O-Ir overlap for t2

(c) Ir-Ir overlap for t2 (d) Ir-Ir overlap for t3

FIG. 2: Schematic visual representation of the types orbital overlap contributing to the hoppings

t1, t2 and t3 in Eq. 4 for the xy(z) bond.

giving the most general hopping matrix allowed by symmetry. We will discuss two possibilities

relevant for Na2IrO3and Li2IrO3: direct overlap between the d orbitals and hopping mediated

through the O2� ions.

t1 =
1
2

(tdd⇡ + tdd�) (4)

t2 =
1
2

(tdd⇡ � tdd�) +
t2
pd⇡

�pd
(5)

t3 =
1
4

(3tdd� + tdd�) (6)

The three parameters tdd�, tdd⇡ and tdd� are the usual Slater-Koster parameters for direct d-orbital

overlap, with one expecting |tdd�| > |tdd⇡| > |tdd�|. The oxygen mediated hopping is through the tpd⇡

overlap with �pd being the chemical potential difference between the Ir4+ and O2� ions. A visual

representation of these overlaps is shown in Fig. 2.

II. STRONG COUPLING EXPANSIONS

To derive the effective Hamiltonian for the je↵ = 1/2 states we consider two forms of strong

coupling expansion. The first is the conventional case, where we take U, JH � � � t. We consider

3

J / t2dd⇡/U

� / totdd�JH/U2

K / �t2
o
JH/U2

When d-p orbital overlap dominates;           

Generic spin model including d-p & d-d hopping

|K|, |�| > |J |
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(a)Classicalphasediagramwith�>0

(b)AFM(c)FM(d)Stripy

(e)Zigzag(f)120�(g)|~Q|intheIS

FIG.2:(a)CombinedLuttinger-Tiszaandsingle-Qanalysis.
Solidcolourscorrespondtoexactclassicalgroundstates
fromLuttinger-Tiszawhiletheregionindicatedbythewhite
dashedlinearethesingle-Qresults.(b-f)Groundstatespin
configurationsineachphase.(g)Magnitudeoftheordering
wave-vector~QintheISphase.

formthestrongcouplingexpansion,weconsideranatomic
HamiltonianofKanamoriform[29]:

H0=
X

i

"
U�3JH

2
(Ni�5)2�2JHS2

i�
JH

2
L2

i

#
,(2)

whereNi,Si,andLiarethetotalnumber,spin,and(e↵ec-
tive)orbitalangularmomentumoperatorsatsitei,Uisthe
Coulombinteraction,andJHisHund’scoupling.Theexpan-
sioniscarriedoutinthelimitU,JH���t,firsttakingU
andJHtobelarge.Sincethespin-orbitcouplingthendomi-
natesthekineticterms,theresultingspin-orbitalmodelcanbe
projectedintotheje↵=1/2subspace.

Thekinetictermsareencapsulatedthroughatight-binding
modelfortheIrt2gorbitals,includingbothdirectoverlapofd-

orbitalsandhoppingmediatedthroughtheoxygenatoms.For
ourpurposes,wefocusonnearest-neighbourbondswherewe
thenhave

X

hiji2↵�(�)

h
t1
⇣

d†i↵dj↵+d†i�dj�
⌘
+t2

⇣
d†i↵dj�+d†i�dj↵

⌘
+t3d†i�di�

i
,

whered†i↵=(d†i↵"d†i↵#)anddi↵arethecreationandannihila-
tionoperatorsforthet2gstate↵atsitei.Herewesumoverthe
yz(x),zx(y)andxy(z)linksasindicatedinFig.1,butmapping
thedirectionstoorbitalsasx!yz,y!zxandz!xy.The
parameterst1,t2,andt3aregivenby

t1=
tdd⇡+tdd�

2
,t2=

t2
pd⇡

�pd
+

tdd⇡�tdd�

2
,t3=

3tdd�+tdd�

4
,

wheretdd�,tdd⇡,tdd�andtpd⇡areSlater-Koster[30]parameters
forthedirectIr-IroverlapandIr-Ooverlapwhile�pdistheIr-
Ogap[31].Treatingthekinetictermsasaperturbationyields
theHamiltonianinEq.1with

J=
4
27

"
6t1(t1+2t3)

U�3JH
+

2(t1�t3)2

U�JH
+

(2t1+t3)2

U+2JH

#
,(3)

K=
8JH

9

2
66664

(t1�t3)2�3t2
2

(U�3JH)(U�JH)

3
77775,(4)

�=
16JH

9

"
t2(t1�t3)

(U�3JH)(U�JH)

#
.(5)

Exchangesofthesameformasthe�termwereoriginally
calledsymmetricanisotropicexchange[32,33]andcanbere-
latedtothetruncateddipolarexchange[34,35]discussedin
othercontextsthroughareparametrization.Westressthat
sincethistermisallowedbysymmetryeveninthemostide-
alizedcases,thepresenceofthe�termisagenericfeatureof
je↵=1/2modelswithedge-sharedoctahedra(seetheSup-
plementalmaterial[36]formoreinformation).Toconfirm
this,thestrongcouplingexpansionwasalsocarriedoutinthe
limitwhereU,��JH�t,withthecontributionsofJH
includedintheexcitedstatesperturbatively.Whileenergies
ofthevirtualstatesinvolve�insteadofJH,allthreetermsare
generated,withthedependenceofKand�onthehoppingst1,
t2,andt3unchanged(SupplementalMaterial[36]).Whereas
theKitaevlimitcanbenaturallyaccessedwhent2�t1,t3,
leavingthisregimeintroducesbothJand�makingitdi�cult
toreachtheHKlimit[37].Finetuningcouldinprincipleren-
der�small,butthedominantcontributionstot1⇠tdd⇡and
t3⇠tdd�areofoppositesignmakinganysuchtuningimplau-
sible.Furtherapplicationstowiderclassesofiridiumoxides
areleftforfuturework.

Classicalphasediagram.-Tounderstandthee↵ectsofin-
cludingthisbond-dependent�term,wefirstmapouttheclas-
sicalmagneticphases.Weparametrizetheexchangesusing
angles�and✓

J=sin✓cos�,K=sin✓sin�,�=cos✓,(6)

fixingtheenergyscalesothat
p

J2+K2+�2=1.Bymap-
ping~Si!�~Siononesublattice,wesend�!��and
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FIG. 2: (Color online) (a) Detailed view of low tempera-
ture region of the parallel and perpendicular susceptibilities
shown in Fig. 1(a). χc values are multiplied by 10 to fit
on the same scale. Also shown is the temperature depen-
dence of heat capacity. (b) The non-monotonic part of the
heat capacity, obtained by subtracting a smooth polynomial
background (i.e., the solid line in panel (a)) from the raw
data. The entropy change ∆Sm was obtained by integration:
∆Sm =

∫ T

0
(∆Cp/T )dT .

tion (∆Cp) as shown in Fig. 2(b). The two peak feature,
a sharp low temperature peak accompanied by a broad
high temperature hump is remarkably similar to the mag-
netic susceptibility behavior. The transition temperature
around 7 K coincides with the temperature at which a
peak is observed in χab as illustrated with the vertical
dashed line in Fig. 2.

To further elucidate the nature of the observed mag-
netic phase transition, we have carried out neutron
diffraction experiments on single crystal samples. The
results are shown in Fig. 3. A clear peak is observed
at the (-0.5, 0, 1) position, which disappears when the
sample temperature is raised above 8 K. Measurements
carried out in the HHL-type plane 90◦ away from the ob-
served magnetic peaks did not show peaks at (0.5, 0.5, L)
type positions. Detailed temperature dependence of the
(-0.5, 0, 1) peak can be found in Fig. 3(b), in which we
plot the integrated intensity as a function of temperature
after the background scan at T=20 K was subtracted41.
Based on the temperature dependence of this peak, we
assign this to be a superlattice peak arising from the mag-
netic order at the 7K transition. It is difficult to extract
precise critical behavior due to poor statistics; however,
a rough fit to a power law as shown in the figure sug-

a
b
b*

a*

zigzag stripe

-0.7 -0.6 -0.5 -0.4
(H 0 1)

5

10

15

20

In
te

n
si

ty
 (

a
rb

. 
u
n

it) 8.0 K
1.7 K

0 5 10 15
Temperature (K)

0

1

2

3

4

5

6

7

In
te

n
si

ty
 (

a
rb

. 
u
n

it)

-4 -2 0 2 4
(0.5 0 L)

-2

0

2

4

6

8

10

12

In
te

n
si

ty
 (

a
rb

. 
u

n
it)

(a) (b)

(c)

FIG. 3: (a) Scans across the (-0.5, 0, 1) peak position obtained
at two temperatures, 1.7 K and 8K. A peak is observed at
1.7K. A large sloping background is due to the unscattered
neutron beam. (b) Temperature dependence of the integrated
intensity of the peak shown in panel (a). A background scan
obtained at 20K was subtracted from the raw data before the
counts were added up. The solid line is a fit to ∼ (Tc − T )2β

with β = 0.2 ± 0.1 and Tc=8.2(5) K. (c) L-dependence of
the magnetic peak at two temperatures. The error bars in
the figure represent one standard deviation. The solid line
is based on Hendricks-Teller calculation as described in the
text. The inset shows the unit vectors in real and reciprocal
space, and spin arrangements in the zigzag and stripe ordering
pattern.

gests that the transition is continuous and the transition
temperature is TN ≈ 8 ± 1 K. The peak is very broad
along the L-direction as shown in Fig. 3(c). The ob-
served L-dependence suggests that the order along the
c-direction is only short-ranged due to the prevalence of
stacking faults. Similar stacking disorder (or partial or-
der) is found in graphite. In their classic work, Hendricks
and Teller considered a model for graphite layer stacking,
in which the preferred ABAB... type stacking pattern is
randomly mixed with the ABCABC... type, and they
showed that the structure factor depends only on the
probability ratio x of the two types of stacking42. In
Fig. 3(c), we plot Eq. (34) from Ref.42. The remarkable
agreement with only intensity scaling strongly indicates
that a similar type of stacking disorder is present in α-
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tion (∆Cp) as shown in Fig. 2(b). The two peak feature,
a sharp low temperature peak accompanied by a broad
high temperature hump is remarkably similar to the mag-
netic susceptibility behavior. The transition temperature
around 7 K coincides with the temperature at which a
peak is observed in χab as illustrated with the vertical
dashed line in Fig. 2.

To further elucidate the nature of the observed mag-
netic phase transition, we have carried out neutron
diffraction experiments on single crystal samples. The
results are shown in Fig. 3. A clear peak is observed
at the (-0.5, 0, 1) position, which disappears when the
sample temperature is raised above 8 K. Measurements
carried out in the HHL-type plane 90◦ away from the ob-
served magnetic peaks did not show peaks at (0.5, 0.5, L)
type positions. Detailed temperature dependence of the
(-0.5, 0, 1) peak can be found in Fig. 3(b), in which we
plot the integrated intensity as a function of temperature
after the background scan at T=20 K was subtracted41.
Based on the temperature dependence of this peak, we
assign this to be a superlattice peak arising from the mag-
netic order at the 7K transition. It is difficult to extract
precise critical behavior due to poor statistics; however,
a rough fit to a power law as shown in the figure sug-
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at two temperatures, 1.7 K and 8K. A peak is observed at
1.7K. A large sloping background is due to the unscattered
neutron beam. (b) Temperature dependence of the integrated
intensity of the peak shown in panel (a). A background scan
obtained at 20K was subtracted from the raw data before the
counts were added up. The solid line is a fit to ∼ (Tc − T )2β

with β = 0.2 ± 0.1 and Tc=8.2(5) K. (c) L-dependence of
the magnetic peak at two temperatures. The error bars in
the figure represent one standard deviation. The solid line
is based on Hendricks-Teller calculation as described in the
text. The inset shows the unit vectors in real and reciprocal
space, and spin arrangements in the zigzag and stripe ordering
pattern.

gests that the transition is continuous and the transition
temperature is TN ≈ 8 ± 1 K. The peak is very broad
along the L-direction as shown in Fig. 3(c). The ob-
served L-dependence suggests that the order along the
c-direction is only short-ranged due to the prevalence of
stacking faults. Similar stacking disorder (or partial or-
der) is found in graphite. In their classic work, Hendricks
and Teller considered a model for graphite layer stacking,
in which the preferred ABAB... type stacking pattern is
randomly mixed with the ABCABC... type, and they
showed that the structure factor depends only on the
probability ratio x of the two types of stacking42. In
Fig. 3(c), we plot Eq. (34) from Ref.42. The remarkable
agreement with only intensity scaling strongly indicates
that a similar type of stacking disorder is present in α-
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in ↵-RuCl3 is missing. This is because if the dominant interaction in ↵-RuCl3 is the fer-

romagnetic (FM) Kitaev term – based on spin wave analysis36 and ab-initio studies25,26 –

the FM Kitaev phase is almost immediately destroyed, and the polarized state appears in

an applied field38–40 with no intervening phase. This can be contrasted with the antiferro-

magnetic (AFM) Kitaev phase which hosts a potentially gapless spin liquid under a field,

supported by several numerical studies39–47. However, this intermediate gapless U(1) spin

liquid cannot explain the half-integer thermal Hall e↵ect observed in ↵-RuCl3, even though

it is an intriguing spin liquid. Thus searching for a possible spin liquid with MFs leading to

the half-integer thermal Hall e↵ect under a magnetic field remains a challenging task.

Here we present a microscopic theory of the KSL displaying a half-integer thermal Hall

e↵ect under a magnetic field. The key to our result is an AFM symmetric o↵-diagonal �

interaction, essential to stabilize the KSL for intermediate fields. The KSL emerges between

the low- and high-field phases as � increases, and is connected to the pure FM Kitaev phase

at zero field. We introduce the microscopic theory with a brief review of the generic nearest

neighbour spin model for spin-orbit coupled honeycomb materials, appropriate for ↵-RuCl3.

Model – The nearest neighbour model has been derived in [5,12,13] based on a strong

coupling expansion of the Kanamori Hamiltonian. The combination of crystal field splitting

and strong spin-orbit coupling leads to a model based on pseudospin-12 local moments with

bond-dependent interactions. On a bond of type � 2 {x, y, z} with sites j, k, the nearest-

neighbour spin Hamiltonian is taken to be of the J-K-�-�0 form13

H
�
jk = JSj · Sk +KS�

j S
�
k + �(S↵

j S
�
k + S�

j S
↵
k )

+ �0(S↵
j S

�
k + S�

j S
↵
k + S�

j S
�
k + S�

j S
�
k )

(1)

where ↵, � are the remaining spin components in {x, y, z} \ {�}. The spin components are

directed along the cubic axes of the underlying ligand octahedra, so the honeycomb layer

lies in a plane perpendicular to the [111] spin direction as shown in Fig. 1(a). A small �0

is present due to trigonal distortion of ligand octahedra in the real material. Here we omit

the Heisenberg J for simplicity, and its e↵ects are discussed later. Earlier studies14,26,29,48,49

noted that the � interaction with AFM sign may play an important role near the FM Kitaev

regime to stabilize the spin liquid48. Since ↵-RuCl3 has a dominant FM Kitaev interaction

with AFM �, we focus on �/K 2 [�1, 0] with � > 0 and K < 0. The remaining parameters

of the Hamiltonian are expressed in units of
p
K2 + �2 ⌘ 1.
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FIG. 3: Phase diagrams from exact-diagonalization of the 24-site cluster. Results are shown near the (a) ferromagnetic (K < 0)
and (b) antiferromagnetic (K > 0) Kitaev limits as a function of J, � and �0 with the energy scale fixed so |K| = 1. Colours
identify the phases: FM (blue), AFM (red), zigzag (gold), stripy (magenta), 120� (green). The colour corresponds to values of
the static structure factor S Q in the original or rotated basis. Contours of constant S Q are shown for the dominant wave-vector
in each region.

For simplicity we have not included anisotropic g factors in
these expressions. We present these results showing a plot of
the spin wave spectrum around the path X-�-Y-�0-M-�20. The
colours indicate the magnitude of I( ~Q,!) after convolving the
structure factor with a gaussian of finite width to emulate finite
experimental resolution.

VI. DISCUSSION

First, let us discuss the dependence of the M point spin-
wave gap on the parameters J,K, � and �0 in each of the zigzag
phases. In the AFK limit, earlier studies20 have pointed out
the accidental SO(3) degeneracy of the classical ground state
manifold in the HK limit. This pseudo-symmetry manifests
in the semi-classical calculations through the appearance of
gapless excitations near the M point – even though spin ro-
tation symmetry is strongly broken by spin-orbit e↵ects. The
addition of � and �0 a↵ect these pseudo-Goldstone modes dif-
ferently. Moving away from the HK limit via � immediately
gaps out the M point, with the gap equal to ⇠ |�|. We see then
we can bound |�| to be smaller than ⇠ 1 � 2meV due to the
low energy cuto↵ to the INS data. Curiously, adding �0 to the
AFK-zigzag state does not gap out pseudo-Goldstone modes;
the SO(3) degeneracy remains unbroken. Ignoring then the

microscopic route to the AFK-zigzag regime, the INS data can
be made qualitatively consistent with this phase so long as �
is small, irrespective of the value of �0. Further, to get spin-
waves that match the scales seen in the RIXS experiments one
needs a large value for K. For a representative point in the
AFK-zigzag phase, we choose J = �10meV, K = 40meV,
� = 1meV and �0 = 5meV. The spin-wave spectrum for these
parameter values is qualitatively similar to that reported for
the AFK-zigzag in the HK-model20, expect for a small gap
opened by finite � and the splitting of some accidental degen-
eracies in the spin-wave bands.

The case of the FK limit is more interesting. We first
note that within the classical and semi-classical calculations
a meta-stable zigzag phase appears over a wide region of pa-
rameter space that connects directly to the FK point. This
meta-stable state is close in energy to phase I and accounts for
its fragility under the addition of a small negative �0. Given
the enhancement of the zigzag order seen in the exact diag-
onalization calculations we will discuss this zigzag phase on
equal footing with the stable zigzag phase seen when �0 is fi-
nite and su�ciently negative. Start from the FK limit with
J = � = �0 = 0. As we increase � the zigzag phase imme-
diately opens a gap, with a narrow band of low energy excita-
tions; a remnant of the flat band present at the FK point. As
� is increased further the gap reaches a maximum then begin
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FIG. 3: Phase diagrams from exact-diagonalization of the 24-site cluster. Results are shown near the (a) ferromagnetic (K < 0)
and (b) antiferromagnetic (K > 0) Kitaev limits as a function of J, � and �0 with the energy scale fixed so |K| = 1. Colours
identify the phases: FM (blue), AFM (red), zigzag (gold), stripy (magenta), 120� (green). The colour corresponds to values of
the static structure factor S Q in the original or rotated basis. Contours of constant S Q are shown for the dominant wave-vector
in each region.

For simplicity we have not included anisotropic g factors in
these expressions. We present these results showing a plot of
the spin wave spectrum around the path X-�-Y-�0-M-�20. The
colours indicate the magnitude of I( ~Q,!) after convolving the
structure factor with a gaussian of finite width to emulate finite
experimental resolution.

VI. DISCUSSION

First, let us discuss the dependence of the M point spin-
wave gap on the parameters J,K, � and �0 in each of the zigzag
phases. In the AFK limit, earlier studies20 have pointed out
the accidental SO(3) degeneracy of the classical ground state
manifold in the HK limit. This pseudo-symmetry manifests
in the semi-classical calculations through the appearance of
gapless excitations near the M point – even though spin ro-
tation symmetry is strongly broken by spin-orbit e↵ects. The
addition of � and �0 a↵ect these pseudo-Goldstone modes dif-
ferently. Moving away from the HK limit via � immediately
gaps out the M point, with the gap equal to ⇠ |�|. We see then
we can bound |�| to be smaller than ⇠ 1 � 2meV due to the
low energy cuto↵ to the INS data. Curiously, adding �0 to the
AFK-zigzag state does not gap out pseudo-Goldstone modes;
the SO(3) degeneracy remains unbroken. Ignoring then the

microscopic route to the AFK-zigzag regime, the INS data can
be made qualitatively consistent with this phase so long as �
is small, irrespective of the value of �0. Further, to get spin-
waves that match the scales seen in the RIXS experiments one
needs a large value for K. For a representative point in the
AFK-zigzag phase, we choose J = �10meV, K = 40meV,
� = 1meV and �0 = 5meV. The spin-wave spectrum for these
parameter values is qualitatively similar to that reported for
the AFK-zigzag in the HK-model20, expect for a small gap
opened by finite � and the splitting of some accidental degen-
eracies in the spin-wave bands.

The case of the FK limit is more interesting. We first
note that within the classical and semi-classical calculations
a meta-stable zigzag phase appears over a wide region of pa-
rameter space that connects directly to the FK point. This
meta-stable state is close in energy to phase I and accounts for
its fragility under the addition of a small negative �0. Given
the enhancement of the zigzag order seen in the exact diag-
onalization calculations we will discuss this zigzag phase on
equal footing with the stable zigzag phase seen when �0 is fi-
nite and su�ciently negative. Start from the FK limit with
J = � = �0 = 0. As we increase � the zigzag phase imme-
diately opens a gap, with a narrow band of low energy excita-
tions; a remnant of the flat band present at the FK point. As
� is increased further the gap reaches a maximum then begin
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�0effects of 

J

-K
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Crystal structure and magnetism in ↵-RuCl3: an ab-initio study
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↵-RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-
dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed,
which is crucial in understanding the physics of this system. Here, using ab-initio electronic structure calcula-
tions, we study a full three dimensional (3D) structure of ↵-RuCl3 including the effects of spin-orbit coupling
(SOC) and electronic correlations. Three major results are as follows; i) SOC suppresses dimerization of Ru
atoms, which exists in other Ru compounds such as isostructural Li2RuO3, and making the honeycomb closer
to an ideal one. ii) The nearest-neighbor Kitaev exchange interaction between the je↵=1/2 pseudospin depends
strongly on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry.
iii) The optimized 3D structure without electronic correlations has P 3̄1m space group symmetry independent
of SOC, but including electronic correlation changes the optimized 3D structure to either C2/m or Cmc21
within 0.1 meV per formula unit (f.u.) energy difference. The reported P3112 structure is also close in energy.
The interlayer spin exchange coupling is a few percent of in-plane spin exchange terms, confirming ↵-RuCl3 is
close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds new
light in realizing Kitaev spin liquid phase in this system.

I. INTRODUCTION

There have been a number of studies on quasi-two-
dimensional systems having both spin-orbit coupling (SOC)
and on-site Coulomb interactions, which are believed to host
unconventional magnetic orders and spin liquid phases1,2.
One promising candidate is ↵-RuCl3, where edge-sharing
RuCl6 octahedra form two-dimensional RuCl3 layers in
which Ru honeycomb layers reside3–11. Compared to its 5d
transition metal oxide counterparts ↵-A2IrO3 (A=Li,Na)12–16,
↵-RuCl3 has closer-to-ideal RuCl6 octahedra3, so it was pro-
posed as an excellent platform to explore the Kitaev physics
and related magnetism despite weaker SOC4,9,11,17,18. A few
recent reports suggest the presence of strong Kitaev-type
bond-dependent exchange interactions in ↵-RuCl35, which
originate from the cooperation between the intermediate SOC
in Ru atom and the Coulomb interaction8. A zigzag-type mag-
netic order within the RuCl3 layer is also predicted and ob-
served, which is proximate to the Kitaev spin-liquid phase5,8.

In previous studies ↵-RuCl3 was considered as a two-
dimensional system with an ideal Ru honeycomb lattice,
but such assumption needs further clarification. A poten-
tial Ru layer distortion, which is observed in an isostruc-
tural compound Li2RuO3

19,20, might happen in this com-
pound. Furthermore, ↵-RuCl3 has a three-dimensional crys-
tal structure consisting of RuCl3 layer stacking, and inter-
layer coupling and interaction terms can introduce another
complication. Experimentally, both P3112 and C2/m space
groups have been suggested as the crystalline symmetry in
this compound3,6,11,21,22. As an illustrative example, Fig. 1(a)
shows the crystal structure of ↵-RuCl3 with a C2/m space
group symmetry, where adjacent RuCl3 layers within the unit
cell is related to each other by a translation along the a-axis in
the figure. Stacking faults can easily be introduced in this lay-
ered structure as in the case of ↵-A2IrO3

23, which obscures
further clarification of the crystal structure. Effect of inter-
layer exchange interactions from the layer stacking on the

a

c

Cl

Ru

a

B

c

b

C

a

c

A

b

a,A b,B

c,C

c
c a

(a)

(b)

ab

a’

FIG. 1. (Color online) (a) Crystal structure of ↵-RuCl3with C2/m
space group. Solid lines depict a monoclinic unit cell. (b) Schematic
view of three triangular sublattices on which Ru and Cl layers are
located. Stacking indices for Ru honeycomb and Cl triangular layers
are shown on the right side of (a), where indices for Ru and Cl layers
are expressed as capital and lowercase letters respectively.

ground state magnetic properties of this system is not well
understood either. More interestingly, a sample-dependent
two-transition behavior is reported, where two different mag-
netic order peaks at TN1 ' 14 K and TN2 ' 8 K with two-
and three-layer c-axis periodicity, respectively, are observed in
neutron diffraction measurement11. These issues pose a ques-
tion on the relation between crystal structure and magnetism
in this system.

In pursuit of such motivations, in this work we perform ab-

initio calculations for the structural properties of ↵-RuCl3 and
their impact on magnetism. We present three main results; i)
Role of SOC and zigzag magnetic order on the single-layer
RuCl3 structure is discussed. We found that SOC prefers
ideal honeycomb lattice by preventing Ru-Ru dimer forma-
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We examine the role of spin-orbit coupling in the electronic structure of α-RuCl3, in which Ru ions in 4d5

configuration form a honeycomb lattice. Our x-ray absorption spectroscopy measurements at the Ru L edges
exhibit distinct spectral features associated with the presence of substantial spin-orbit coupling, as well as
an anomalously large branching ratio. Furthermore the measured optical spectra can be described very well
with first-principles electronic structure calculations obtained by taking into account both spin-orbit coupling and
electron correlations. We propose that α-RuCl3 is a spin-orbit assisted Mott insulator, and that the bond-dependent
Kitaev interaction may be important for understanding magnetism of this compound.

DOI: 10.1103/PhysRevB.90.041112 PACS number(s): 75.10.Jm, 71.20.Be, 71.70.Ej, 78.70.Dm

Novel electronic ground states can often result from the
interplay of many competing energy scales. In magnetic ma-
terials containing heavy transition metals such as iridium, the
combination of electronic correlations and spin-orbit coupling
(SOC) can give rise to exotic topological phases [1– 11]. For
example, when a 4d5 or 5d5 ion is subject to an octahedral
crystal field environment, SOC mixes the wave functions of
the triply degenerate t2g electronic states and the low-energy
magnetic degrees of freedom are described by spin-orbital
mixed Kramers doublets, termed Jeff states [6,7,12]. One of
many interesting consequences of Jeff states in real materials
is the presence of an unusual bond-dependent exchange term
called the Kitaev interaction. This bond-dependent magnetic
interaction is fundamentally different from the usual isotropic
or anisotropic Heisenberg interaction, since frustration is
naturally present on a single site. This allows unconventional
quantum ground states, such as spin liquids, to emerge
even in the absence of geometrical frustration [1,7]. Such a
bond-dependent interaction is an important ingredient for the
quantum compass model, which is relevant in various physical
contexts ranging from ultracold atomic gases to topological
quantum computing [13].

Experimentally, current efforts are mostly directed towards
studying the 5dA2IrO3 (A = Na or Li) compounds where IrO6
octahedra share edges to form a honeycomb network [14– 20].
The edge-sharing geometry suppresses isotropic Heisenberg
interactions, while Kitaev interactions are believed to be
substantial [6,7]. However, due to monoclinic and trigonal
distortions, the applicability of the localized Jeff picture to
these compounds is still controversial [21,22]. Materials with
4d electrons have not drawn much attention due to their
smaller SOC compared to 5d systems. However, even if the
absolute value of SOC in 4d systems is smaller than that of 5d
elements, the Jeff state may still be realized as long as the t2g

states remain degenerate in the absence of SOC [23]. α-RuCl3
is an insulating 4d transition-metal halide with honeycomb
layers composed of nearly ideal edge-sharing RuCl6 octahedra,

*yjkim@physics.utoronto.ca

and therefore an excellent candidate material in which bond-
dependent Kitaev interactions may be found. In addition,
single crystal samples are extremely micaceous, similar to
graphite, and can potentially be used to produce a truly
two-dimensional quantum magnet. While earlier transport
measurements have implicated α-RuCl3 to be a conventional
semiconductor [24], subsequent spectroscopic investigations
suggest that it may be a Mott insulator [25]. However, a
systematic examination of the role of SOC in the electronic
structure of α-RuCl3 has not been conducted until now.

In this Rapid Communication, we show that the insulat-
ing state in α-RuCl3 arises from the combined effects of
electronic correlations and strong SOC. Our x-ray absorption
spectroscopy (XAS) data directly indicates that substantial
SOC of Ru is present in α-RuCl3. In order to probe the detailed
electronic structure, we have carried out optical spectroscopy
measurements. The origins of the optical gap in α-RuCl3
are elucidated by our band structure calculations. We find
that while strong electronic correlations are necessary to
describe this material, SOC is essential to account for the
magnitude of the optical gap. Taken as a whole, our results
indicate that α-RuCl3 is best described as a spin-orbit assisted
Mott insulator and strong SOC effects must be considered to
understand this material.

The crystal structure of α-RuCl3 is shown in Fig. 1.
Edge-sharing RuCl6 octahedra form a honeycomb network
in the a-b plane and the weakly coupled honeycomb layers are
stacked along the c direction to form a CrCl3-type structure
P 3112 [27]. As shown in Fig. 1(c), the Cl-Ru-Cl angles
are all within 1◦ of 90◦ and the Ru-Cl bond lengths are
within 0.3% of one another. Thus, the RuCl6 octahedron in
this compound is very close to ideal. In fact, the absence
of appreciable electric quadrupole interactions from the 99Ru
Mössbauer spectroscopy study was interpreted to result from
the highly symmetric octahedral configuration of the ligand
Cl ions [28]. This structural detail is quite important since
such an ideal octahedral environment will leave the t2g states
degenerate in the absence of SOC. In contrast, Na2IrO3 has an
O-Ir-O bond angle of about 85◦ [17,18]. Another important
structural difference between Na2IrO3 and α-RuCl3 is the lack

1098-0121/2014/90(4)/041112(5) 041112-1 ©2014 American Physical Society
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FIG. 1. (Color online) (a) The crystal structure of α-RuCl3, ex-
hibiting lamellar nature of the unit cell. (b) Individual honeycomb
layers are formed by edge-sharing RuCl6 octahedra (Ru in blue, Cl
in gray). (c) Detailed view of RuCl6 octahedra showing bond angles.
All the figures were produced with VESTA [26].

of intervening Na atoms between the honeycomb layers in
the latter compound, such that α-RuCl3 is closer to an ideal
two-dimensional system.

Single crystal samples of α-RuCl3 were prepared by
vacuum sublimation from commercial RuCl3 powder. The
dielectric function ϵ̂(ω) = ϵ1(ω) + ϵ2(ω) of RuCl3 was mea-
sured from 0.1 to 6 eV; for the range 0.9–6 eV, ϵ̂(ω)
was determined using spectroscopic ellipsometry. From 0.1
to 1.2 eV, we measured the transmittance through a thin
RuCl3 sample and extracted ϵ̂(ω) using a standard model for
the transmittance of a plate sample [29]. X-ray absorption
spectroscopy measurements were performed using the soft
x-ray microcharacterization beamline (SXRMB) at the Cana-
dian Light Source. Measurements were carried out at the Ru
L3 (2p3/2 → 4d) and L2 (2p1/2 → 4d) absorption edges [30].

Physical properties of α-RuCl3 have been extensively
investigated. The magnetic susceptibility of α-RuCl3 shows
a sharp cusp around 13–15 K, which was attributed to
antiferromagnetic ordering [31]; and a Curie-Weiss fit yields
an effective local moment of about 2.2µB and ferromagnetic
Curie-Weiss temperatures of 23–40 K [28,31]. The effective
magnetic moment is much larger than the spin-only value of
1.73µB for the low spin (S = 1/2) state of Ru3+, indicating
a significant orbital contribution to total moment. Based on
these observations, it was suggested that the nearest-neighbor
interaction within the honeycomb plane is ferromagnetic and
that these planes are weakly coupled with an antiferromagnetic
interaction. However, powder neutron diffraction failed to
observe magnetic Bragg peaks of (003) type, which are
expected from the predicted simple magnetic structure [31].
Although several spectroscopic and transport investigations
have been carried out to study the electronic structure of
α-RuCl3 [24,25,32,33], the role of SOC was not explored in
detail in these earlier studies.

The importance of SOC in the electronic structure of
α-RuCl3 can be revealed through XAS measurements. The
x-ray absorption spectra obtained at the Ru L2 and L3 edges
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FIG. 2. (Color online) (a) X-ray absorption near-edge spectra of
RuCl3 measured at the Ru L3 edge. The black solid line is the
experimental data, and the red solid line is a fit function that includes
two Lorentzian peaks associated with t2g and eg states and an arctan
function describing the edge jump. (b) Same spectra showing the
energy range of the Ru L2 edge. The scale is exactly half of the one
shown in (a), emphasizing the departure from the statistical branching
ratio of 2. (c) Comparison of the branching ratio with various Ru
standard compounds, ranging from Ru2+ (RuCl2), Ru3+ (RuI3), to
Ru4+ (RuO2). Note that RuCl3 (hydrate) has a structure different
from α-RuCl3 studied here.

are shown in Fig. 2. Two peaks are observed for the L3
edge data shown in Fig. 2(a), corresponding to exciting 2p3/2
core electrons into empty t2g and eg states. The intensity
ratio between these two features is related to the fact that
there is only one empty t2g state available for the transition
compared to four empty eg states. A quantitative description
of the intensity and the peak splitting requires ligand field
multiplet calculations and is beyond the scope of this Rapid
Communication. Here we instead focus on the different line
shapes observed near the Ru L2edge compared to that of the L3
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charge gap which is constrained by the measured optical gap.
Therefore, a reasonable description of the insulating phase in
α-RuCl3 is only possible through the combination of SOC and
electron correlation.

Our LDA + U + SOC band structure also agrees well with
the optical spectra at higher energies. The α peak, together
with the other weak features below 1 eV, can be understood
as transitions between t2g bands. We assign the β feature to
the lowest energetically allowed transition between the t2g and
eg bands as represented by the arrow in Fig. 4(a); the features
at 2 and 3.2 eV also involve this combination of initial and
final states. Finally, we interpret the strong peak near 5 eV
(feature δ) as due to transitions from the band 2 eV below
the Fermi level to the eg bands. Indeed, our density functional
theory calculations suggest the band at −2 eV has an increased
Cl p content, meaning the δ transition has a charge transfer
character. Overall, our optical spectroscopy measurements and
electronic structure calculations agree well, and thus identify
α-RuCl3 as a spin-orbit assisted Mott insulator.

The perceived similarities of both the crystal and electronic
structure between Na2IrO3 and α-RuCl3 naturally raises
questions regarding the relevance of the Kitaev model to
α-RuCl3. As mentioned earlier, Na2IrO3 is under intense
scrutiny due to the possibility of realizing a Kitaev spin
liquid phase [1,5,7,10,14–20,38,39]. However, the trigonal
distortion present in Na2IrO3 brings the atomic basis of the
spin-orbit coupled Jeff = 1/2 states into question [21,22].
Furthermore, Na atoms may promote non-negligible further
neighbor exchange terms additional to the nearest-neighbor
terms [39,40]. α-RuCl3 is free from such complexity as it is
close to the ideal two-dimensional honeycomb lattice. Even
though the atomic SOC is weaker, the ratio of the SOC and the
electronic bandwidth is only slightly smaller than in Na2IrO3
because both are reduced in α-RuCl3 compared to iridates.
Indeed we find the bandwidth of α-RuCl3 to be about half
of that in Na2IrO3, while the SOC is smaller by a factor of
∼3. More detailed electronic structure calculations have found
that the bands near the Fermi level in α-RuCl3 are mostly
composed of Jeff = 1/2 except in the region near the $ point
[41]; this situation is similar to perovskite iridates [42,43].

Another important difference between Na2IrO3 and α-RuCl3
is the large size of Cl anions which expands the lattice; the
Ru-Ru distance is about 10% larger than the Ir-Ir distance in
Na2IrO3. As a result, the direct hopping between the Ru t2g

orbitals is suppressed, and indirect hopping through Cl, which
gives rise to a Kitaev interaction, is the most dominant hopping
process in α-RuCl3. Then a microscopic spin model relevant
for α-RuCl3 should be composed of both the nearest-neighbor
Heisenberg and bond-dependent exchange terms denoted by
Kitaev K and $ [44–46].

In conclusion, we have carried out combined optical
spectroscopy, electronic structure calculations, and x-ray
absorption spectroscopy investigation of the role of spin-orbit
coupling in α-RuCl3. We find that both spin-orbit coupling and
electron correlations are necessary to produce an electronic
structure consistent with the observed optical gap of about
0.2 eV. In addition, the calculated electronic structure agrees
with measured higher-energy optical transitions. Our x-ray
absorption spectra clearly illustrate that spin-orbit coupling of
the 4d electron system in this compound is significant. Thus
spin-orbit coupling plays an essential role in the microscopic
magnetic Hamiltonian, and α-RuCl3 is likely to exhibit un-
conventional magnetic ordering arising from bond-dependent
Kitaev interactions which could be investigated in future
studies.

Research at the University of Toronto was supported by the
NSERC, CFI, OMRI, and Canada Research Chair program.
Computations were performed on the GPC supercomputer at
the SciNet HPC Consortium [47]. SciNet is funded by the
Canada Foundation for Innovation under the auspices of Com-
pute Canada, the Government of Ontario, Ontario Research
Fund—Research Excellence, and the University of Toronto.
Research described in this paper was performed at the Cana-
dian Light Source, which is funded by the Canada Foundation
for Innovation, the Natural Sciences and Engineering Research
Council of Canada, the National Research Council Canada,
the Canadian Institutes of Health Research, the Government
of Saskatchewan, Western Economic Diversification Canada,
and the University of Saskatchewan.

[1] A. Kitaev, Ann. Phys. 321, 2 (2006).
[2] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[3] Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys.

Rev. Lett. 99, 137207 (2007).
[4] M. J. Lawler, A. Paramekanti, Y. B. Kim, and L. Balents, Phys.

Rev. Lett. 101, 197202 (2008).
[5] A. Shitade, H. Katsura, J. Kuneš, X.-L. Qi, S.-C. Zhang, and
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FIG. 3. (Color online) (a) Collinear magnetic configurations con-
sidered in the LDA+SOC+U calculations. (b) Relative energy
difference per Ru atom for each configuration plotted with respect
to Ueff . The ZZ ordered state has the lowest energy except when
Ueff = 1.0 eV, but FM is competitive and the 120 ordered state
approaches both states in energy when Ueff is large.
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where i,j label the Ru3+ sites and Si is a jeff = 1/2 spin
operator with components Sα

i . The parameters J and K are
Heisenberg and Kitaev exchanges, respectively, and $ is
a symmetric off-diagonal exchange. J

(x,y,z)
2 are anisotropic

spin exchanges at the second nearest-neighbor (NN) level,
while J3, K3, and $3 are the third NN analogs to the NN
exchanges.

Since the exchanges are expressed in terms of overlaps
between t2g states, the on-site Coulomb interaction U , and the
Hund’s coupling JH, they can be estimated using the tight-
binding parameters deduced from the ab initio calculations.
For fixed JH/U = 0.2, we find that the NN terms dominate
with antiferromagnetic K , ferromagnetic J , and positive $.
Including NN t2g-eg exchange processes in addition to the ones

z

x y

xy(z)

yz(x)

zx(y)

(a) (b)

Γ/
K

J/K
0

0

1

1
−1
−1

FIG. 4. (Color online) (a) First (solid), second (dashed), and third
(dotted) NN bonds on the honeycomb lattice with the bond labels.
Red, blue, and green colors depict the αβ(γ ) = xy(z), yz(x), and
zx(y) bonds, respectively, where α, β, and γ denote the spin
components interacting on the specified bond. Further neighbor
hoppings with only xy(z) type are depicted in the figure. (b) shows
the Luttinger-Tisza phase diagram at JH/U = 0.2 for fixed second
and third NN exchanges. Gray shading within the 120 order phase
depicts the trace of incommensurate (I) order occurring in that area.
The red diamond marks the estimated parameters for RuCl3. See the
main text for a description of the exchange parameters.

within t2g, we estimate the NN exchanges to be J/K ≃ − 0.7
and $/K ≃ 0.7. The estimates for the second NN exchanges
on a z bond denoted by red dashed lines in Fig. 4 are
J x

2 /K ≃ − 0.03, J
y
2 /K ≃ − 0.01, J z

2 /K ≃ − 0.01 and those
for third NN are J3/K ≃ 0.02, K3/K ≃ 0.03 with vanishingly
small $3/K . We note that the Kitaev exchange is further
enhanced due to interorbital t2g-eg hopping [27]. For more
details, including explicit expressions for the exchanges and
tight-binding parameters, see the Supplemental Material.

Luttinger-Tisza analyses [28] were performed to obtain
classical ground states of the above model. A phase diagram for
varying J/K and $/K while keeping J

(x,y,z)
2 /K , J3/K , and

K3/K fixed is presented in Fig. 4(b). Based on the strength of
the exchanges (see Supplemental Material) we find that the rel-
evant position for RuCl3, denoted by a red diamond in Fig. 4(b),
is in the ZZ regime close to FM and 120 ordered states. While
the qualitative features of the phase diagram are well captured
by the NN J -K-$ model, the addition of second and third NN
exchanges enlarges the ZZ region. This enhancement of the ZZ
phase on adding further neighbor exchanges was also observed
for JH/U = 0.3 and is likely independent of the JH /U ratio.
Our analysis predicts that RuCl3 has a zigzag ordered ground
state, described by a pseudospin jeff = 1/2 model, lying close
to the antiferromagnetic Kitaev spin liquid. It is remarkable
that the ZZ phase is surrounded by FM and 120 ordered
phases in the strong-coupling phase diagram; these states are
also found to be very close in energy in our LDA+SOC+U
calculations.

Discussion and conclusion. There are various experimental
ways to test our proposal. One experimental technique is angle-
resolved photoemission spectroscopy, which is ideal for RuCl3
with its layered structure. Occupied states below the Fermi
level should reflect a large gap as well as flat dispersion across
the Brillouin zone.
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model there is no analogue of Hall conductivity (because the number of fermions is not
conserved), but the Chern number determines the edge mode chirality and anyonic prop-
erties of vortices (cf. [48]).

The spectral Chern number is defined as follows. For each value of the momentum q we
consider the space eLðqÞ of annihilation operators, i.e., fermionic modes with negative ener-
gy; this is the subspace the matrix eP ðqÞ projects onto. Thus we obtain a complex vector
bundle over the momentum space. (In our case eLðqÞ is a one-dimensional subspace of
C2, so the bundle is one-dimensional.) The first Chern number of this bundle is denoted
by m and can be expressed as follows (cf. [44]):

m ¼ 1

2pi

Z
TrðeP deP ^ deP Þ ¼ 1

2pi

Z
Tr eP

oeP
oqx

oeP
oqy

$ oeP
oqy

oeP
oqx

 ! !

dqx dqy . ð54Þ

The Chern number is always an integer. If the spectral projector eP ðqÞ is given by Eqs. (52)
and (53), then

m ¼ 1

4p

Z
om
oqx

% om
oqy

;m

 !

dqxdqy ¼ sgnD ¼ &1. ð55Þ

We will use the notation Bm (where m = ±1) to designate phase B in the magnetic field. In
the Abelian phases Ax, Ay, Az the Chern number is zero.

9. Edge modes and thermal transport

Remarkably, any system with nonzero Chern number possesses gapless edge modes.
Such modes were first discovered in the integer quantum Hall effect [51]; they are chiral,
i.e., propagate only in one direction (see Fig. 8). In fact, left-moving and right-moving
modes may coexist, but the following relation holds [52]:

medge ¼
def

# of left-movers$# of right-moversð Þ ¼ m. ð56Þ

In the absence of special symmetry, counterpropagating modes usually cancel each other,
so the surviving modes have the same chirality. A calculation of the edge spectrum in phas-
es Bm (for some specific boundary conditions) and a simple proof of Eq. (56) are given in
Appendix B. More rigorous and general results, which even apply to disordered systems,
can be found in [53,54].

A B

Fig. 8. Chiral edge modes: left-moving (A) and right-moving (B).
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It is important to note that the analogy to the quantum Hall effect is not exact. In our
model (like in two-dimensional superfluid and superconducting systems [55,48]) edge
modes are described by real fermions, as contrasted to complex fermions in the quantum
Hall effect. Therefore, each quantum Hall mode is equivalent to two modes in our system.

Chiral edge modes can carry energy, leading to potentially measurable thermal trans-
port. (The temperature T is assumed to be much smaller than the energy gap in the bulk,
so that the effect of bulk excitations is negligible.) For quantum Hall systems, this phe-
nomenon was discussed in [56,57]. The energy current along the edge in the left (counter-
clockwise) direction is given by the following formula:

I ¼ p
12

c"T 2; ð57Þ

where c" is some real number. (The factor p/12 is introduced to make a connection to con-
formal field theory, see below.) It is remarkable that c" does not depend on particular con-
ditions at the edge, but rather on the bulk state. Indeed, the energy current is conserved,
therefore it remains constant even if some conditions change along the edge. The effect is
invariant with respect to time rescaling. Since the energy current has dimension (time)"2, it
must be proportional to T2. But the value of the dimensionless proportionality coefficient
cannot be found using such simple arguments.

There are two standard ways to calculate the coefficient c". They both rely on certain
assumptions but can be applied to our model, yielding this result:

c" ¼ m
2
. ð58Þ

The first argument [58] (adapted to real fermions) assumes translational invariance and the
absence of interaction. Each edge mode is described by a free fermion with an energy spec-
trum e (q) such that e ("q) = "e (q) and e (q)fi ±1 as qfi ±1. The signs in the last two
expressions agree if the mode propagates in the direction of positive q (for simplicity we
may assume that e (q) > 0 when q is positive and e (q) < 0 when q is negative). Thus the
Hamiltonian has the form

H ¼ 1

2

X

q

eðqÞa"qaq ¼
X

q:eðqÞ>0

eðqÞa"qaq.

If e (q) > 0, then aq is an annihilation operator and a"q ¼ ayq is the corresponding creation
operator. The mode propagates with group velocity v (q) = de/dq, and the occupation
number n (q) is given by the Fermi distribution. The energy flow due to each mode prop-
agating in the positive direction can be calculated as follows:

I1 ¼
Z

eðqÞ>0

nðqÞeðqÞvðqÞ dq
2p

¼
Z

eðqÞ>0

eðqÞ
1 þ eeðqÞ=T

de
dq

dq
2p

¼ 1

2p

Z 1

0

ede
1 þ ee=T

¼ p
24

T 2.

Each mode propagating in the opposite direction contributes "I1, therefore I ¼ p
24 mT

2.
The second derivation [57] is based on the assumption that the edge modes can be

described by a conformal field theory (CFT). In this case,

c" ¼ c" !c; ð59Þ
where c and !c are the Virasoro central charges. Thus, c" is called the chiral central charge.
Left-moving fermions have ðc;!cÞ ¼ 1

2 ; 0
! "

whereas right-moving fermions have
ðc;!cÞ ¼ 0; 12

! "
, which implies Eq. (58). More generally, c and !c are some rational numbers,
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Thermal Transport:  2

FIG. 1. Chiral Majorana edge currents and
temperature-magnetic field phase diagram of α-
RuCl3. a,b, Schematic illustrations of heat conductions in
the integer quantum Hall state of 2D electron gas (a) and
Kitaev QSL state (b) in magnetic field applied perpendicular
to the planes (gray arrows). In the red (blue) regime, the
temperature is higher (lower). The red and blue arrows rep-
resent thermal flow. In the quantum Hall state, the skipping
orbits of electrons (green spheres) at the edge, which form 1D
edge channels, conduct heat and κxy is negative in sign. In
the Kitaev QSL state, spins are fractionalized into Majorana
fermions (yellow spheres) and Z2 fluxes (black hexagons). The
heat is carried by chiral edge currents of charge neutral Ma-
jorana fermions and κxy is positive in sign. c, Phase diagram
of α-RuCl3 in tilted field of θ = 60◦. Open and closed dia-
monds represent the onset temperature of AFM order with
zigzag type TN determined by T - and H-dependences of κxx,
respectively. Below T ∼ JK/kB , the spin liquid (Kitaev para-
magnetic) state appears. At µ0H

∗
∥ ∼ 7T, TN vanishes (blue

arrow). A half-integer quantized plateau of 2D thermal Hall
conductance is observed in the red regime. Open blue squares
represent the fields at which the thermal Hall response dis-
appears. Red circle indicates a topological phase transition
point that separates the non-trivial QSL state with topolog-
ically protected chiral Majorana edge currents and a trivial
state, such as non-topological spin liquid or forced ferromag-
netic state.

netic (AFM) order with zigzag spin structure (Fig. 1c) at
TN ≈ 7K [22] due to non-Kitaev interactions, such as
Heisenberg exchange and off-diagonal interactions. Al-
though the thermal Hall conductance has been measured
in α-RuCl3, the quantization is not observed because the
low temperature properties of the liquid state is masked
by the AFM order [23].
The response of α-RuCl3 to magnetic fields is highly

anisotropic [8, 11, 12, 24, 25]. It has been reported that
while TN is little influenced by external magnetic field
perpendicular to the 2D plane, TN is dramatically sup-
pressed by the parallel field. This highly anisotropic re-
sponse is confirmed by the measurements of longitudinal
thermal conductivity κxx in magnetic field H applied
along various directions in the ac plane as shown in the
inset of Fig. 2a, where H∥ = H sin θ and H⊥ = H cos θ
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FIG. 2. Longitudinal thermal conductivity in α-
RuCl3. a, Temperature dependence of κxx in magnetic field
H applied along various directions in the ac plane. Inset il-
lustrates a schematic of the measurement setup for κxx and
κxy. b, κxx at θ=60◦ plotted as a function of parallel field
component H∥. Inset shows TN vs. H∥ at different field direc-
tions. TN is determined by the T -dependence of κxx shown
in Fig. 2a (open symbols) and by the minimum in the H-
dependence of κxx (filled symbols) shown by arrows in the
main panel. The crosses are TN for θ = 90◦ determined from
magnetic susceptibility measurements [27].

are the field component parallel and perpendicular to the
a axis, respectively, and θ is the angle between H and
the c axis. In zero field, κxx exhibits a distinct kink at
TN , as shown in Fig. 2a. While this kink is observed in
perpendicular field (θ = 0◦) of 12T at the same tem-
perature, no kink anomaly is observed in parallel field
(θ = 90◦) of 7T [11, 12]. In Fig. 2a, we also plot κxx

in applied magnetic field of 8T tilted away from the c
axis (θ = 60◦, H∥ ∼ 7T). Similar to the case of parallel
field, no kink anomaly is observed. Figure 1b displays
the phase diagram in tilted field of θ = 60◦, where TN is
plotted as a function of H∥. We determined TN by the
kink of T -dependence of κxx and by the minimum in the
H-dependence of κxx (see Fig. 2b and Extended Data
Figs. 1 and 2). The inset of Fig. 2b shows TN plotted as
a function of H∥ for θ = 45◦, 60◦ and 90◦. While TN for
θ = 60◦ well coincides with that for 90◦ and vanishes at
the same critical field of H∗

∥ ≈ 7T, TN for 45◦ vanishes
at around H∥ ≈ 6T. Although TN is not perfectly scaled
by H∥, these results demonstrate the quasi-2D nature of
the magnetic properties.
Above H∗

∥ where the AFM order melts, the presence
of a peculiar spin liquid state has been suggested by the
nuclear magnetic resonance (NMR) and neutron scatter-
ing measurements. The former reports the presence of
spin gap [26] and the latter reveals unusual continuous
spin excitations [27]. These magnetic properties are con-
sistent with those expected in a Kitaev-type spin liquid
state.
To study the thermal Hall effect in the spin liquid state

above H∗
∥ , κxy is measured by sweeping field in tilted di-

rections and obtained by anti-symmetrizing thermal re-
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FIG. 4. Temperature dependence of the thermal Hall
conductance. The main panel shows κxy/T in tilted fields
of θ = 45◦ and 60◦ at µ0H⊥ =7T and 4.6 T, respectively,
at which quantized thermal Hall conductance plateau is ob-
served at low temperatures. The right scale is the 2D ther-
mal Hall conductance κ2D

xy /T in units of (π/6)(k2
B/!). Violet

dashed line represents the half-integer thermal Hall conduc-
tance, κ2D

xy /[T (π/6)(k
2
B/!)] = 1/2. Inset shows the same data

in a wider temperature regime.

that predicted in the Kitaev QSL [1]. In pure Kitaev
model, the excitation energy of Z2 flux is estimated to be
∆F /kB ∼ 0.06JK/kB ∼ 5.5K [7]. Experimentally NMR
reports the magnetic excitation gap of ∼10K, which is
closely related to the flux gap [12, 26]. The recent nu-
merical results of the thermal Hall conductance for the
2D pure Kitaev model calculated by the quantum Monte
Carlo method show the quantization occurs slightly be-
low ∆F /kB [16]. Therefore, the thermal Hall quantiza-
tion which preserves up to ∼ 5K is consistent with the
excitation gap.

In the plateau regime of κxy, no anomaly is observed
in κxx. This is likely because phonon contributions
largely dominate over the fermionic excitations arising
from spins in κxx in the whole T -range [32, 33]. More-
over, due to the strong spin-phonon coupling in α-RuCl3
[11], the phonon conductivity is expected to show a com-
plicated H-dependence. The fact that κxy vanishes at
the highest fields as shown in Figs. 3a-c provides direct
evidence that the thermal Hall effect is not influenced by
phonons, demonstrating that κxy is a unique and power-
ful probe in the search for Majorana quantization.

We stress that the half-integer thermal Hall conduc-
tance in a bulk material is a direct consequence of the
chiral Majorana edge current. Recent experiments based
on the proximity effect between a quantum anomalous
Hall insulator and a conventional superconductor have
reported a signature of chiral Majorana edge modes [21].
However, this is based on the observation of half-integer
quantization of the longitudinal electrical conductance
via the scattering matrix effect between the edge states
of the insulator and superconductor. Moreover, Majo-

rana fermions in the Kitaev magnets and topological su-
perconductors have essentially different aspects. In the
former, strong correlations give rise to the emergent Ma-
jorana fermions, while in the latter they do not play a
role. In addition, Majorana fermions exist inside the bulk
of a sample in the Kitaev QSL state, in sharp contrast to
topological superconductors where they appear only at
the edges. The distinct nature is presumably supported
by the fact that the quantum plateau disappears below
∼ 400mK in the topological superconductor device [21],
whereas it is preserved up to ∼ 5K in α-RuCl3.
The numerical results of the thermal Hall effect for

the 2D pure Kitaev model show that κ2D
xy /T does not ex-

ceed the half-quantized value at any temperature in the
weak field regime. The calculation shows that κ2D

xy /T is
reduced from the quantized value as the temperature is
raised [16], which is an opposite tendency to the experi-
mental results shown in Fig. 4 and its inset. Moreover the
enhancement of κ2D

xy /T with H from the half-quantized
value at around µ0H⊥=4.9T (Figs. 3b and c) is not repro-
duced by the numerical calculation based on the pertur-
bation theory. These discrepancies may be attributed to
high-field effects and/or non-Kitaev interactions, which
deserves further study.
The nearly vanishing of κ2D

xy /T after the rapid suppres-
sion in the high-field regime (Figs. 3a, b and c) demon-
strates the disappearance of chiral Majorana edge cur-
rents. As shown by the open blue square in Fig. 1b, the
temperature at which κ2D

xy /T vanishes decreases rapidly
with decreasing µ0H∥. This suggests a topological quan-
tum phase transition from the non-trivial QSL to trivial
high-field state, where the thermal Hall effect is absent,
at µ0H∥ ∼ 8.5T as shown bt the red circle in Fig. 1c [34].
The high-field state is likely to be attributed to a non-
topological spin liquid phase or a forced ferromagnetic
state where the system is nearly fully polarized. The
observation of half-integer thermal Hall conductance re-
veals that topologically protected chiral Majorana edge
currents persist in α-RuCl3, even in the presence of non-
Kitaev interactions and parallel field. The observation
opens a possibility to link to non-Abelian anyons impor-
tant for the topological quantum computing, revealing
novel aspects of strongly correlated topological quantum
matters.
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Exciting: To be continued
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Spin-S Kitaev?

Quantum spin liquid?
Majorana fermion vs. boson excitations?
half-integer vs. integer S Kiteav?

G. Baskaran, D. Sen, R. Shankar, PRB 78, 115116 (2008)

For arbitrary S, 

Wp = ei⇡(S
y
1+Sz

2+Sx
3+Sy

4+Sz
5+Sx

6 )
<latexit sha1_base64="gPB8nGyZilabQCcF2kTCJb9SIlY="></latexit><latexit sha1_base64="gPB8nGyZilabQCcF2kTCJb9SIlY="></latexit><latexit sha1_base64="gPB8nGyZilabQCcF2kTCJb9SIlY="></latexit>

ultra-short range correlations



Spin S=1 Kitaev model in the literature.

[1] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78, 115116 (2008).
[2] A. Koga, H. Tomishige, and J. Nasu, Journal of the Physical Society of Japan 87, 063703 (2018).
[3] J. Oitmaa, A. Koga, and R. R. P. Singh, Phys. Rev. B 98, 214404 (2018).

S=1 Kitaev model:
Plaquette operators that commute with the Hamiltonian [1]

May be a gapless spin liquid [2]

Has incipient entropy plateau [2,3]

How do we get S=1 Kitaev interaction?
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Derivation of Kitaev interaction for S=1 

Appendix D. Strong-coupling expansions 126

|L,MLi basis

|1,+1i = |zxi + i |yzip
2

(D.11a)

|1, 0i = i |xyi (D.11b)

|1,�1i = |zxi � i |yzip
2

(D.11c)

where we have chosen the phases so that under time-reversal |L,MLi ! (�1)L+ML |L,�MLi.
The six ground states are then simply of the form |1, 1, 1/2; ML,MS i = |+1,MLi |MS i where
ML = 0,±1 and MS = ±1/2 (or " and #). As discussed in the overview, we only consider the
je↵ = 1/2 doublet states

���+1
2

E
=

r
1
3

(|yzi |#i + i |zxi |#i + |xyi |"i)

=

r
2
3
|1,+1i |#i � i

r
1
3
|1, 0i |"i (D.12a)

����1
2

E
=

r
1
3

(|yzi |"i � i |zxi |"i � |xyi |#i)

=

r
2
3
|1,�1i |"i + i

r
1
3
|1, 0i |#i (D.12b)

The other non-trivial states we need to construct are those of the N = 2 manifold. These are
simple to construct using standard Clebsch-Gordon tables. We adopt an abbreviated notation,
factoring out the spin and orbital parts and writing the two electron states as |1,M1i |1,M2i ⌘
|M1,M2i and similarly for spin. The two spin states are broken into a singlet and three triplets,
and will be denoted as

|si = |"#i � |#"ip
2

|t+i = |""i |t0i =
|"#i + |#"ip

2
|t�i = |##i (D.13)

The L = 0, S = 0 case is the simplest, with only a single state

|2, 0, 0; 0, 0i = 1p
3

(|+1,�1i � |0, 0i + |�1,+1i) |si (D.14a)

TR

Jeff  = 1/2 basis

S=1; d2 or d8 with Hund’s coupling 

: no mixture of spin and orbitals?

mixture of t2g orbitals and different spins



> Hund’s coupling   >> SOC

  

Modelling d8 systems: on-site Hamiltonian   

Crystal field splitting

Higher spin model derivation

ex: spin one (d8)

  

Modelling d8 systems: on-site Hamiltonian   

Hund’s

coupling
Spin S=1 states

M

A

A A

A

A A

Fully occupied p orbitals

Site A anions have large spin-
orbit coupling with valence p 
orbitals.

Site M has valence e
g
 orbitals. 

On-site e-e interaction:
Kanamori Hamiltonian 
on A and M site

CFSM

No mixture of different spins

P. Peter Stavropoulos, D. Peira, HYK PRL (2019)



  

Modelling d8 systems: on-site Hamiltonian   

A

A A

A

A A

Site A anions have large spin-
orbit coupling with valence p 
orbitals.

Heavy Anions

  

Modelling d8 systems: on-site Hamiltonian   

A

A A

A

A A

Site A anions have large spin-
orbit coupling with valence p 
orbitals.

M



  

Modelling d8 systems: on-site Hamiltonian   

Hund’s

coupling
Spin S=1 states

M

A

A A

A

A A

Fully occupied p orbitals

Site A anions have large spin-
orbit coupling with valence p 
orbitals.

Site M has valence e
g
 orbitals. 

On-site e-e interaction:
Kanamori Hamiltonian 
on A and M site

CFS

on-site H0 = Kanamori (U, U’, Hund’s) + SOC



Hopping between two M sites via heavy A sites

  

Modelling d8 systems: kinetic term   

Indirect hopping from M site to A sites.

  

Modelling d8 systems: kinetic term   

Indirect hopping from M site to A sites.

Hopping integrals 
M to A sites:

  

Modelling d8 systems: kinetic term   

Indirect hopping from M site to A sites.

Hopping integrals 
M to A sites:

  

Modelling d8 systems: kinetic term   

Indirect hopping from M site to A sites.

Hopping integrals 
M to A sites:

  

Modelling d8 systems: kinetic term   

Cubic symmetry: 

Indirect hopping from M site to A sites.

Hopping integrals 
M to A sites:

Cubic symmetry:



Perturbation theory

  

Keep track of the perturbation...H0
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: on-site interaction  



keep up to 4th order

  

Effective Hamiltonian: The perturbing processes

SOC       creating imbalanced paths

A site one hole processes

P. Peter Stavropoulos, D. Peira, HYK PRL (2019)



  

Effective Hamiltonian: Result

Superexchange paths using cubic symmetry and in the limit

Mott

limit

Where                             effective hopping between the M and M site via A sites

When                        and         dominant:

Antiferromagnetic Kitaev!

Indirect

H
�
ij = KS

�
kS

�
j + JSi · Sj

<latexit sha1_base64="2aOqVAT5tz999UU4tMx9DT6iF/A="></latexit><latexit sha1_base64="2aOqVAT5tz999UU4tMx9DT6iF/A="></latexit><latexit sha1_base64="2aOqVAT5tz999UU4tMx9DT6iF/A="></latexit>

J = �|Jind|+ Jd
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Hamiltonian

AF Kitaev

Direct Jd = 4t2/U
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� = 0
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: up to 4th order



ED calculation: S=1 KJ model

  

Probing the S=1 KH model with Exact Diagonalization

  

Probing the S=1 KH model with Exact Diagonalization

12 & 18 sites

  

Probing the S=1 KH model with Exact Diagonalization



Candidate Materials
van der Waals Materials

NiI2 (S=1 triangle) 

CrI3 (S=3/2 honeycomb)

Transition metal oxides

  

Proposed material candidate: Transitional metal (M) oxides

(A=Li, Na,  X=Bi, Sb)A
3
M

2
XO

6

Requirments for the mechanisim:
  ✓ d8 system. Spin 1 on M sites

  ✓ Edge shared octahedral.

    

  

Proposed material candidate: Transitional metal (M) oxides

(A=Li, Na,  X=Bi, Sb)A
3
M

2
XO

6

Requirments for the mechanisim:
  ✓ d8 system. Spin 1 on M sites

  ✓ Edge shared octahedral.

    

  

Proposed material candidate: Transitional metal (M) oxides

Note the half entropy measurements [5],
reminiscent of the entropy plateaus in recent
Kitaev S=1 thermodynamic studies.

[5] E. A. Zvereva, et. al., Phys. Rev. B 92, 144401 (2015).
[6] A. I. Kurbakov, et. al, Phys. Rev. B 96, 024417 (2017).

Li
3
Ni

2
SbO

6
 and Na

3
Ni

2
SbO

6  
have zigzag order at low

temperatures below T
N
 =15K [5,6]

E.A.Zvereva, et al, PRB 92, 144401(2015); 
A. I. Kurbakov, et al, PRB 96, 024417 (2017)

requires further studies



Field-driven U(1) spin liquid:  
transition from Kitaev to U(1) spin liquid  

near AF Kitaev region
C.  Hickey, S. Trebst, Nat. Comm. 10, 530 (2019); 

OSU (Y.-M. Lu, N. Trivedi), PI (Y. He), & many others2

discuss aspects of the underlying field theory governing this
phase transition at the end of the manuscript.

Finally, it should be noted that the occurrence of two stable
spin liquid regimes in the Kitaev model exposed to a (tilted)
magnetic field is closely linked to whether the applied field
matches the underlying antiferromagnetic (AFM) or ferro-
magnetic (FM) spin correlations, with an order of magnitude
difference in the critical fields between the two cases. Only
for AFM Kitaev couplings and a uniform magnetic field, do
we observe the two spin liquids discussed above. For FM
Kitaev couplings the gapped Kitaev spin liquid is found to be
considerably less stable than in the AFM case, consistent with
a number of recent numerical studies [30–32] (with [31] also
the first to report the existence of an intermediate phase for
an AFM coupling). Notably, this situation can be reversed by
staggering the magnetic field, which dramatically increases
the stability of the FM Kitaev phase, while the AFM spin
liquid then covers a significantly smaller parameter space.
To round off our discussion, we demonstrate the stability of
the emergent gapless spin liquid when perturbing the Kitaev
model with a conventional Heisenberg interaction or an
off-diagonal �-exchange, which constitute further ingredients
of the microscopic description of Kitaev materials [17].

Model – We start our discussion by considering the pure Ki-
taev honeycomb model in the presence of a uniform magnetic
field of arbitrary orientation, defined by the Hamiltonian

H± = ±K

X

hi,ji2�

S
�
i S

�
j �

X

i

h · Si , (1)

where H± indicates an AFM/FM Kitaev coupling and
the bond directions are denoted by � 2 {x, y, z}. We
parametrize the orientation of the magnetic field as
h = h sin ✓ ĥ111 + h cos ✓ ĥ?, where the unit vectors
ĥ111 and ĥ? point along the [111] and either [112̄] or [1̄10]
directions. For materials such as (Na,Li)2IrO3 and RuCl3
these directions correspond to the out-of plane, c-axis, and
in-plane, a or b-axes, respectively. The angle ✓ thus measures
the tilt away from the honeycomb planes.

Phase diagrams – The phase diagram of the model for var-
ious tilt angles of a uniform external magnetic field is pre-
sented in Fig. 1 for both the AFM and FM Kitaev cases. The
phase boundaries, presented in this Figure, are based on a
number of different signatures, including the second deriva-
tive of the ground state energy and the ground state fidelity
(see Methods for more details). There are certain limits which
have previously been discussed:
(i) h = 0. In the case of zero magnetic field the Kitaev Hamil-
tonian is exactly solvable [6]. Following Kitaev’s original so-
lution, each spin-1/2 can be split into four Majorana fermions,
three are associated with the adjacent bonds and one with the
original site. The bond Majoranas can be recombined to form
a static Z2 gauge field, leaving us with a single free Majorana
fermion moving in a background field. Its spectrum is gapless,
with Dirac points located at the corners of the Brillouin zone,
while the vison excitations of the gauge field remain gapped
[6, 9]. The net result is a gapless Z2 spin liquid.

(a) AFM-K (b) FM-K
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FIG. 1. Phase diagrams in a uniform magnetic field. (a) The pure
AFM Kitaev model and (b) the pure FM Kitaev model for various
tilt angles. For AFM couplings the gapped Kitaev spin liquid (KSL)
is surrounded, for a wide range of tilt angles, by a gapless spin liq-
uid (GSL) before giving way to a trivial polarized state (PL). For
FM couplings, in contrast, the KSL is found to cover a considerably
smaller parameter region with no intermediate GSL (see Supplemen-
tary Note 1 for a zoomed-in view of the FM phase diagram). The two
(purple) points in (a) mark the parameters at which the dynamical
structure factor in Fig. 4(b) and (c) is plotted.

(ii) h k [111], h ⌧ K. In the presence of a magnetic field
along the [111] direction, Kitaev showed, using perturbation
theory, that a small field opens up a gap in the Majorana spec-
trum. Furthermore, the resulting Majorana insulator has a
non-trivial band structure, with a Chern number C = +1 for
the lower, fully filled band. This corresponds to a gapped non-
Abelian spin liquid with Ising anyon topological order, which
we will refer to as the Kitaev spin liquid (KSL). The gapped
flux excitations (visons) now bind a Majorana fermion and
there is a single chiral gapless Majorana edge mode, which
gives rise to a quantized thermal quantum Hall effect. Our
numerical data confirms that this scenario remains true away
from the perturbative limit, for generic field directions, and
applies to both the AFM and FM cases. Technically, we do
so by calculating [33] the modular S-matrix from the three
(quasi-)degenerate ground states in the KSL phase for vari-
ous parameters of Fig. 1. The entries Sab encode the braiding
properties of quasiparticles a and b in the underlying TQFT
(fixing the entries to certain universal values) and thereby al-
low for its unambiguous identification. Numerically, we find,
e.g., the following S-matrix

SED =

0

@
0.46 0.74 0.47
0.71 0.04e

�0.91i �0.70
0.49 �0.67e

0.02i 0.58e
�0.13i

1

A , (2)

computed for a [111] field of magnitude h ⇠ h
crit
KSL/2. For the

Ising TQFT the expected S-matrix has corner entries +1/2, a
middle entry of zero, and the remaining four entries ±1/

p
2.

We see that, even for the N = 24 site cluster at hand, we are
able to numerically resolve this structure, confirming that the
KSL is indeed a non-Abelian quantum spin liquid described
by an Ising TQFT.
(iii) h � K. For sufficiently large magnetic field the system
will clearly become polarized along the axis of the external
field. In this polarized phase (PL) the ground state is a trivial
product state and the lowest energy excitations are conven-
tional magnon modes.

fascinating result; S=1 AF Kitaev?
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FIG. 4. Dynamical spin structure factor. (a) The zero-field KSL, (b)
a point midway in the KSL phase and (c) a point in the middle of the
GSL along a path through all high-symmetry points of the extended
Brillouin zone as illustrated in (e). In (d) the intensity at the �

0 point
is shown as a function of increasing field along the cut ✓ = 82.5�,
the upper of the two dashed red lines in Fig. 1(a).

magnetization) significantly changing as the transition from
the KSL to the intermediate phase is crossed. The flat, rather
featureless structure factor of the intermediate phase is indica-
tive of a quantum spin liquid phase. We also show the flux of
the Z2 gauge field through the plaquettes of the honeycomb
lattice, hW iP =

⌦
S

x
i S

y
j S

z
kS

x
l S

y
mS

z
n

↵
, in Figs. 3(e), (f). This

quantity does not show visible signatures of the transitions.
The flux hW iP ⇡ 1 in the KSL phase and hW iP ⇡ 0 in the
PL phase. In the intermediate phase it takes a range of inter-
mediate values, interpolating between these two limits. This
indicates that the plaquette flux is heavily fluctuating in the in-
termediate phase. Taken together, all of these results are con-
sistent with a gapless, disordered state, allowing us to identify
the intermediate phase as a gapless spin liquid (GSL).

This immediately raises the question about the origin and
nature of the gapless degrees of freedom. To answer this ques-
tion it has proved particularly insightful to look at the the dy-
namical spin structure factor, which provides strong indica-
tions that it is the vison gap which closes at the transition to
the intermediate gapless phase. The dynamical spin structure
can be written in Lehmann representation as

S
↵↵ (Q, !) =

X

n

| hn|S↵
Q |0i |2� (! � (En � E0)) , (3)

where we note that the n = 0 contribution, which, for Q = �,
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FIG. 5. Specific heat as a function of temperature for increasing field.
Shown along the cut at ✓ = 82.5� (upper panel). The black circles
(and their widths) indicate the location (and heights) of the maxima.
The three lower panels show specific heat scans for the zero-field
KSL, the intermediate GSL at h = 0.475 (note that though it is not
shown here, the specific heat goes to zero as T ! 0), and the PL
state at h = 1.0, respectively. The light blue shading indicates the
standard deviation of the estimates.

is simply | hS↵
totali |2, the magnetization induced by the exter-

nal field, is not included in the following discussion. Further-
more, from now on, we will focus on the sum S (Q, !) =P

↵ S
↵↵ (Q, !). At zero field there is, despite the system be-

ing gapless in this limit, a distinct gap to physical spin exci-
tations as these involve the creation of gapped Z2 flux exci-
tations [35, 36]. This flux gap is clearly visible in Fig. 4(a),
with its uniformity across momenta reflecting the static nature
of the flux excitations. Note that the flux gap is absent at the �
point for the AFM Kitaev model due to the AFM correlations
of the ground state. Upon applying the magnetic field, this
uniform flux gap breaks apart and a significant portion of the
spin spectral weight is pushed to zero energy across the whole
Brillouin zone as illustrated in Fig. 4(b) for a point midway in
the KSL phase along the cut at ✓ = 82.5�. These states are
further pushed down in energy as the transition to the inter-
mediate phase is crossed, with Fig. 4(c) showing results for a
point in the middle of the intermediate phase. The overall spin
spectral weight of these low-energy states makes up a signif-
icant part (⇠ 40%) of the zero-field flux gap. This is strong
evidence that the transition from the KSL to the intermedi-
ate phase is thus marked by the closure of the flux gap (see
Supplementary Note 3 for further discussion of the flux gap
closure for the cut at ✓ = 7.5�). In the intermediate phase the
dynamical structure factor at higher energies remains feature-
less, with weight distributed across all energies. There are no
signatures of pseudo-Goldstone modes or any kind of conven-
tional magnon excitations. These features support the case for
a gapless quantum spin liquid arising from the closing of the
Z2 flux gap.
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FIG. 4. Dynamical spin structure factor. (a) The zero-field KSL, (b)
a point midway in the KSL phase and (c) a point in the middle of the
GSL along a path through all high-symmetry points of the extended
Brillouin zone as illustrated in (e). In (d) the intensity at the �

0 point
is shown as a function of increasing field along the cut ✓ = 82.5�,
the upper of the two dashed red lines in Fig. 1(a).

magnetization) significantly changing as the transition from
the KSL to the intermediate phase is crossed. The flat, rather
featureless structure factor of the intermediate phase is indica-
tive of a quantum spin liquid phase. We also show the flux of
the Z2 gauge field through the plaquettes of the honeycomb
lattice, hW iP =

⌦
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↵
, in Figs. 3(e), (f). This

quantity does not show visible signatures of the transitions.
The flux hW iP ⇡ 1 in the KSL phase and hW iP ⇡ 0 in the
PL phase. In the intermediate phase it takes a range of inter-
mediate values, interpolating between these two limits. This
indicates that the plaquette flux is heavily fluctuating in the in-
termediate phase. Taken together, all of these results are con-
sistent with a gapless, disordered state, allowing us to identify
the intermediate phase as a gapless spin liquid (GSL).

This immediately raises the question about the origin and
nature of the gapless degrees of freedom. To answer this ques-
tion it has proved particularly insightful to look at the the dy-
namical spin structure factor, which provides strong indica-
tions that it is the vison gap which closes at the transition to
the intermediate gapless phase. The dynamical spin structure
can be written in Lehmann representation as

S
↵↵ (Q, !) =

X

n

| hn|S↵
Q |0i |2� (! � (En � E0)) , (3)

where we note that the n = 0 contribution, which, for Q = �,
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FIG. 5. Specific heat as a function of temperature for increasing field.
Shown along the cut at ✓ = 82.5� (upper panel). The black circles
(and their widths) indicate the location (and heights) of the maxima.
The three lower panels show specific heat scans for the zero-field
KSL, the intermediate GSL at h = 0.475 (note that though it is not
shown here, the specific heat goes to zero as T ! 0), and the PL
state at h = 1.0, respectively. The light blue shading indicates the
standard deviation of the estimates.

is simply | hS↵
totali |2, the magnetization induced by the exter-

nal field, is not included in the following discussion. Further-
more, from now on, we will focus on the sum S (Q, !) =P

↵ S
↵↵ (Q, !). At zero field there is, despite the system be-

ing gapless in this limit, a distinct gap to physical spin exci-
tations as these involve the creation of gapped Z2 flux exci-
tations [35, 36]. This flux gap is clearly visible in Fig. 4(a),
with its uniformity across momenta reflecting the static nature
of the flux excitations. Note that the flux gap is absent at the �
point for the AFM Kitaev model due to the AFM correlations
of the ground state. Upon applying the magnetic field, this
uniform flux gap breaks apart and a significant portion of the
spin spectral weight is pushed to zero energy across the whole
Brillouin zone as illustrated in Fig. 4(b) for a point midway in
the KSL phase along the cut at ✓ = 82.5�. These states are
further pushed down in energy as the transition to the inter-
mediate phase is crossed, with Fig. 4(c) showing results for a
point in the middle of the intermediate phase. The overall spin
spectral weight of these low-energy states makes up a signif-
icant part (⇠ 40%) of the zero-field flux gap. This is strong
evidence that the transition from the KSL to the intermedi-
ate phase is thus marked by the closure of the flux gap (see
Supplementary Note 3 for further discussion of the flux gap
closure for the cut at ✓ = 7.5�). In the intermediate phase the
dynamical structure factor at higher energies remains feature-
less, with weight distributed across all energies. There are no
signatures of pseudo-Goldstone modes or any kind of conven-
tional magnon excitations. These features support the case for
a gapless quantum spin liquid arising from the closing of the
Z2 flux gap.

S=1 S=1/2
C.  Hickey, S. Trebst, Nat. Comm. 10, 530 (2019)
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Summary

  Higher spin Kitaev materials: 3d with strong Hund’s coupling 
+ heavy anions with strong SOC

Open questions

S=1 
fractional excitations in low field & intermediate field?

AF Kitaev: gapless intermediate states under field


