Topological solitons and slow light Mikael C. Rechtsman, Penn State

#### KITP, October 2019



# My group



Jiho Noh



Jonathan Guglielmon



Sachin Vaidya





Kanchita Klangboonkrong



Dr. Alex Cerjan



Dr. Wladimir Benalcazar



Dr. Sebabrata Mukherjee

... and Marius Juergensen

# My group







Kanchita Klangboonkrong

... and Marius Juergensen

# My group







Dr. Sebabrata Mukherjee



Kanchita Klangboonkrong

... and Marius Juergensen

- (0) Short background on topological photonics
- (1) Observation of topological solitons
- (2) Topological slow light

#### Laser-written waveguide arrays



$$\nabla \times \nabla \times E = \epsilon \left(\frac{\omega}{c}\right)^2 E \quad \longrightarrow \quad i\partial_z \psi = H\psi$$



- Background material: Photonic topological insulator (PTI) realized in laser written waveguide arrays: Rechtsman et al., Nature 496, 196 (2013).
- Light propagates unidirectionally around structure without scattering due to any form of defect/disorder as long as the bulk gap stays open.



- Background material: Photonic topological insulator (PTI) realized in laser written waveguide arrays: Rechtsman et al., Nature 496, 196 (2013).
- Light propagates unidirectionally around structure without scattering due to any form of defect/disorder as long as the bulk gap stays open.



- Background material: Photonic topological insulator (PTI) realized in laser written waveguide arrays: Rechtsman et al., Nature 496, 196 (2013).
- Light propagates unidirectionally around structure without scattering due to any form of defect/disorder as long as the bulk gap stays open.





























Guglielmon et al., Phys. Rev. A 97, 031801 (2018)



Guglielmon et al., Phys. Rev. A 97, 031801 (2018)



Guglielmon et al., Phys. Rev. A 97, 031801 (2018)



Guglielmon et al., Phys. Rev. A 97, 031801 (2018)

What about interactions?

$$i\partial_z \psi = H\psi - |\psi|^2 \psi$$

# Gross-Pitaevskii equation on a topological lattice (mean-field limit of Bose-Hubbard with attractive interactions)

a.k.a.

Topological nonlinear optics

## Part 1: Observation of topological solitons S. Mukherjee, M. C. Rechtsman, in preparation

### What are solitons?



- Solitons are self-sustaining waves that balance spreading and nonlinearity.
- Fundamental "basis" for many nonlinear differential equations.
- Ubiquitous in wave physics: optics; ultracold bosons; polymer chains; MEMS/NEMS; Josephson junctions; plasmas; water waves; etc.
- Applications in optics: passive mode locking in lasers; on-chip frequency combs; telecommunications(?).

Original prediction for topological systems: Lumer et al., Phys. Rev. Lett. (2013).

#### Lattice: anomalous Floquet topological insulator



#### Lattice: anomalous Floquet topological insulator



Lattice model inspired by: Rudner et al., Phys. Rev. X 3, 031005 (2013); Solitons discussed in this model: Leykam and Chong, Phys. Rev. Lett. (2016)

#### Experimental sanity checks



#### Conclusion: our system is governed by the standard NLS / GP

#### Experimental sanity check: square lattice



#### Experimental sanity check: square lattice



#### Experimental sanity check: square lattice



#### Theory: Floquet soliton resides in the topological gap



Solitons start large, shrink at mid-gap and then expand

#### Theory: Floquet soliton resides in the topological gap

![](_page_35_Figure_1.jpeg)

Solitons start large, shrink at mid-gap and then expand

#### Theory: soliton is most localized at mid-gap

![](_page_36_Figure_1.jpeg)

#### Theory: soliton is most localized at mid-gap

![](_page_37_Figure_1.jpeg)

#### Experimental results: end of full period

![](_page_38_Figure_1.jpeg)

#### Experimental results: end of full period

![](_page_39_Figure_1.jpeg)

#### Experimental results: end of full period

![](_page_40_Figure_1.jpeg)

#### Experimental results: mid-period

![](_page_41_Figure_1.jpeg)

### Experimental results: mid-period

![](_page_42_Figure_1.jpeg)

### Experimental results: mid-period

![](_page_43_Figure_1.jpeg)

#### Part 2: Topological slow light

J. Guglielmon and M. C. Rechtsman, Phys. Rev. Lett. 122, 153904 (2019).

![](_page_45_Picture_1.jpeg)

Vlasov, Yurii A. et al., Nature 438, 7064 (2005).

![](_page_45_Figure_3.jpeg)

M. Notomi et al. (2001); T. Baba (2008)

![](_page_46_Picture_1.jpeg)

Vlasov, Yurii A. et al., Nature 438, 7064 (2005).

![](_page_46_Figure_3.jpeg)

M. Notomi et al. (2001); T. Baba (2008)

![](_page_47_Picture_1.jpeg)

Vlasov, Yurii A. et al., Nature 438, 7064 (2005).

![](_page_47_Figure_3.jpeg)

Obstacles:

- In-coupling
- Bandwidth
- Backscattering

![](_page_48_Figure_1.jpeg)

M. Notomi et al. (2001); T. Baba (2008)

#### Obvious ideas

![](_page_49_Figure_1.jpeg)

Note that both methods sacrifice bandwidth

#### Obvious ideas

![](_page_50_Figure_1.jpeg)

Note that both methods sacrifice bandwidth

#### Obvious ideas

![](_page_51_Figure_1.jpeg)

Note that both methods sacrifice bandwidth

Increase winding

![](_page_52_Figure_1.jpeg)

# Increase winding

Topology forces edge mode to fully cross the gap

![](_page_53_Picture_2.jpeg)

#### Increased winding around BZ

Periodic Brillouin Zone

![](_page_53_Figure_4.jpeg)

J. Guglielmon and M. C. Rechtsman. Phys. Rev. Lett. 122, 153904 (2019).

How do we do it?

![](_page_54_Picture_1.jpeg)

How do we do it?

![](_page_55_Picture_1.jpeg)

How do we do it?

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

#### Engineering the edge...

![](_page_57_Figure_1.jpeg)

J. Guglielmon and M. C. Rechtsman. Phys. Rev. Lett. 122, 153904 (2019).

#### Engineering the edge...

![](_page_58_Figure_1.jpeg)

J. Guglielmon and M. C. Rechtsman. Phys. Rev. Lett. 122, 153904 (2019).

Where do the new edge states come from?

$$H_{\lambda}(k_x) = (1 - \lambda)H_0(k_x) + \lambda H_1(k_x)$$

![](_page_59_Figure_2.jpeg)

Initial band structure

![](_page_59_Figure_4.jpeg)

![](_page_59_Figure_5.jpeg)

... this defines an invariant

Where do the new edge states come from?

$$H_{\lambda}(k_x) = (1 - \lambda)H_0(k_x) + \lambda H_1(k_x)$$

![](_page_60_Figure_2.jpeg)

Initial band structure

![](_page_60_Figure_4.jpeg)

![](_page_60_Figure_5.jpeg)

... this defines an invariant

#### Confinement of slow light edge modes

![](_page_61_Figure_1.jpeg)

#### Robust slow light

These slow chiral edge states resist the severe backscattering associated with a reduced group velocity:

![](_page_62_Figure_2.jpeg)

#### Robust slow light

These slow chiral edge states resist the severe backscattering associated with a reduced group velocity:

![](_page_63_Figure_2.jpeg)

#### Brief summary of some other recent results...

![](_page_64_Figure_1.jpeg)

Cerjan et al., Phys. Rev. Lett. 123, 023902 (2019)

![](_page_64_Figure_3.jpeg)

Noh et al., Nature Photonics 12, 408 (2018)

Noh et al., Nature Physics 13, 611 (2017)

![](_page_64_Figure_6.jpeg)

#### Brief summary of some other recent results...

![](_page_65_Figure_1.jpeg)

Cerjan et al., Phys. Rev. Lett. 123, 023902 (2019)

![](_page_65_Figure_3.jpeg)

Noh et al., Nature Photonics 12, 408 (2018)

![](_page_65_Figure_5.jpeg)

Noh et al., Nature Physics 13, 611 (2017)

![](_page_65_Figure_7.jpeg)

Zilberberg et al., Nature 553, 59 (2018)

# The group

Jiho Noh

![](_page_66_Picture_3.jpeg)

Jonathan Guglielmon

![](_page_66_Picture_5.jpeg)

Dr. Alex Cerjan

![](_page_66_Picture_7.jpeg)

Dr. Wladimir Benalcazar

![](_page_66_Picture_9.jpeg)

Sachin Vaidya

![](_page_66_Picture_11.jpeg)

Dr. Sebabrata Mukherjee

![](_page_66_Picture_13.jpeg)

Maria Barsukova

![](_page_66_Picture_15.jpeg)

Kanchita Klangboonkrong

![](_page_66_Picture_17.jpeg)

A SUPPORTING ORGANIZATION OF THE PITTSBURGH FOUNDATION

![](_page_66_Picture_18.jpeg)

![](_page_66_Picture_19.jpeg)

![](_page_66_Picture_20.jpeg)

![](_page_66_Picture_21.jpeg)

How much nonlinearity do we have?

Pulses:  $1\mu J$  over 2ps gives:  $5 \cdot 10^5 W$  peak power

Mode area:  $50\mu m^2$  Kerr coefficient,  $n_2 \sim 2 \cdot 10^{-19} m^2/W$ 

Nonlinear index change,  $\Delta n = n_2 I \sim 2 \cdot 10^{-3}$