Topologically nontrivial excitations and transverse transport in quantum magnets

Judit Romhányi

University of California, Irvine

KITP Conference: Topological Quantum Matter: From Fantasy to Reality

in collaboration with

Karlo Penc

Wigner Research Centre, Budapest

Andreas Thomasen

Okinawa Institute of Science and Technology

R. Ganesh

Institute of Mathematical Sciences, Chennai

Nic Shannon

Okinawa Institute of Science and Technology

this week's topological physics ...

• in photonics

• in metamaterials

• of electric multipole insulators

• in twisted bilayer graphene

• in Floquet systems

- in magnetic insulators

Majorana

and many more..

Introduction & Motivation

Haldane's model

PRL 61, (1988)

Honeycomb lattice

complex 2nd neighbor hopping

breaking of TR symmetry

B

A

a nontrivial gap

Chern insulator

(QAH) state

opens

Dirac points protected by TR and inversion symmetries

realized in

• photonics

Rechtsman et al Nature 496 (2013)

- magnetic TI
 Chang et al Science 340 (2013)
- cold atoms

Jotzu et al Nature 515 (2014)

• ...

Haldane's model

Honeycomb lattice

neighbor hopping

complex 2nd

PRL 61, (1988)

• .. in a ferromagnet

Hirschberger et al PRL 115 (2015)

Chisnell et al PRL 115 (2015)

Kim et al PRL 117 (2016)

Fransson et al PRB 94 (2016)

Kim et al npj Quant Mat 2, (2017)

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_z$$

linear spin waves

magnon dynamics can be written as

$$\mathcal{H}(\mathbf{k}) = \epsilon(\mathbf{k})\mathbf{1} + d(\mathbf{k})\boldsymbol{\sigma}$$
$$\omega(\mathbf{k}) = \epsilon(\mathbf{k}) \pm d(\mathbf{k})$$

 $d(\mathbf{k}) = |\boldsymbol{d}(\mathbf{k})|$

Band touching when d-vector is zero somewhere in the BZ

Haldane's model

PRL 61, (1988) Honeycomb lattice

neighbor hopping

complex 2nd

• .. in a ferromagnet

Hirschberger et al PRL 115 (2015)

Chisnell et al PRL 115 (2015)

Kim et al PRL 117 (2016)

Fransson et al PRB 94 (2016)

Kim et al npj Quant Mat 2, (2017)

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_z$$

linear spin waves

magnon dynamics can be written as

$$\mathcal{H}(\mathbf{k}) = \epsilon(\mathbf{k})\mathbf{1} + d(\mathbf{k})\boldsymbol{\sigma}$$
$$\omega(\mathbf{k}) = \epsilon(\mathbf{k}) \pm d(\mathbf{k})$$

 $d(\mathbf{k}) = |\boldsymbol{d}(\mathbf{k})|$

Haldane's model

PRL 61, (1988) Honeycomb lattice

neighbor hopping

complex 2nd

• .. in a ferromagnet

Hirschberger et al PRL 115 (2015)

Chisnell et al PRL 115 (2015)

Kim et al PRL 117 (2016)

Fransson et al PRB 94 (2016)

Kim et al npj Quant Mat 2, (2017)

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_z$$

linear spin waves

magnon dynamics can be written as

$$\mathcal{H}(\mathbf{k}) = \epsilon(\mathbf{k})\mathbf{1} + d(\mathbf{k})\boldsymbol{\sigma}$$

 $\omega(\mathbf{k}) = \epsilon(\mathbf{k}) \pm d(\mathbf{k})$

 $d(\mathbf{k}) = |\boldsymbol{d}(\mathbf{k})|$

Haldane's model

PRL 61, (1988) Honeycomb lattice

neighbor hopping

complex 2nd

• .. in a ferromagnet

Hirschberger et al PRL 115 (2015)

Chisnell et al PRL 115 (2015)

Kim et al PRL 117 (2016)

Fransson et al PRB 94 (2016)

Kim et al npj Quant Mat 2, (2017)

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_z$$

Thermal Hall effect

Katsura et al PRL **104** (2010) Matsumoto et al PRL **106** and PRB **84** (2011)

Onose et al., Science **329**, (2010)

Lu₂V₂O₇ FM insulator

is there more?

what about the excitations of magnetically disordered states?

• spin liquid

- singlet product state
- quadrupolar phase

Topological boson systems

generalization to larger spins

Topological boson systems

 $\mathcal{H}(\mathbf{k}) = \overline{\epsilon(\mathbf{k})}\mathbf{1} + d(\mathbf{k})\boldsymbol{\sigma}$ $\omega(\mathbf{k}) = \epsilon(\mathbf{k}) \pm d(\mathbf{k})$ $\mathcal{H} = \epsilon(\mathbf{k})\mathbf{1} + \boldsymbol{d}(\mathbf{k})\boldsymbol{S}$ $\omega(\mathbf{k}) = \epsilon(\mathbf{k}) + \mathbf{m}d(\mathbf{k})$ $m = -S, \ldots, S$

S is a pseudo spin representing the 2S+1 levels

Chern number:

 $C_m = -2mN_s$

generalization to larger spins

From Fantasy to Reality - SrCu₂(BO₃)₂

$$\mathcal{H}(\mathbf{k}) = J\mathbf{I} + \mathbf{d}(\mathbf{k}) \cdot \mathbf{L}$$

JR, K. Penc and R. Ganesh Nat Comm 6, (2015)

From Fantasy to Reality - SrCu₂(BO₃)₂

LETTERS PUBLISHED ONLINE: 8 MAY 2017 | DOI: 10.1038/NPHYS4117

Topological triplon modes and bound states in a Shastry-Sutherland magnet

P. A. McClarty^{1,2}*, F. Krüger^{1,3}*, T. Guidi¹, S. F. Parker¹, K. Refson^{1,4}, A. W. Parker⁵, D. Prabhakaran⁶ and R. Coldea⁶

From Fantasy to Reality - SrCu₂(BO₃)₂

Thermal Hall effect of triplets

-Γ

edge states is given by the Chern numbers

edge state carry energy current

JR, K. Penc and R. Ganesh Nat Comm 6, (2015)

magnons 2D

additional DOF

Topological magnon insulator Onose et al., **TKNN** invariant Science **329**, (2010) for bosons thermal Hall effect Katsura et al PRL 104; Matsumoto et al PRL 106 and PRB 84, 184406 (2011) + spin degrees of freedom Magnon QSH insulator Z2 invariant for bosons AFM Spin current Magnon spin Nernst effect

Kondo et al PRB **99**, 041110(R)

also in Kim et al PRL 117 (2016) with spinons

bilayer kagome antiferromagnet singlet ground state triplet dynamics: $J\mathbf{1}_3 + J' \sum \cos \frac{\boldsymbol{\delta}_{\alpha} \cdot \mathbf{k}}{2} S^{\alpha}$ $+m\sum_{\alpha}\left[D'\cos\frac{\boldsymbol{\delta}_{\alpha}\cdot\mathbf{k}}{2}+D''\cos\frac{(\boldsymbol{\delta}_{\beta}-\boldsymbol{\delta}_{\gamma})\cdot\mathbf{k}}{2}\right]L^{\alpha}$ m = -1, 0, 1(b) _{1.2} TR pairs m=1 and -1

Nernst effect of triplets

work by Andreas

magnons 2D

Topological magnon insulator

thermal Hall effect

Katsura et al PRL **104**;

Matsumoto et al PRL 106 and PRB 84, 184406 (2011)

+ spin degrees of freedom

Magnon QSH insulator

Z2 invariant for bosons

Magnon spin Nernst effect

Onose et al.,

Science 329, (2010)

Kondo et al PRB **99**, 041110(R)

also in Kim et al PRL 117 (2016) with spinons

additional DOF

Magnets with S>1/2 spin

larger local Hilbert space

onsite "spin degree of freedom"

S=1

- Spin Hall insulator state
- Kitaev induced topological magnons
- onsite polarization + E field

additional DOF

Magnets with S>1/2 spin

larger local Hilbert space

onsite "spin degree of freedom"

S=1

- Spin Hall insulator state
- Kitaev induced topological magnons
- onsite polarization + E field

additional DOF

Magnets with S>1/2 spin

larger local Hilbert space

onsite "spin degree of freedom"

S=1

- Spin Hall insulator state
- Kitaev induced topological magnons
- onsite polarization + E field

honeycomb & S=1

Ag₃LiRu₂O₆ unconventional magnetism

R. Kumar et al PRB 99, (2019)

BaNi₂V₂O₈ ordered magnet

N. Rogado et al PRB 65 (2002)

Ni₂Mo₃O₈ zig-zag order

J. Morey et al PR Mat 3, 014410 (2019)

Li₂RuO₃ orbital dimerization

Y. Miura et al JPSJ. 76, 033705 (2007)

• VCl₃ coming soon.. G. Nielsen et al

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

Symmetries

point group isomorphic to D_{3d}

 $\{E, 2C_3, 3C'_2, I, 2S_6, 3\sigma_d\}$

 $\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + K \sum_{\alpha = x, y, z} \sum_{\langle i,j \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} \\ + D' (\mathbf{S}_i \times \mathbf{S}_j)_{111} + \Lambda \sum_j (S_i^{111})^2 - h \sum_i S_i^{11}$

P. A. McClarty et al PRB 98, 060404 (2018)

Hae-Young Kee's talk:

microscopic mechanism for large S Kitaev model P. Stavropoulos et al PRL 123, 037203 (2019)

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + K \sum_{\alpha = x, y, z} \sum_{\langle i,j \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + D' \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_{111} + \Lambda \sum_j (S_i^{111})^2 - h \sum_i S_i^{111} S_i^{111} + \Lambda \sum_j (S_i^{111})^2 - h \sum_i S_i^{111} + \Lambda \sum_i (S_i^{111})^2 - h \sum_$$

when Λ is large, the ground state is $|\Psi
angle = \prod |0
angle_j$

two excitations per site:

spin degree of freedom

$$\begin{split} |1\rangle_{i\in A} &= a_{i,\uparrow}^{\dagger}|0\rangle \quad \& \quad |-1\rangle_{i\in A} = a_{i,\downarrow}^{\dagger}|0\rangle \\ |1\rangle_{i\in B} &= b_{i,\uparrow}^{\dagger}|0\rangle \quad \& \quad |-1\rangle_{i\in B} = b_{i,\downarrow}^{\dagger}|0\rangle \end{split}$$

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + K \sum_{\alpha = x, y, z} \sum_{\langle i,j \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + D' \sum_{\langle \langle i,j \rangle \rangle} (\mathbf{S}_i \times \mathbf{S}_j)_{111} + \Lambda \sum_j (S_i^{111})^2 - h \sum_i S_i^{111}$$

spin 1

spin -1

$$\mathcal{H} = \begin{pmatrix} a_{\uparrow,\mathbf{k}}^{\dagger} \\ b_{\uparrow,\mathbf{k}}^{\dagger} \\ a_{\downarrow,\mathbf{k}}^{\dagger} \\ b_{\downarrow,\mathbf{k}}^{\dagger} \end{pmatrix}^{T} \begin{pmatrix} 3\Lambda - h - 6D'\gamma' & (3J + K)\gamma_{A1}^{*} \\ (3J + K)\gamma_{A1} & 3\Lambda - h + 6D'\gamma' \\ 0 & K\gamma_{E2}^{*} \\ K\gamma_{E1} & 0 \end{pmatrix} \begin{pmatrix} a_{\uparrow,\mathbf{k}} \\ b_{\uparrow,\mathbf{k}} \\ (3J + K)\gamma_{A1} & 3\Lambda + h - 6D'\gamma' \end{pmatrix} \begin{pmatrix} a_{\uparrow,\mathbf{k}} \\ b_{\uparrow,\mathbf{k}} \\ a_{\downarrow,\mathbf{k}} \\ b_{\downarrow,\mathbf{k}} \end{pmatrix}$$

Realization of the Spin Hall system

4 (linear) bands touch at K,K' Dirac magnons DM opens the gap bands remain 2-fold deg.

h=0 & K=0

$$\mathcal{H}_{\mathbf{k}} = \left(\begin{array}{cc} \mathcal{H}_{1,\mathbf{k}} & 0\\ 0 & \mathcal{H}_{-1,\mathbf{k}} \end{array}\right)$$

 $\mathcal{H}_{m,\mathbf{k}} = 3\Lambda I_2 + \boldsymbol{d}_m(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\boldsymbol{d}_m(\mathbf{k}) = (3J \text{Re}\gamma_{A1}, 3J \text{Im}\gamma_{A1}, m6D'\gamma')$$

$$\omega(\mathbf{k})_m = 3\Lambda \pm |\boldsymbol{d}_m(\mathbf{k})|$$

same for m=1 & -1

Kane and Mele PRL **95**, (2005)

Realization of the Spin Hall system

M K

h=0 & K=0

$$\mathcal{H}_{\mathbf{k}} = \left(\begin{array}{cc} \mathcal{H}_{1,\mathbf{k}} & \mathbf{0} \\ \mathbf{0} & \mathcal{H}_{-1,\mathbf{k}} \end{array} \right)$$

 $\mathcal{H}_{m,\mathbf{k}} = 3\Lambda I_2 + \overline{\boldsymbol{d}_m(\mathbf{k})} \cdot \boldsymbol{\sigma}$

$$\boldsymbol{d}_m(\mathbf{k}) = (3J \text{Re}\gamma_{A1}, 3J \text{Im}\gamma_{A1}, m6D'\gamma')$$

 $\omega(\mathbf{k})_m = 3\Lambda \pm |\boldsymbol{d}_m(\mathbf{k})|$

Kane and Mele PRL 95, (2005)

 $N_s = \frac{1}{4\pi} \int dk_x dk_y d \cdot (\partial_y d \times \partial_x d)$ $F_n^{xy}(\mathbf{k}) = in\mathbf{d}(\mathbf{k}) \cdot (\partial_y \mathbf{d}(\mathbf{k}) \times \partial_x \mathbf{d}(\mathbf{k}))$

Berry curvature is proportional to the skyrmion number

$$C_{n,m} = \frac{1}{i2\pi} \int dk_x dk_y F_n^{xy} = nmN_s$$

Realization of the Spin Hall system

open geometry

DM opens the gap bands remain 2-fold deg.

h=0 & K=0

$$\mathcal{H}_{\mathbf{k}} = \left(\begin{array}{cc} \mathcal{H}_{1,\mathbf{k}} & 0\\ 0 & \mathcal{H}_{-1,\mathbf{k}} \end{array}\right)$$

 $\mathcal{H}_{m,\mathbf{k}} = 3\Lambda I_2 + \boldsymbol{d}_m(\mathbf{k}) \cdot \boldsymbol{\sigma}$

$$\boldsymbol{d}_m(\mathbf{k}) = (3J \text{Re}\gamma_{A1}, 3J \text{Im}\gamma_{A1}, m6D'\gamma')$$

 $\omega(\mathbf{k})_m = 3\Lambda \pm |\boldsymbol{d}_m(\mathbf{k})|$

Kane and Mele PRL 95, (2005)

Z₂ index as "spin Chern number" $\frac{1}{2}(C_{n\uparrow} - C_{n\downarrow}) \mod 2$ Berry curvature is proportional to the skyrmion number

$$C_{n,m} = \frac{1}{i2\pi} \int dk_x dk_y F_n^{xy} = nmN_s$$

Spin Nernst effect

$$\alpha_{xy} = -i\frac{k_B}{\hbar} \sum_{m,n} \int_{BZ} m \cdot c_1(\rho_{n,m}) F_{n,m}^{xy}(\mathbf{k}) d^2 \mathbf{k}$$

$$c_1(\rho) = \int_0^{\rho} dt \ln(1 + t^{-1})$$

$$\rho_{n,\sigma} = \frac{1}{e^{\omega_{n,\sigma}\beta} - 1}$$

Nakata et al., PRB **95** 125429 (2017) Kovalev et al PRB **93** 161106(R) (2016) Cheng et al PRL **117** 217202 (2016)

Finite magnetic field

1

1

DM opens the gap bands remain 2-fold deg.

Zeeman split bands

Chern insulator

K=0

$$\mathcal{H}_{\mathbf{k}} = \begin{pmatrix} \mathcal{H}_{1,\mathbf{k}} & 0 \\ 0 & \mathcal{H}_{-1,\mathbf{k}} \end{pmatrix}$$
$$\mathcal{H}_{m,\mathbf{k}} = (3\Lambda - mh)I_2 + d_m(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

 $\boldsymbol{d}_m(\mathbf{k}) = (3J \text{Re}\gamma_{A1}, 3J \text{Im}\gamma_{A1}, m6D'\gamma')$

$$\omega(\mathbf{k})_m = (3\Lambda - mh) \pm |\mathbf{d}_m(\mathbf{k})|$$

m=1 & -1 Zeeman split

Thermal Hall effect

12

11

 $\left|-1\right\rangle$

1

Μĸ

$$\kappa_{xy} = \frac{-i}{\beta} \int_{\mathrm{BZ}} c_2(\rho_n) F_n^{xy}(\mathbf{k}) d^2 \mathbf{k} ,$$

$$c_2(\rho) = \int_0^{\rho} dt \ln^2(1+t^{-1})$$
1

 $\overline{e^{\omega_{n,\sigma}\beta}}-1$

 $ho_{n,\sigma}$

Katsura et al., PRL **104**, 066403 (2010), Matsumoto et al PRL **106** 197202, (2011)

Finite Kitaev interaction

Band touching topological transition

Thermal Hall effect

Summary

TR invariance + K=0:

Due to DMI, Z2 topological phase is realized

Spin Nernst effect

Anisotropic S=1 magnets can have various topologically nontrivial excitations

example: Honeycomb (A)FM

with

- Kitaev anisotropy
- single-ion anisotropy
- DM interaction

Breaking TR symmetry and/or finite K

Kitaev exchange can lead to the formation of Chern insulator with large Chern numbers.

Outlook

Magnetoelectric coupling broken TR and I symmetry

coupling between the electric and magnetic degrees of freedom so that one can be manipulated with the conjugate field of the other.

Anisotropic S=1 magnets can have various topologically nontrivial excitations

spin induced polarization from larger spin

$$\mathbf{P} \propto \sum_i (\mathbf{S} \cdot \mathbf{e}_i)^2 \mathbf{e}_i$$

Detection of edge modes (?)

inversion symmetry is broken at the edges

T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).

can edge modes couple to electric field/light?

spin quadrupole

