Dualities and non-abelian mechanics

Vincenzo Vitelli UChicago

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

What's a symmetry?

What's a symmetry?

What's a symmetry?

$$
T(\Delta)=\Delta
$$

Symmetries are useful

Symmetries are useful

Character table					
\Im_{d}	E	$8 C_{3}$	$3 C_{2}$	$6 S_{4}$	$6 \sigma_{d}$
A_{1}	1	1	1	1	1
A_{2}	1	1	1	-1	-1
E	2	-1	2	0	0
F_{1}	3	0	-1	1	-1
F_{2}	3	0	-1	-1	1
Σ	8	-1	0	0	0

Symmetries determine the degeneracies of vibrational modes

Symmetries are useful

point group	$c_{((i j)(k \ell))}$	
1	C_{1}	6
2	C_{2}	6
m	C_{s}	4
2 mm	$C_{2 \mathrm{v}}$	4
4	C_{4}	4
4 mm	$C_{4 \mathrm{v}}$	3
3	C_{3}	2
3 m	$C_{3 \mathrm{v}}$	2
6	C_{6}	2
6 mm	$C_{6 \mathrm{v}}$	2

point group $\mathrm{C}_{3 \mathrm{v}}(3 \mathrm{~m})$

C_{3} rotation $+\sigma_{\mathrm{v}}$ mirror

What's a duality?

What's a duality?

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

What's a duality?

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

$$
T(\square)=?
$$

The self-dual point

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

The self-dual point

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

Self-duality is an emergent symmetry

Can you engineer self-dualities for materials design ?

The twisted Kagome lattice

Twisting angle θ : a geometric control parameter
M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

A family of twisted Kagome lattices

Guest Hutchinson mode J. Mech. and Phys. Solids 51, 383 (2003).
M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

A duality

$\theta^{*}=2 \theta_{\mathrm{c}}-\theta$
$T($ 闔 $)=$［

duality

$T($ 國 $)=$ 比
self－duality

A duality

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

A duality

$■ \uparrow \square \downarrow$ Kramers-Wannier duality

What properties are constrained by the duality transformation?

Duality I: the vibrational spectrum

$$
\theta^{*}=2 \theta_{c}-\theta
$$

$$
\omega_{0}=\sqrt{\frac{k_{0}}{m_{0}}}
$$

Duality I: the vibrational spectrum

$$
\theta^{*}=2 \theta_{c}-\theta
$$

$$
\omega_{0}=\sqrt{\frac{k_{0}}{m_{0}}}
$$

Identical spectra above and below θ_{c}

Duality I: the vibrational spectrum

Identical spectra above and below θ_{c}
Double degeneracy for all wave vectors at θ_{c}

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

Duality II: elastic moduli

all spatial
symmetries are broken

3 independent 1 modulus moduli

3 independent moduli

Point group does not change with θ but number of moduli does

The duality operator $\hat{\mathscr{U}}$

An anti-unitary operator \mathscr{A}

$$
\hat{\mathscr{U}}=\underbrace{\left(\begin{array}{ccc}
r_{\Perp} & 0 & 0 \\
0 & \hat{T}_{a_{2}} r_{\Perp} & 0 \\
0 & 0 & \hat{T}_{a_{1}}^{-1} r_{\Perp}
\end{array}\right)} \hat{\mathscr{I}}
$$

$$
\begin{aligned}
& \Theta D(\theta, k) \Theta^{-1}=D(\theta,-k) \\
& \quad \mathscr{A}(k)=\mathscr{U}(k) \Theta \\
& \mathscr{A}(k)^{2}=-\mathrm{Id}
\end{aligned} \quad \mathscr{U}(k) D\left(\theta^{*},-k\right) \mathscr{U}^{-1}(k)=D(\theta, k)
$$

dynamical matrix in momentum space

A mechanical Kramers theorem

without fermionic time-reversal symmetry

$$
\begin{aligned}
& \Theta D(\theta, k) \Theta^{-1}=D(\theta,-k) \\
& \mathscr{A}(k)=\mathscr{U}(k) \Theta \\
& \mathscr{A}(k)^{2}=-\mathrm{Id}
\end{aligned} \quad \mathscr{A}(k) D\left(\theta^{*}, k\right) \mathscr{A}^{-1}(k)=D(\theta, k), \text { dynti-unitary }
$$

A mechanical Kramers theorem

without fermionic time-reversal symmetry
band structure two-fold degenerate for all wavevectors at θ_{c}

commutes with dynamical matrix at self-dual point θ_{c}
dynamical matrix

$$
\begin{aligned}
& \mathscr{A}(k)=\mathscr{U}(k) \Theta \\
& \mathscr{A}(k)^{2}=-\mathrm{Id}
\end{aligned}
$$

Gapping the double Dirac cone

c. $\delta m=0$

$$
\left(m_{1}, m_{2}, m_{3}\right)=(1-\delta m, 1,1+\delta m)
$$

to get (adiabatic) geometric phases

Mechanical spins

Semiclassical evolution of wave-packet

Non-abelian geometric phases

$W_{1} W_{2} \neq W_{2} W_{1}$

Mechanical spintronics

$$
\neq
$$

On the fly manipulations of mechanical spins

What is elasticity?

Linear elasticity

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Stiffness
Stress Tensor Strain

Theory of Elasticity Course of Theoeretical Phyyices

Independent entries of stiffness tensor are static elastic moduli

What is elasticity?

Hooke's law

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

Stiffness
Tensor
Strain

$$
K_{i j m n}=K_{m n i j}
$$

Where does this symmetry come from?

What is elasticity?

Hooke's law $\quad \sigma_{i j}=K_{i j m n} u_{m n}$

$$
\sigma_{i j}=\frac{\partial f}{\partial u_{i j}}
$$

$$
\text { If } \quad f=\frac{1}{2} K_{i j m n} u_{i j} u_{m n}
$$

Elastic
 Energy density

$$
K_{i j m n}=K_{m n i j}
$$

What is elasticity?

Hooke's law $\quad \sigma_{i j}=K_{i j m n} u_{m n}$

$$
\sigma_{i j}=\frac{\partial f}{\partial u_{i j}}
$$

Elastic
 Energy density

Odd elasticity

Hooke's law $\quad \sigma_{i j}=K_{i j m n} u_{m n}$

$$
\sigma_{i j}=\frac{\partial f}{\partial u_{i j}}
$$

Elastic
Energy
density
microscopic
energy
conservation

$$
K_{i j m n}^{0}=-K_{m n i j}^{0}
$$

Visual representation of the stiffness tensor

Hooke's law

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

Number of independent entries gives the number of elastic moduli

The stiffness tensor

Hooke's law

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

Number of independent entries gives the number of elastic moduli
Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

The stiffness tensor

Hooke's law

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

no coupling to rotations
Number of independent entries gives the number of elastic moduli
Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

The stiffness tensor

Hooke's law

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

Number of independent entries gives the number of elastic moduli
Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

The stiffness tensor with energy conservation

Hooke's law

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

energy
conservation

$$
\sigma^{a}=K^{a b} u^{b} \quad K^{a b}=K^{b a}
$$

Only 6 independent coefficients remain

Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

Computation of elastic moduli: Kagome lattice

assume

$$
K^{a b}=K^{b a}
$$

any θ

$\theta \neq \theta_{\mathrm{c}}$

$\theta=\theta_{\mathrm{c}}$
point group
K

$$
\left(\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \mathrm{~K}^{22} & 0 \\
\hline 0 & 0 & 0 & \mathrm{~K}^{22}
\end{array}\right)\left(\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \mathrm{~K}^{22} & \mathrm{~K}^{23} \\
\hline 0 & 0 & \mathrm{~K}^{23} & \mathrm{~K}^{33}
\end{array}\right)\left(\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \mathrm{~K}^{22} & 0 \\
\hline 0 & 0 & 0 & \mathrm{~K}^{22}
\end{array}\right)
$$

actual v.s. naive expectation of number of moduli

1 v.s. 2

1 v.s. 6

Standard point group analysis misses constraints from duality

Computation of elastic moduli: Kagome lattice

assume

$K^{a b}=K^{b a}$
 point group
$K\left(\begin{array}{c|c|c|c}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & \mathrm{~K}^{22} & 0 \\ \hline 0 & 0 & 0 & \mathrm{~K}^{22}\end{array}\right)\left(\begin{array}{c|c|c|c}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & \mathrm{~K}^{22} & \mathrm{~K}^{23} \\ \hline 0 & 0 & \mathrm{~K}^{23} & \mathrm{~K}^{33}\end{array}\right)\left(\begin{array}{c|c|c|c}0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & \mathrm{~K}^{22} & 0 \\ \hline 0 & 0 & 0 & \mathrm{~K}^{22}\end{array}\right)$
actual v.s. naive expectation of number of moduli

Standard point group analysis misses constraints from duality

Dualities and elastic moduli

$$
\begin{gathered}
D(\theta, q)=\mathscr{U}(q) D\left(\theta^{*},-q\right) \mathscr{U}^{-1}(q) \\
K(\theta)=V K\left(\theta^{*}\right) V^{\dagger} \\
K(\theta)=\left(\begin{array}{cccc}
K^{00} & 0 & K^{002} & K^{03} \\
0 & K^{001} & 0 & 0 \\
K^{003} & 0 & K^{22} & K^{23} \\
K^{23} & K^{233} & K^{33}
\end{array}\right) \quad V K\left(\theta^{*}\right) V^{\dagger}=\left(\begin{array}{cccc}
0 & 0 \\
0 & K^{00} & K^{03} & 0 \\
0 & K^{00} & K^{33} & -K^{023} \\
0 & -K^{02} & -K^{23} & K^{22}
\end{array}\right) \\
\text { these must vanish! }
\end{gathered}
$$

M. Fruchart and V. Vitelli in preparation here we have $V=\sigma_{3} \otimes \mathrm{i} \sigma_{2}$

Dualities and elastic moduli: Kagome lattice

$K(\theta)=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & K^{22}(\theta) & K^{23}(\theta) \\ 0 & 0 & K^{23}(\theta) & K^{33}(\theta)\end{array}\right)$

$$
K\left(\theta_{c}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & \mu
\end{array}\right)
$$

duality constrains the elastic moduli for all θ : only shear moduli
at the self-dual point the elastic tensor is isotropic

Odd moduli

$$
\sigma_{i j}=K_{i j m n} u_{m n}
$$

$$
\begin{aligned}
& \text { energy } \\
& \text { conservation }
\end{aligned}
$$

$$
\sigma^{a}=K^{a b} u^{b} \quad K^{a b} \neq K^{b a}
$$

9 independent coefficients remain

Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

Odd moduli: isotropy and angular momentum conservation

$$
\begin{gathered}
\sigma_{i j}=K_{i j m n} u_{m n} \\
\sigma^{a}=K^{a b} u^{b}
\end{gathered}
$$

$$
K^{a b} \neq K^{b a}
$$

1 odd coefficient remains: Hall modulus analogous to Hall viscosity

Microscopic model: active bonds

Compression/elongation induce active torques

Microscopic model: active bonds

Active bonds are microscopic engines that harvest energy around loops

Odd elastodynamics

Odd Wave

$$
\begin{aligned}
\eta \partial_{t} u_{i} & =\partial_{j} \sigma_{i j} \\
\quad \sigma_{i j} & =K_{i j m n}^{0} u_{m n}
\end{aligned}
$$

Elastic engine cycle powers the wave

Active phonons propagate in over damped media

Odd elastodynamics

Odd Wave

$$
\begin{aligned}
\eta \partial_{t} u_{i} & =\partial_{j} \sigma_{i j} \\
\quad \sigma_{i j} & =K_{i j m n}^{0} u_{m n}
\end{aligned}
$$

Elastic engine cycle powers the wave

Active phonons propagate in over damped media

Phonons in non-Hermitian mechanics

$\mathbf{F}=-\left(k \hat{\mathbf{r}}+k^{o} \hat{\boldsymbol{\varphi}}\right) \delta r$

Non-Hermitian dynamical matrix

Exceptional Point

Visual summary

Dualities and symmetries

Non-abelian sound

Non-Hermitian mechanics

Thanks

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

Visual summary

Dualities and symmetries

Non-abelian sound

Non-Hermitian mechanics

Thanks

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, arXiv:1902.07760

