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TABLE I: Character for the irreducible representations of the
tetrahedral point group together with the character of the
eight-dimensional representation Σ generated by the defect
displacements of a tetravalent colloid.

ℑd E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 1 −1
F2 3 0 −1 −1 1

Σ 8 −1 0 0 0

of the tetrahedron; their degeneracies can be determined
purely from the group theoretical relation [29, 30]

n(γ) =
1

g

∑

i

gi χ
(γ)∗
i χ(Σ)

i , (43)

where n(γ) is the number of frequency degenerate nor-
mal modes that transform like the irreducible represen-
tation labeled by γ, gi is the number of symmetry op-
erations of the tetrahedral point group in the ith class,
g =

∑
i gi = 24 is the total number of symmetry opera-

tion in the group, χ(γ)
i is the character of the ith class in

the irreducible representation labelled by γ while χ(Σ)
i is

the corresponding character for the reducible representa-
tion formed by the defects’ displacements.
The information necessary to apply Eq.(43) to a

tetravalent colloid is collected in Table I. The top row
contains the five symmetry class {E,C3, C2, S4,σd} con-
tained in the tetrahedral point group ℑd, correspond-
ing respectively to the identity, three and two fold rota-
tions, four fold rotatory-reflections and reflection through
a plane of symmetry [29]. The number of symmetry op-
erations gi included in the ith class also appears in the
top row: thus, {gi} = {1, 8, 3, 6, 6} where the same or-
dering used above to list the classes has been adopted.
The left most column of Table I lists the one, two and
three dimensional irreducible representations of the tetra-
hedral group {A1, A2, E, F1, F2}, along with the eight di-
mensional representation Σ generated by the defect dis-
placements. The entries of the table list the characters
corresponding to each class of the five irreducible repre-

sentations, χ(γ)
i , and in the last row the corresponding

characters, χ(Σ)
i , for the eight dimensional representa-

tion. The former are tabulated from standard group the-
oretical treatments while the latter needs to be worked
out from the traces of the transformation matrices that
describe how the displacement coordinates qi transform
under the action of each symmetry element in the group.
These manipulations are rather cumbersome, especially
for the ”icosahedral molecule” arising when a spherical
surface is coated with a pure hexatic layer (see Appendix
C).
In the rich literature on molecular vibrations a set

of empirical rules has been developed to write down
the characters by examining only the transformation of
the three dimensional cartesian displacements of the few
atoms whose equilibrium positions are not altered by the
symmetry operation. In Appendix C we provide analo-

gous rules that simplify the task of finding the χ(Σ)
i char-

acters by incorporating the constraint that each atom is
confined on a sphere and hence only two orthogonal dis-
placements need to be considered as shown in Eq.(39).
The interested reader is referred to Appendix C for

a more comprehensive mathematical justification of the
normal mode analysis applied to the tetrahedral colloid
and to the more complicated cases of hexatic Z = 12 and
tetratic order Z = 8. Here, we simply summarize the
results of applying Eq.(43) in conjunction with Table I
to find the degeneracies of the eigenvalue spectrum of the
matrix Mij . The representation Σ contains (only once)
the three dimensional representations F2 and F1 as well
as the two dimensional representation E.

Σ = F2 + F1 + E . (44)

The three normal coordinates with vanishing frequency
correspond to the three rigid body rotations and belong
to the F1 irreducible representation [29, 30]. We are left
with a doublet (E) and a triplet (F2) corresponding re-
spectively to two shear-like twisting deformations of the
tetrahedron and to three stretching and bending modes
of the cords joining neighboring defects.
This symmetry analysis is confirmed by direct diago-

nalization of the matrixMij which leads the following set
of eigenvalues λi

{λi} =
3πK

8
{0, 0, 0, 1, 1, 2, 2, 2} . (45)

In Section C, we also list the eigenvectors wi of Mij . The
displacement coordinates are readily expressed in terms
of the eigenvectors

qi = U−1
ij wj , (46)

where the unitary matrix U diagonalizes M and hence
the free energy of Eq.(41) and is defined by

U M U−1 = Diag (λi) . (47)

Its construction is easily achieved by the standard Gram-
Schmidt orthogonalization procedure to the eigenvectors
{wi} = {w1, ..., w8}, where the same ordering chosen in
listing the eigenvalues in Eq.(45) is implicitly assumed.
The resulting orthogonal basis vectors are the rows of the
8× 8 matrix U .
We are now in a position to evaluate ⟨cosβij⟩ where the

thermal average is performed with the Boltzman weight
obtained from the free energy in Eq.(41) which is now di-
agonal. Note that for the tetrahedron any choice of pair
of defects labelled by i and j (where i ≠ j) will lead to
the same answer, unlike the less symmetric cases of the
twisted cube (p=4) and the icosahedron (p=6) consid-
ered in Appendix C. The bending angle cosβij in Eq.(40)

Symmetries determine the degeneracies of vibrational modes

Character table
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Symmetries determine the number of independent elastic moduli
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2✓

a.
2⇡
3 C3

b.

�
� �c

self-dual point

�⇤

K.-W. duality

c.

✓
✓ ✓c

self-dual point

✓⇤

duality Â
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2✓

a.

Self-duality is an emergent symmetry



Can you engineer self-dualities  
for materials design ?



The twisted Kagome lattice

Twisting angle    : a geometric control parameter
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A family of twisted Kagome lattices

Guest Hutchinson mode
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2✓

a.

FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although

=
⇡

4
<latexit sha1_base64="ylOpYAwmLqN0wXA9F4SqE2gDd74=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyCq5Ckoa0LoejGZQX7gCaUyXTSDp08mJkINeRL3LhQxK2f4s6/cdJWUNEDFw7n3Mu99/gJo0Ka5odWWlvf2Nwqb1d2dvf2q/rBYU/EKceki2MW84GPBGE0Il1JJSODhBMU+oz0/dlV4ffvCBc0jm7lPCFeiCYRDShGUkkjvXoB3YAjnLkJzTMnH+k10zhvNWynAU3DNJuWbRXEbjp1B1pKKVADK3RG+rs7jnEakkhihoQYWmYivQxxSTEjecVNBUkQnqEJGSoaoZAIL1scnsNTpYxhEHNVkYQL9ftEhkIh5qGvOkMkp+K3V4h/ecNUBi0vo1GSShLh5aIgZVDGsEgBjiknWLK5Ighzqm6FeIpUDlJlVVEhfH0K/yc927Dqhnnj1NqXqzjK4BicgDNggSZog2vQAV2AQQoewBN41u61R+1Fe122lrTVzBH4Ae3tE87pkzM=</latexit>

T ( ) =
<latexit sha1_base64="vN1+gaiEDH03wvAUt5f6jT2jnYE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpiBb0IRS8eK/QL2lA2m027dLNJdzeFEvo7vHhQxKs/xpv/xm2bg7Y+GHi8N8PMPC/mTGnb/rZyG5tb2zv53cLe/sHhUfH4pKWiRBLaJBGPZMfDinImaFMzzWknlhSHHqdtb/Qw99sTKhWLRENPY+qGeCBYwAjWRnIbZYR64wT76BLd9Yslu2IvgNaJk5ESZKj3i189PyJJSIUmHCvVdexYuymWmhFOZ4VeomiMyQgPaNdQgUOq3HRx9AxdGMVHQSRNCY0W6u+JFIdKTUPPdIZYD9WqNxf/87qJDm7dlIk40VSQ5aIg4UhHaJ4A8pmkRPOpIZhIZm5FZIglJtrkVDAhOKsvr5PWVcWpVuyn61LtPosjD2dwDmVw4AZq8Ah1aAKBMTzDK7xZE+vFerc+lq05K5s5hT+wPn8ALMiQZw==</latexit>

2⇡
3 C3

b.

�
� �c

self-dual point

�⇤

K.-W. duality

c.

✓
✓ ✓c

self-dual point

✓⇤

duality Â
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FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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ÛÛ

The duality operator

a1

a2

�a1

�a2

a1

a2

�a1

�a2
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FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although

2

2⇡
3 C3

b.

�
� �c

self-dual point

�⇤

K.-W. duality

c.

✓
✓ ✓c

self-dual point

✓⇤

duality Â
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c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
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where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
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Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.
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ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
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tween di�erent spaces, describing respectively the vibra-
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erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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called the twisting angle. (See Fig. 2 for a LEGO model.) To
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where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.
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Kagome lattices. An application of our general approach
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We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
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Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that
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Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
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Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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called the twisting angle. (See Fig. 2 for a LEGO model.) To
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where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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(2) acts as a hidden symmetry of the critical dynamical
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As Â 2 = �Id, Kramers theorem can indeed be applied,
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figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although

2

2⇡
3 C3

b.

�
� �c

self-dual point

�⇤

K.-W. duality

c.

✓
✓ ✓c

self-dual point

✓⇤

duality Â
2✓

a.

FIG. 1. Symmetries and dualities. (a) A star-shaped
polygon in LEGO illustrates three-fold rotation symmetry:
the mechanical molecule is mapped to itself by a 2⇡/3 (120�)
rotation C3. This is in contrast with a duality, that gener-
ically maps one system to another system. (b) In the Ising
model, spins on a two-dimensional lattice can take two values
±1, represented by black (white) pixels. A phase transition
separates an ordered ferromagnetic phase at low temperature
where spins align (right panel) from a disordered paramag-
netic phase at high temperature (left panel). The Kramers
and Wannier duality [1] associates to each (inverse) temper-
ature � a dual temperature �⇤, and the ratio of the partition
functions at � and �⇤ is a known smooth function. The self-
dual point �c = �⇤

c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
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angles ✓⇤ and ✓ (compare the two lattices in figure 3).
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is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that
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precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
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ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
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We now move on to explain the global two-fold degen-
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cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
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(2) acts as a hidden symmetry of the critical dynamical
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culation (see SI) shows that
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and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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tum space (it relates k to �k). Alone, it would ensure
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that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
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lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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c corresponds to the critical phase (middle
panel) where the phase transition between the ferromagnet
and the paramagnet occurs. (c) Twisted Kagome lattices form
a family of mechanical structures parametrized by a variable ✓
called the twisting angle. (See Fig. 2 for a LEGO model.) To
each Kagome lattice with angle ✓ is associated a dual Kagome
lattice with angle ✓⇤ = 2✓c � ✓, resulting in strong relations
between their mechanical properties. At the self-dual point
where ✓c = ✓⇤c ⌘ ⇡/4, the duality becomes a symmetry.

servations can be traced to the existence of a mathemat-
ical duality between the dynamical matrices of pairs of
Kagome lattices. An application of our general approach
to electrical circuits is outlined in the SI.

We first introduce a unitary transformation Û act-
ing on the vibrational degrees of freedom of a twisted
Kagome lattice as represented in figure 3. A direct cal-
culation (see SI) shows that

U (k)D(✓⇤,�k)U �1(k) = D(✓, k) (1)

where U (k) is the Bloch representation of the opera-
tor Û . Hence, Û should be viewed as a linear map be-
tween di�erent spaces, describing respectively the vibra-
tions of the di�erent mechanical structures with twisting
angles ✓⇤ and ✓ (compare the two lattices in figure 3).
Note that U (k) does not depend on the twisting angle ✓.
As Newton equations are real-valued, the Bloch dynam-
ical matrix satisfies ⇥D(✓, k)⇥�1 = D(✓,�k) where ⇥
is complex conjugation. Hence, by combining the anti-
unitary operator ⇥̂ with Û , we get an anti-unitary op-
erator A (k) = U (k)⇥ which squares to A (k)2 = �Id,
and such that

A (k)D(✓⇤, k)A �1(k) = D(✓, k). (2)

Equation (2) is the expression of a duality between the
two lattices with twisting angles ✓ and ✓⇤, illustrated in
figure 1c. The dynamical matrices of the two dual sys-
tems are related by a anti-unitary transformation. As a
consequence, they have identical band structures (more
precisely, the eigenvalues are related by complex conju-
gation, and are equal because they are also real) and the
eigenvectors are related by Â . Equation (1) is also a du-
ality between the same lattices. In contrast with (2), it is
ruled by a unitary operator, but is non-local in momen-
tum space (it relates k to �k). Alone, it would ensure
that the band structures of both lattices are the same
only up to an inversion of momentum.

We now move on to explain the global two-fold degen-
eracy observed in figure 2c. This degeneracy is reminis-
cent of a celebrated theorem from Kramers [15] stating
that the energy states of time-reversal invariant quantum
systems with half-integer spin are at least doubly degen-
erate. At first sight, this theorem does not apply here, as
the mechanical degrees of freedom are neither quantum
mechanical nor fermionic. Yet, Kramers theorem can still
formally apply provided that some anti-unitary operator
squaring to minus the identity commutes with the dy-
namical matrix. At the critical twisting angle ✓c = ✓⇤c ⌘
⇡/4, the mechanical structure is self-dual. The duality
(2) acts as a hidden symmetry of the critical dynamical
matrix D(✓c), through A (k)D(✓c, k)A �1(k) = D(✓c, k).
As Â 2 = �Id, Kramers theorem can indeed be applied,
and implies that the band structure is two-fold degener-
ate at every point k of the Brillouin zone, as observed in
figure 2c. Interestingly, Â acts in the same way as the
combination of spatial inversion and a so-called fermionic
time-reversal would in an electronic system, although
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FIG. 4. Mechanical spintronics via non-Abelian geometric phases. In the self-dual system, a wave packet constructed
from a narrow band of frequencies is composed of two degenerate pseudo-spin states. A wave packet initially centered at k0
in momentum space is submitted to a constant e�ective force fi for a duration ⌧ such that the change in momentum fi⌧
is one reciprocal lattice vector a⇤

i (masses are dimensionless), defining a closed path Ci in momentum space. Because of the
non-Abelian geometric phases, the pseudo-spin state of the wave packet changes from |'inii to Wi |'inii. Forces (f1, f2) and
(f2, f1) are applied sequentially to a given initial state |'inii. The state of a wave packet after each sequence is described by
the composition of Wilson loops, respectively transforming 'ini into W2W1 |'inii or W1W2 |'inii. (a) The vibrational states
are represented by ellipses describing the motion of the masses, with a color representing their phases. They are equivalently
represented on a Bloch sphere (see SI for a definition of the momentum-dependent basis). (b) Sketch of the real space and
momentum space trajectories (see SI for the numerically integrated solutions). (c,d) To avoid non-adiabatic transitions, an
asymmetry �m is introduced between the three masses in a unit cell (m1,m2,m3) = (1� �m, 1, 1 + �m), illustrated by circles
of di�erent sizes. As a consequence, the double Dirac cone becomes massive, with a gap (in gray) proportional to �m at first
order, whilst the global two-fold degeneracy is preserved. (e) An e�ective force fext acting on the wave packets is produced
by applying a spatially varying harmonic potential that essentially shifts the optical bands in frequency proportionally to the
potential (see SI). (f) Comparing W1W2W

�1
1 W�1

2 to the identity provides a quantitative measure of the non-commutativity.
The absolute value of the trace of their di�erence is plotted as a function of the starting point k0 of the protocol. In the
numerical simulations, we have considered a wave packet projected on the bands with dispersions !3(k) = !4(k), and we have
set k0 = (2, 1) and �m = 0.1 (see SI for details on the numerical computation and orders of magnitude).
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FIG. 4. Mechanical spintronics via non-Abelian geometric phases. In the self-dual system, a wave packet constructed
from a narrow band of frequencies is composed of two degenerate pseudo-spin states. A wave packet initially centered at k0
in momentum space is submitted to a constant e�ective force fi for a duration ⌧ such that the change in momentum fi⌧
is one reciprocal lattice vector a⇤

i (masses are dimensionless), defining a closed path Ci in momentum space. Because of the
non-Abelian geometric phases, the pseudo-spin state of the wave packet changes from |'inii to Wi |'inii. Forces (f1, f2) and
(f2, f1) are applied sequentially to a given initial state |'inii. The state of a wave packet after each sequence is described by
the composition of Wilson loops, respectively transforming 'ini into W2W1 |'inii or W1W2 |'inii. (a) The vibrational states
are represented by ellipses describing the motion of the masses, with a color representing their phases. They are equivalently
represented on a Bloch sphere (see SI for a definition of the momentum-dependent basis). (b) Sketch of the real space and
momentum space trajectories (see SI for the numerically integrated solutions). (c,d) To avoid non-adiabatic transitions, an
asymmetry �m is introduced between the three masses in a unit cell (m1,m2,m3) = (1� �m, 1, 1 + �m), illustrated by circles
of di�erent sizes. As a consequence, the double Dirac cone becomes massive, with a gap (in gray) proportional to �m at first
order, whilst the global two-fold degeneracy is preserved. (e) An e�ective force fext acting on the wave packets is produced
by applying a spatially varying harmonic potential that essentially shifts the optical bands in frequency proportionally to the
potential (see SI). (f) Comparing W1W2W
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numerical simulations, we have considered a wave packet projected on the bands with dispersions !3(k) = !4(k), and we have
set k0 = (2, 1) and �m = 0.1 (see SI for details on the numerical computation and orders of magnitude).

m1
<latexit sha1_base64="hUPC9bPOuUHYQiudkhY4vcRgNeY=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXdOOyon1AG8pkOmmHzkzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0wYVdpxPqzC2vrG5lZxu7Szu7d/UD486qg4lZi0ccxi2QuRIowK0tZUM9JLJEE8ZKQbTq9yv3tPpKKxuNOzhAQcjQWNKEbaSLd86A7LFce+aNQ8vwYd23HqrufmxKv7VR+6RslRASu0huX3wSjGKSdCY4aU6rtOooMMSU0xI/PSIFUkQXiKxqRvqECcqCBbnDqHZ0YZwSiWpoSGC/X7RIa4UjMemk6O9ET99nLxL6+f6qgRZFQkqSYCLxdFKYM6hvnfcEQlwZrNDEFYUnMrxBMkEdYmnZIJ4etT+D/peLZbtZ0bv9K8XMVRBCfgFJwDF9RBE1yDFmgDDMbgATyBZ4tZj9aL9bpsLVirmWPwA9bbJ1unjdk=</latexit> m2

<latexit sha1_base64="XYqKH+PRtmPE8ZMH+sqxXvT4sps=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXdOOyon1AG8pkOmmHzkzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0wYVdpxPqzC2vrG5lZxu7Szu7d/UD486qg4lZi0ccxi2QuRIowK0tZUM9JLJEE8ZKQbTq9yv3tPpKKxuNOzhAQcjQWNKEbaSLd86A3LFce+aNQ8vwYd23HqrufmxKv7VR+6RslRASu0huX3wSjGKSdCY4aU6rtOooMMSU0xI/PSIFUkQXiKxqRvqECcqCBbnDqHZ0YZwSiWpoSGC/X7RIa4UjMemk6O9ET99nLxL6+f6qgRZFQkqSYCLxdFKYM6hvnfcEQlwZrNDEFYUnMrxBMkEdYmnZIJ4etT+D/peLZbtZ0bv9K8XMVRBCfgFJwDF9RBE1yDFmgDDMbgATyBZ4tZj9aL9bpsLVirmWPwA9bbJ10rjdo=</latexit>

m3
<latexit sha1_base64="C1m4JngZQnC7wbuuOxDFQBKJ6o8=">AAAB6nicdVDLSsNAFJ3UV62vqks3g0VwFZI0tHVXdOOyon1AG8pkOmmHzkzCzEQooZ/gxoUibv0id/6Nk7aCih64cDjnXu69J0wYVdpxPqzC2vrG5lZxu7Szu7d/UD486qg4lZi0ccxi2QuRIowK0tZUM9JLJEE8ZKQbTq9yv3tPpKKxuNOzhAQcjQWNKEbaSLd8WB2WK4590ah5fg06tuPUXc/NiVf3qz50jZKjAlZoDcvvg1GMU06Exgwp1XedRAcZkppiRualQapIgvAUjUnfUIE4UUG2OHUOz4wyglEsTQkNF+r3iQxxpWY8NJ0c6Yn67eXiX14/1VEjyKhIUk0EXi6KUgZ1DPO/4YhKgjWbGYKwpOZWiCdIIqxNOiUTwten8H/S8Wy3ajs3fqV5uYqjCE7AKTgHLqiDJrgGLdAGGIzBA3gCzxazHq0X63XZWrBWM8fgB6y3T16vjds=</latexit>

a1

a2

to get (adiabatic) geometric phases



Mechanical spins

5

fexte.

W1
W2

W
2 W

1

6=
�x

�y

�z �x

�y

�z

�x

�y

�z

=

=

=

|'inii

a.

1 f1
2 f2

W1

W2

0 ⌧ 2⌧
t

�
M

K

k0 C1

�
M

K

k0

C2

6= 1 f2
2 f1

W2

W1

0 ⌧ 2⌧
t

�
M

K

k0 C1

�
M

K

k0

C2

b.

K � M K

0.5

1.5

2

!
(k
)

c. �m = 0

K � M K

!1,2

!3,4

!5,6

d. �m 6= 0

f. |tr(W1W2W
�1
1 W�1

2 � Id)|

FIG. 4. Mechanical spintronics via non-Abelian geometric phases. In the self-dual system, a wave packet constructed
from a narrow band of frequencies is composed of two degenerate pseudo-spin states. A wave packet initially centered at k0
in momentum space is submitted to a constant e�ective force fi for a duration ⌧ such that the change in momentum fi⌧
is one reciprocal lattice vector a⇤

i (masses are dimensionless), defining a closed path Ci in momentum space. Because of the
non-Abelian geometric phases, the pseudo-spin state of the wave packet changes from |'inii to Wi |'inii. Forces (f1, f2) and
(f2, f1) are applied sequentially to a given initial state |'inii. The state of a wave packet after each sequence is described by
the composition of Wilson loops, respectively transforming 'ini into W2W1 |'inii or W1W2 |'inii. (a) The vibrational states
are represented by ellipses describing the motion of the masses, with a color representing their phases. They are equivalently
represented on a Bloch sphere (see SI for a definition of the momentum-dependent basis). (b) Sketch of the real space and
momentum space trajectories (see SI for the numerically integrated solutions). (c,d) To avoid non-adiabatic transitions, an
asymmetry �m is introduced between the three masses in a unit cell (m1,m2,m3) = (1� �m, 1, 1 + �m), illustrated by circles
of di�erent sizes. As a consequence, the double Dirac cone becomes massive, with a gap (in gray) proportional to �m at first
order, whilst the global two-fold degeneracy is preserved. (e) An e�ective force fext acting on the wave packets is produced
by applying a spatially varying harmonic potential that essentially shifts the optical bands in frequency proportionally to the
potential (see SI). (f) Comparing W1W2W
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The absolute value of the trace of their di�erence is plotted as a function of the starting point k0 of the protocol. In the
numerical simulations, we have considered a wave packet projected on the bands with dispersions !3(k) = !4(k), and we have
set k0 = (2, 1) and �m = 0.1 (see SI for details on the numerical computation and orders of magnitude).
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tional harmonic potential imposed to each mass with a
spatially-dependent sti�ness, as illustrated in figure 4e.
This e�ective force is applied for a duration ⌧ chosen so
that the momentum changes by exactly one reciprocal
lattice vector a⇤i . As a consequence, Ci(�) = k0 + �a⇤i
is a closed loop starting and ending at k0, see figure 4b,
and the Wilson loop Wi = W [Ci] is the holonomy of the
Berry connection along Ci.

Pictorially, pushing on the wave packet changes its
pseudo-spin state: this change is the holonomy W [C].
Here, the point is that the holonomies do not commute:
when one pushes on the wave packet in di�erent di-
rections, the order of the pushes matters because the
pseudo-spin state keeps track of what happened. This
is represented in figure 4b. After the forces (f1, f2) are
sequentially applied during the appropriate duration, the
pseudo-spin of a wave-packet initially at k0 changes from
any initial state |'inii to W2W1 |'inii. The reversed
sequence (f2, f1) produces a di�erent final pseudo-spin
state W1W2 |'inii, because the two Wilson loops typi-
cally do not commute,

W1W2 6= W2W1. (3)

This non-commuting mechanical responses share similar-
ities with non-Abelian excitations like anyons [30–32].
However, in the present study non-commutativity arises
from how independent wave packets respond to external
forces, while for anyons it is associated with the exchange
(braiding) of these quasi-particles with each other. In
figure 4f, we assess how the choice of the initial point
k0 a�ects the non-commutativity of W1(k0) and W2(k0)
by quantifying the deviation of W1W2W

�1
1 W�1

2 from the
identity.

Our results raise the prospect of materials where in-
formation is encoded and processed using non-Abelian
mechanical excitations and can be seen as a first step to-
wards an extension of phononics [33] including mechan-
ical pseudo-spins which we call mechanical spintronics.
More broadly, our work illustrates the power of duality
relations in mechanics and wave physics. The counter-
intuitive degeneracies of elastic moduli and phonon spec-
tra at the self-dual point suggest that dualities and their
breaking may play as crucial a role in the design of meta-
materials as symmetries currently do.
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Materials and Methods

I. NON-ABELIAN HOLONOMIES

Geometric phases [16, 34–36] describe the residual in-
fluence of its environment on a subsystem considered in
isolation. They typically arise when the system under-
goes a slow cyclic change of its parameters. In this sit-
uation, the state of the system is transported over the
parameter space to describe its evolution. The change
in this state from before to after one cycle is a geometric
phase factor. Formally, it is the holonomy of a connection
along the closed loop traveled in parameter space: the
connection provides a covariant derivative describing the
parallel transport in the vector bundle of system states.
The holonomies (geometric phase factors) are not nec-
essarily mere U(1) phases, but can be matrices referred
to as non-Abelian geometric phases [16], because the for-
malism allows for non-commuting holonomies (phase fac-
tors). More precisely, let

W (C) = P exp
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be the holonomy of the connection along the curve C
in parameter space. Here, A is the connection form
(see SI for details), called a non-Abelian gauge field in
the context of gauge theory [37]. The quantity W (C)
is also called a Wilson loop operator [38], and can be
computed numerically (see SI). We are interested in situ-
ations where two holonomies do not commute, i.e. when
W (C1)W (C2) 6= W (C2)W (C1) for two closed loops Ci
starting (and ending) at the same point.

In the main text, we consider the propagation of wave
packets in a lattice of coupled mechanical oscillators. In
this situation, the restriction to a subsystem described
in isolation consists in assuming that the wave packet
stays in a given (set of degenerate) phonon bands, ig-
noring the bands with higher or lower frequencies. The
parameter space is momentum space (i.e. the Brillouin
torus): the quasi-classical momentum changes because a
force is applied to the wave packet, and e�ectively acts
as an external parameter from the point of view of the
wave packet (see SI and Refs. [17, 27–29, 39–44]). We
emphasize that although the wave packet moves both in
momentum space and in position space, the non-Abelian
geometric phase factors discussed in the main text are re-
lated to the trajectory in momentum space (not position
space).

6

tional harmonic potential imposed to each mass with a
spatially-dependent sti�ness, as illustrated in figure 4e.
This e�ective force is applied for a duration ⌧ chosen so
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ities with non-Abelian excitations like anyons [30–32].
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Our results raise the prospect of materials where in-
formation is encoded and processed using non-Abelian
mechanical excitations and can be seen as a first step to-
wards an extension of phononics [33] including mechan-
ical pseudo-spins which we call mechanical spintronics.
More broadly, our work illustrates the power of duality
relations in mechanics and wave physics. The counter-
intuitive degeneracies of elastic moduli and phonon spec-
tra at the self-dual point suggest that dualities and their
breaking may play as crucial a role in the design of meta-
materials as symmetries currently do.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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FIG. 2. Effect of a quarter rotation followed by a non-integer translation.

V. BLOCH CONVENTIONS

The Bloch decomposition of a spatially periodic opera-
tor can be performed in different ways. There are at least
two usual conventions for the Bloch decomposition differ-
ing in whether the phase factor attributed to translations
is computed from (a) the Bravais lattice translations or
(b) the crystal translations. We refer the reader to ref-
erences [17–24] for details. Both conventions are useful
in different situations. In particular, the convention (b)
is the most natural when writing the semi-classical equa-
tions of motion [22, 23]. Reference [24] discusses the rela-
tions with crystal symmetries. For a given choice of fun-
damental domain (xi)i=1,...,F of the crystal (here, the po-
sitions of the masses), the change of basis matrix relating
both conventions is VF (k) = diag[(e�ik(xi�x0)�0)i=1,...,F ]
where x0 is an arbitrary origin.

VI. ELASTICITY AND DUALITY

Elasticity is the long-wavelength low-frequency effec-
tive theory of mechanical displacements. It describes the
dynamics of the strain tensor uk` (summarizing coarse-
grained displacements) and the stress tensor �ij (summa-
rizing coarse-grained forces). An elastic material in the
linear regime is described by its elastic tensor cijk` relat-
ing the stress and strain tensors through the generalized
Hooke’s law

�ij = cijk`uk` (29)

The elastic tensor can be seen as a coarse-grained ver-
sion of the dynamical matrix and can be obtained from
the momentum-space dynamical matrix D(q) near zero
momentum as [12, 25, 26]

cijk`

⇢
=

@
2
D

00
j`

@qi@qk
�

@D
0a
jm

@qi
[D�1]abmn

@D
b0
n`

@qk
(30)

where ⇢ is the density, indices i, . . . , n label spatial direc-
tions and a, b describe the particles, where a = 0 is the
center of mass. This expression is taken at momentum
q = 0 and the inverse D

�1 is computed in the orthogonal
complement of the kernel of the matrix. It is convenient
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FIG. 3. Elastic constants for an anisotropic Kagome
lattices. The elastic moduli K33, K44 and K34 = K43 are
plotted as a function of the twisting angle ✓ for a generic
situation where all inequivalent springs in the unit cell have
different stiffnesses. We have set k1 = k0, k1 = 2k0, k3 = 3k0.

to write the elastic tensor as the matrix [26, 27]

K
↵� =

X

ijk`

⌧
↵
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kl. (31)

Here, the matrices ⌧
↵ are

(⌧0
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1
, ⌧

2
, ⌧

3) = (�0
, �i�2

, �
3
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where �
↵ are Pauli matrices.
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lattices. The elastic moduli K33, K44 and K34 = K43 are
plotted as a function of the twisting angle ✓ for a generic
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Duality constraint acts as an emergent symmetry
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Odd elasticity in chiral active solids
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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Odd moduli: isotropy and angular momentum conservation
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Odd elasticity in chiral active solids
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
ZZ

Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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The theory of linear elasticity provides a foun-
dation for describing the mechanics of deforma-
tions of solid materials. However, active solids in
which the microscopic constituents can individu-
ally convert internal energy into work pose a chal-
lenge: the elastic free energy is not well defined.
In this letter, we construct a continuum mechan-
ics that we dub Odd Elasticity, which breaks the
major symmetry of the elastic tensor and thereby
allows for the treatment of active systems. We
construct explicit microscopic models composed
of active metabeams that actuate internal torques
in response to compression or extension, and we
show that these models, when coarse grained, give
rise to odd elasticity. We then verify our analyt-
ics with numerical simulations. We discover a va-
riety of odd-elastic phenomena: activity-induced
transition to auxetic behavior, chiral symmetry
breaking in isotropic solids, and active waves in
the overdamped regime in which no inertial waves
exist. Our work revisits the foundations of con-
tinuum mechanics and provides a path forward
for the construction of materials which convert
internal activity into useful mechanical work.

Recently, many materials with extreme mechanics have
been created by exploiting the nonlinearities inherent in
slender geometries []. This allows for unusual control
of materials properties, for example in the post-buckling
behavior of metabeams [? ]—beams that are designed
for their mechanical response. However, some common
features of linear elastic solids are constrained by the-
orems underpinning the theory of elasticity and cannot
be programmed at will. One example is linear Maxwell-
Betti reciprocity [? ], which relates the forcing and re-
sponse at two sites of an elastic solid in a principle much
like Archimedes’ law of the lever. As with many elastic
phenomena, reciprocity stems from the general fact that
elasticity arises from a potential and, therefore, the me-
chanics depends only on the state of deformation and not
on the path taken through deformation space. We show
that odd elasticity can break this path-independence us-
ing active metabeams.

To show how an odd elastic solid di↵ers from an ordi-
nary solid, we first consider the usual case of an elastic
tensor Kijmn arising from a potential energy E:

E =
1

2

Z
dx Kijmnuijumn, (1)

where the strain tensor uij(x) is defined as (@iuj+@jui)/2
in terms of the displacement vector field ui(x). The ex-
istence of a potential energy E implies the major sym-
metry: Kijmn = Kmnij [by a relabeling of indices in

Eq. (1)]. Microscopically, this symmetry originates from
constituents that interact only via potential (or conser-
vative) forces. Variation of the energy E with respect to
the strain yields the constitutive relation:

�ij = Kijmnumn, (2)

where �ij is the stress tensor.
In this letter, we consider the case in which the con-

stituents making up the solid medium are active, i.e. ca-
pable of converting an internal source of energy into work
or self-propelled motion. In this case, the energy is not
conserved and the expression in Eq. (1) is not valid.
Therefore, we may violate the major symmetry of the
stress tensor and write Kijkl in a more general form as:
Kijmn = Ke

ijmn + Ko
ijmn, with Ke

ijmn conservative and
symmetric, whereas the new odd elastic tensor is defined
via its antisymmetry:

Ko
ijmn = �Ko

mnij . (3)

With the more general Kijmn in place, we take Eq. (2)
to be the starting point of odd elasticity.
First we show that Ko

ijmn describes solids that are
not only non-conservative, but in addition have strain-
dependent activity. If a solid undergoes an infinitesimal
deformation, duij , the amount of work done by the solid
per unit volume is given by dw = �ijduij . As illustrated
in Fig. 1a, one may take the object on a cyclic path of fi-
nite but linear deformations, and compute the work done.
In this example, the first two steps of the cycle apply pure
shear, first at 45 degrees (top of Fig. 1a) and then along
the horizontal (right of Fig. 1a). These deformation are
then undone in the opposite order, with the first step
undone in the third part of the cycle by shearing the
solid in the opposite direction at 45 degrees to the hori-
zontal (bottom of Fig. 1a). Finally, the solid returns to
its initial configuration by undoing the second step (left
of Fig. 1a). Since the final and initial states of a cyclic
path are the same, the conservative forces due to Ke

ijmn,
which depend only on the state itself, do not contribute
to the net work output. The odd elastic tensor Ko

ijmn,
by contrast, makes a nonzero contribution given by:

�w =

I
Ko

ijmnumnduij = �
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Ko
ijmnduij^dumn, (4)

where the last expression uses the antisymmetric wedge
product “^” and comes from applying the generalized
Stokes theorem:

R
@D ! =

R
D d!. Equation (4) is evalu-

ated for the particular case of isotropic odd elasticity in
Fig. 1b, for which the work is proportional to the area
enclosed by the deformation cycle in shear-strain space.
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