Dualities and non-abelian mechanics

Vincenzo Vitelli UChicago

What's a symmetry ?

What's a symmetry ?

What's a symmetry ?

 $T(\measuredangle) = \measuredangle$

Symmetries are useful

Symmetries are useful

Character table

\Im_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
F_1	3	0	-1	1	-1
F_2	3	0	-1	-1	1
Σ	8	-1	0	0	0

Symmetries determine the degeneracies of vibrational modes

Symmetries are useful

point g	$c_{((ij)(k\ell))}$	
1	C_1	6
2	C_2	6
m	$C_{ m s}$	4
$2\mathrm{mm}$	C_{2v}	4
4	C_4	4
4mm	$C_{4\mathbf{v}}$	3
3	C_3	2
$3\mathrm{m}$	C_{3v}	2
6	C_6	2
6mm	C_{6v}	2

point group $C_{3v}(3m)$

 C_3 rotation + σ_v mirror

Symmetries determine the number of independent elastic moduli

What's a duality ?

What's a duality ?

What's a duality ?

The self-dual point

The self-dual point

Self-duality is an emergent symmetry

Can you engineer self-dualities for materials design ?

The twisted Kagome lattice

Twisting angle θ : a geometric control parameter

A family of twisted Kagome lattices

$$\theta = \theta_{c} - \Delta \theta \qquad \theta_{c} = \frac{\pi}{4} \qquad \theta^{*} = \theta_{c} + \Delta \theta$$

Guest Hutchinson mode

J. Mech. and Phys. Solids 51, 383 (2003).

A duality

A duality

A duality

What properties are constrained by the duality transformation?

Duality I: the vibrational spectrum

Duality I: the vibrational spectrum

Identical spectra above and below θ_c

Duality I: the vibrational spectrum

Double degeneracy for all wave vectors at θ_c

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436

Duality II: elastic moduli

Point group does not change with θ but number of moduli does

The duality operator $\hat{\mathcal{X}}$

dynamical matrix in momentum space

 $\mathscr{U}(k)D(\theta^*,-k)\mathscr{U}^{-1}(k) = D(\theta,k)$

An anti-unitary operator \mathscr{A}

A mechanical Kramers theorem

without fermionic time-reversal symmetry

A mechanical Kramers theorem

without fermionic time-reversal symmetry

band structure two-fold degenerate for all wavevectors at θ_c

commutes with dynamical matrix at
self-dual point
$$\theta_c$$
 dynamical matrix
 $\mathscr{A}(k)D(\theta_c, k)\mathscr{A}^{-1}(k) = D(\theta_c, k)$

 $\mathscr{A}(k) = \mathscr{U}(k)\Theta$ $\mathscr{A}(k)^2 = -\mathrm{Id}$

$$(m_1, m_2, m_3) = (1 - \delta m, 1, 1 + \delta m)$$

to get (adiabatic) geometric phases

Semiclassical evolution of wave-packet

Non-abelian geometric phases

$$W_1W_2 \neq W_2W_1$$

Mechanical spintronics

On the fly manipulations of mechanical spins

Linear elasticity

Hooke's law

$$\sigma_{ij} = K_{ijmn} u_{mn}$$

StressStiffness
TensorStrain

Independent entries of stiffness tensor are static elastic moduli

Hooke's law

(

$$\nabla_{ij} = K_{ijmn} u_{mn}$$

Stress Stiffness Strain

$$K_{ijmn} = K_{mnij}$$

Where does this symmetry come from?

Hooke's law
$$\sigma_{ij} = K_{ijmn} u_{mn}$$
 $\sigma_{ij} = \frac{\partial f}{\partial u_{ij}}$

If
$$f = \frac{1}{2} K_{ijmn} u_{ij} u_{mn}$$
 Elastic
Energy density

$$K_{ijmn} = K_{mnij}$$

Hooke's law

$$\sigma_{ij} = K_{ijmn} u_{mn}$$

$$\sigma_{ij} = \frac{\partial f}{\partial u_{ij}}$$

If

break microscopic energy conservation

$$f = \frac{1}{2} K_{ijmn} u_{ij} u_{mn}$$

Elastic Energy density

Odd elasticity

Visual representation of the stiffness tensor

Hooke's law
$$\sigma_{ij} = K_{ijmn} u_{mn}$$

$$\sigma^a = K^{ab} u^b$$

2D

Number of independent entries gives the number of elastic moduli

The stiffness tensor

Hooke's law $\sigma_{ij} = K_{ijmn} u_{mn}$

$$\sigma^a = K^{ab} u^b$$

2D

Number of independent entries gives the number of elastic moduli

The stiffness tensor

$$\sigma^a = K^{ab} u^b$$

Number of independent entries gives the number of elastic moduli

The stiffness tensor

$$\sigma^a = K^{ab} u^b$$

Number of independent entries gives the number of elastic moduli

The stiffness tensor with energy conservation

Only 6 independent coefficients remain

Computation of elastic moduli: Kagome lattice

Standard point group analysis misses constraints from duality

Computation of elastic moduli: Kagome lattice

Standard point group analysis misses constraints from duality

Dualities and elastic moduli

$$D(\theta, q) = \mathscr{U}(q)D(\theta^*, -q)\mathscr{U}^{-1}(q)$$

$$K(\theta) = VK(\theta^*)V^{\dagger}$$

$$K(\theta) = \begin{pmatrix} K^{00} & 0 & K^{02} & K^{03} \\ 0 & 0 & 0 & 0 \\ K^{02} & 0 & K^{22} & K^{23} \\ K^{03} & 0 & K^{23} & K^{33} \end{pmatrix} \quad VK(\theta^*)V^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & K^{00} & K^{03} & -K^{02} \\ 0 & K^{03} & K^{33} & -K^{23} \\ 0 & -K^{02} & -K^{23} & K^{22} \end{pmatrix}$$

these must vanish!

M. Fruchart and V. Vitelli in preparation

here we have $V = \sigma_3 \otimes i\sigma_2$

Dualities and elastic moduli: Kagome lattice

duality constrains the elastic moduli for all θ : only shear moduli at the self-dual point the elastic tensor is **isotropic**

Duality constraint acts as an emergent symmetry

Odd moduli

9 independent coefficients remain

Odd moduli: isotropy and angular momentum conservation

1 odd coefficient remains: Hall modulus analogous to Hall viscosity

Microscopic model: active bonds

Compression/elongation induce active torques

Microscopic model: active bonds

Active bonds are microscopic engines that harvest energy around loops

Odd elastodynamics

Active phonons propagate in over damped media

Odd elastodynamics

Active phonons propagate in over damped media

Phonons in non-Hermitian mechanics

Exceptional Point

Visual summary

Dualities and symmetries Non-abelian sound

Non-Hermitian mechanics

Thanks

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436 Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, *arXiv:1902.07760*

Visual summary

Dualities and symmetries Non-abelian sound

Non-Hermitian mechanics

Thanks

M. Fruchart, Y. Zhou, V. Vitelli, Nature (in press), arXiv:1904.07436 Scheibner, Souslov, Banerjee, Surowka, Irvine, Vitelli, *arXiv:1902.07760*