

Bulk-edge corresponding in topological pumping A simple reason of quantization of pumped charge

Y. Hatsugai

Univ. Tsukuba

"Bulk-edge correspondence in a topological pumping", Y.Hatsugai & T. Fukui, Phys. Rev. B 94, 041102(R), (2016)

Plan

Topological pumping ☆ Back to Thouless Time as a synthetic dimension of QHE Experimental realizations after 30 years 😪 Edge states ? Pumped charge & Berry connection Pumped charge, Berry connection & Temporal gauge Pumped charge & edge states Temporal gauge & center of mass (CM) 😪 Singular motion of CM ☆ The Chern number & BEC Observations ☆ Adiabatic & non-adiabatic Direct simulations

Adiabatic pump (Thouless '83)

Periodically driven1D charge transport $\begin{aligned} & \text{Many-body but non-interacting as IQHE} \\ & i\hbar\partial_t |G(t)\rangle = H(t)|G(t)\rangle \quad |G(t)\rangle = Te^{-(i/\hbar)\int_{t_0}^t d\tau H(\tau)} |G(t_0)\rangle \end{aligned}$ $H(t) = \sum \left[-t_x c_{j+1}^{\dagger} c_j + h.c. + v_j(t) c_j^{\dagger} c_j \right]$ free fermion manybody $v_j(t+T) = v_j(t)$ period T 1.5 **ex.** $v_j(t) = -2t_y \cos(2\pi \frac{t}{T} - 2\pi \phi j) \phi = p/q$

Adiabatic : ground state is gapped & slow pumping

 $\Delta E \gg \hbar/T$ | Topological !

Pumped charge is quantized as an integer

Back to Thouless '83

Time dependent 1D charge transport

PHYSICAL REVIEW B

VOLUME 27, NUMBER 10

15 MAY 1983

1+1=2 Quantization of particle transport Time as a synthetic dimension

> D. J. Thouless Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (Received 4 February 1983)

> > 2D Integer quantum Hall effect

TKNN '82 Hall conductance by the Chern number Wang-Troyer-Dai '13

Brouwer '98

Marra-Citro-Ortix '15

Experimentally realized in cold atoms after 30+ years in '15

Y.Takahashi, Kyoto Nakajima et al., Nature Phys. 12, 296 (2016) I. Bloch, Munich Lohse et al., Nature Phys. 12, 350 (2016)

Topological Thouless Pumping of Ultracold Fermions

Shuta Nakajima, Takafumi Tomita, Shintaro Taie, Tomohiro Ichinose, Hideki Ozawa, Lei Wang, Matthias Troyer, Yoshiro Takahashi

A Thouless Quantum Pump with Ultracold Bosonic Atoms in an Optical Superlattice

Michael Lohse, Christian Schweizer, Oded Zilberberg, Monika Aidelsburger, Immanuel Bloch

Topoquant, KITP, Oct. 14 (2016) If topological, then edge states ?

Not much for the topological pump Try to revisit the old problem & More than reinterpretation & New view points even technically

Topoquant, KITP, Oct. 14 (2016) QHE (Hofstadter's)

 $\phi = 2/7$

Topoquant, KITP, Oct. 14 (2016) amples 1 $\phi = -1/7$ $t_x = 1, t_y = 1$ ho = 1/7C = -3 $\rho = 2/7$ C= -1 $\rho = 3/7$ C = -2 \rightarrow \approx \Rightarrow $\blacktriangleright \approx \gg \rightarrow$ $\blacktriangleright \approx \rtimes \rightarrow$ 2.0 2.0 2.0 1.5 1.5 1.5 1.0 1.0 1.0 • 0.5 0.5 0.5

ho=4/7 C= +3

 $v_j(t) = -2t_y \cos(2\pi \frac{t}{T} - 2\pi \phi j) \qquad \phi = p/q$

Topoquant, KITP, The pumping is topological ! (Thouless)

 $\mathcal{O}(N^0)$ charge is pumped for an insulator with N particles

Pumped charge is quantized if gapped

Independent of the parameters

ho = 4/7 C= +,

wave dynamics: quantum (weak potential)

ho = 4/7 C= +

 $t_x \ll t_y$

 $t_x \ll |v_j|$

quantum tunneling: semi-classical j (deep potential)

easy to count charge !

Topoquant, KITP, Oct. 14 (2016) (quantum tunneling) $t_x/t_y \ll 1$ Diophantine eq. (TKNN) $t_x \ll |v_j|$ Count in the tunneling limit if topological[®] $\phi = p/q = 2/7$ $\epsilon_j(t) = \epsilon_{j'}(t)$ Tunneling condition ** $\rho = r/q = 3/7$ $\epsilon_j(t) = -2t_y \cos(2\pi\phi j - 2\pi\frac{t}{T})$ ★ 1 $2\pi\phi j - 2\pi\frac{t}{T} = -(2\pi\phi j' - 2\pi\frac{t}{T}) + 2\pi s \quad s \in \mathbb{Z}$ 2.0 Tunneling at the filling r per unit r: oddr: even $\epsilon_j(t) = -2t_y \cos(\pi \frac{r}{q})$ r = 5r = 4 $-2t_y/\cos\pi\frac{4}{q}$ $-2t_y \cos \pi - \frac{5}{2}$ * 2 $\pi \frac{r}{a} = 2\pi\phi j - 2\pi \frac{t}{T}$ $\Delta j = t = C = -2$ **★** 1& **★** 2 2.0 Diophantine eq. (TKNN) : algebraic $r = pt + qs \equiv pt \pmod{q}$ p = 2, q = 7(r,t,s) = (1,-3,1) $t = \Delta j = j - j' \quad |t| \le q/2$ (2, +1, 0): analytic (integral) = Chern number C (3, -2, 1)(4, +2, 0)Magic ! Streda formula: $C = \frac{dN}{dB} = \frac{d(r/q)}{d\phi} = \frac{r/q}{p/q} = t$ (5, -1, 1)(6, +3, 0)

Diophantine eq. (TKNN) $t_x/t_y \ll 1$ (quantum tunneling) ★ 1 $2\pi\phi j - 2\pi\frac{t}{T} = -(2\pi\phi j' - 2\pi\frac{t}{T}) + 2\pi s$ $\phi = p/q = 2/7$ $\frac{p}{q}j = -\frac{p}{q}j' + \frac{2t}{T} + s$ $\rho = r/q = 3/7$ \star 2 $\pi \frac{r}{a} = 2\pi\phi j - 2\pi \frac{t}{T}$ $\frac{r}{a} = 2\frac{p}{a}j - \frac{2t}{T}$ $\frac{r}{q} = \frac{p}{q}(j - j') + s$ $\Delta j = t = C = -2$ **±** 1& **±** 2 2.0 Diophantine eq. (TKNN) : algebraic p = 2, q = 7 $r = pt + qs \equiv pt \pmod{q}$ (r, t, s) = (1, -3, 1) $t = \Delta j = j - j' \quad |t| \le q/2$ (2, +1, 0): analytic (integral) = Chern number C (3, -2, 1)(4, +2, 0)Magic ! Streda formula: $C = \frac{dN}{dB} = \frac{d(r/q)}{d\phi} = \frac{r/q}{p/q} = t$ (5, -1, 1)

(6, +3, 0)

Topoquant, KITP, Oct. 14 (2016) Diophantine eq. (TKNN) $t_x/t_u \ll 1$ (quantum tunneling) $\phi = p/q = 2/7$ $\epsilon_j(t) = \epsilon_{j'}(t)$ Tunneling condition $\rho = r/q = 3/7$ $\epsilon_j(t) = -2t_y \cos(2\pi\phi j - 2\pi\frac{t}{T})$ * 1 $2\pi\phi j - 2\pi\frac{t}{T} = -(2\pi\phi j' - 2\pi\frac{t}{T}) + 2\pi s \quad s \in \mathbb{Z}$ Tunneling at the filling r per unit r: odd $\epsilon_j(t) = -2t_y \cos(\pi \frac{r}{q})$ r: even $r = 4 -2t_y \cos \pi \frac{4}{q}$ r = 5 $-2t_y \cos \pi - 5$ ***** 2 $\pi \frac{r}{a} = 2\pi\phi j - 2\pi \frac{t}{T}$ $\Delta j = t = C = -2$ **★** 1& **★** 2 Diophantine eq. (TKNN) : algebraic p = 2, q = 7 $r = pt + qs \equiv pt \pmod{q}$ (r,t,s) = (1,-3,1) $t = \Delta j = j - j' \quad |t| \le q/2$ (2, +1, 0): analytic (integral) = Chern number C (3, -2, 1)(4, +2, 0)Magic ! Streda formula: $C = \frac{dN}{dB} = \frac{d(r/q)}{d\phi} = \frac{r/q}{p/q} = t$ (5, -1, 1)(6, +3, 0)

2.0

2.0

Adiabatic pump (Thouless '83)

Periodically driven1D charge transport

$$\begin{split} \mathrm{i}\hbar\partial_t |G(t)\rangle &= H(t)|G(t)\rangle \quad |G(t)\rangle = Te^{-(\mathrm{i}/\hbar)\int_{t_0}^t d\tau H(\tau)} |G(t_0)\rangle \\ H(t) &= \sum_{j}^L \left[-t_x c_{j+1}^\dagger c_j + h.c. + v_j(t) c_j^\dagger c_j \right] & \text{free fermion} \\ \max v_j(t+T) &= v_j(t) \quad \text{period } T \\ \exp v_j(t) &= -2t_y \cos(\frac{t}{T} + 2\pi\phi j) \end{split}$$

Adiabatic : ground state is gapped & slow pumping

 $\Delta E \gg \hbar/T$ Topological !

Pumped charge is quantized as an integer

Topoquant, KITP, Oct. 14 (2016) Thouless '83 Pumped charge by adiabatic approximation

L

$$\begin{split} j &= \langle G|J|G\rangle & H(\theta,t) = \sum_{j} \left[-t_{x}e^{-i\frac{\theta}{L_{x}}}c_{j+1}^{\dagger}c_{j} + h.c. + v_{j}(t)c_{j}^{\dagger}c_{j} \right] \\ J &= \frac{1}{L_{x}} (+i\frac{t_{x}}{\hbar}e^{-i\theta/L_{x}}) \sum_{j} c_{j+1}^{\dagger}c_{j} + h.c & \text{twist} \\ &= +\hbar^{-1}\partial_{\theta}H(\theta) & |\alpha(t)\rangle \colon \text{Snapshot eigen state} \\ H(t)|\alpha(t)\rangle &= E_{\alpha}(t)|\alpha(t)\rangle, \quad \langle \alpha|\beta\rangle = \delta_{\alpha\beta}. \\ |G\rangle &= e^{-(i/\hbar)\int_{0}^{t}dt'E_{g}(t')}e^{i\gamma(t)} \left[|g\rangle + i\hbar \sum_{\alpha\neq g} \frac{|\alpha\rangle\langle\alpha|\partial_{t}g\rangle}{E_{\alpha} - E_{g}} \right] \end{split}$$

$$\delta j_x = \langle G|J|G \rangle - \langle g|J|g \rangle = -\mathrm{i}B$$

 $B = \partial_{\theta} A_t - \partial_t A_{\theta}, \ A_{\mu} = \langle g | \partial_{\mu} g \rangle, \quad \mu = \theta, t.$

Pumped charge & Berry connection

/ith/without edges

Pumped charge in T

$$\Delta Q = \int_{0}^{T} dt \,\delta j_{x} = -i \int_{0}^{T} dt \,B$$
Adiabatic appr.

$$B = \partial_{\theta}A_{t} - \partial_{t}A_{\theta}$$
fwist

$$t_{x} \rightarrow t_{x}e^{-i\theta/L}$$
Berry connection $A_{\mu} = \langle g | \partial_{\mu}g \rangle, \quad \mu = t, \theta$

$$|g(t)\rangle : \quad H(t)|g(t)\rangle = E(t)|g(t)\rangle$$
snapshot ground state
 B is invariant for the phase choice of $|g\rangle$: gauge freedom
Temporal gauge: $A_{t}^{(t)} = 0$

$$B = \partial_{\theta}A_{t} - \partial_{t}A_{\theta}$$

$$\Delta Q = i \int_{0}^{T} dt \,\partial_{t}A_{\theta}^{(t)} = i [A_{\theta}^{(t)}(T) - A_{\theta}^{(t)}(0)]$$
Physical observable
Briterian for the phase choice of gauge freedom

 \mathbf{A}

 θ

Topoquant, KITP, Oct. 14 (2016)

$$\begin{array}{c} \hline \textbf{Temporal gauge:} \quad A_{t}^{(t)} = 0 \\ \hline \textbf{Temporal gauge:} \quad A_{t}^{(t)} = 0 \\ \hline \textbf{Gauge transformation} \quad \langle g' | \partial_{\mu}g' \rangle = \langle g | \partial_{\mu}g \rangle + i \partial_{\mu}\chi, \quad |g' \rangle = |g\rangle e^{i\chi} \\ \hline \textbf{Gauge transformation} \quad \langle g' | \partial_{\mu}g' \rangle = \langle g | \partial_{\mu}g \rangle + i \partial_{\mu}\chi, \quad |g' \rangle = |g\rangle e^{i\chi} \\ \hline \textbf{Gauge transformation} \quad general \\ A_{\mu}^{(t)}(t,\theta) = A_{\mu}(t,\theta) + i \partial_{\mu}\chi(t,\theta) \\ \hline \textbf{C}:(0,0) \rightarrow (0,\theta) \rightarrow (t,\theta) \\ \hline \textbf{G}:(0,0) \rightarrow (t,\theta) \\ \hline \textbf{G}:(0,$$

L

$\phi = 1/7, \rho = 3/7, C = 3$ With/without edges

periodic

Singular motion of CM

Contribution of the edge state for P is $\frac{j - j_0}{L} \to \pm \frac{1}{2} \begin{array}{c} \underset{j \sim L}{\text{exponentially explosed}} \\ j \sim L \\ j \sim 1 \end{array}$ $j_0 = L/2 \quad (L \to \infty)$ filled $\Delta P(t_i) = P(t_i^+) - P(t_i^-)$ -1/2: becomes unoccupied at R = { +1/2: becomes occupied at R +1/2: becomes unoccupied at L -1/2: becomes occupied at L

 $P(t) = \sum_{j} x_{j} \rho_{j} \quad \begin{array}{l} x_{j} = (j - j_{0})/L \in [-1/2, 1/2] \\ \rho_{j} = \rho(x_{j}) = \langle g(0) | n_{j} | g(0) \rangle \end{array}$

Singular motion of CM due to edge states

Contribution of the edge state for P is $\frac{j - j_0}{L} \rightarrow \pm \frac{1}{2} \stackrel{\text{exponentially localized}}{j \sim L} \\ j \sim 1 \\ j_0 = L/2 \quad (L \rightarrow \infty)$ $\Delta P(t_i) = P(t_i^+) - P(t_i^-)$ $= \begin{cases} -1/2: \text{ becomes unoccupied at R} \\ +1/2: \text{ becomes occupied at R} \\ +1/2: \text{ becomes unoccupied at L} \\ -1/2: \text{ becomes occupied at L} \end{cases}$

 $P(t) = \sum_{i} x_{j} \rho_{j} \quad \begin{array}{l} x_{j} = (j - j_{0})/L \in [-1/2, 1/2] \\ \rho_{j} = \rho(x_{j}) = \langle g(0) | n_{j} | g(0) \rangle \end{array}$

How much pumped?

P(t) is periodic function ! P(t)0.4 0.2 t_4 t_5 t_3 -0.2 -0.4 integrate along the red curves -0.6

 $\Delta P(t_i) = P(t_i^+) - P(t_i^-)$ = { -1/2: become unoccupied at R +1/2: become occupied at R +1/2: become unoccupied at L -1/2: become occupied at L

patch work in time domain Pump by bulk $\sum_{t+1} \int_{t+1}^{t_{i+1}^-} dt \,\partial_t P(t) = \sum_{i} \left[P(t_{i+1}^-) - P(t_i^+) \right]$ $-\sum \left[P(t_i^+) - P(t_i^-)\right] = -\sum \Delta P(t_i)$ periodicity in time sum of the discontinuities

Bulk-edge correspondence in time domain — due to edge states

odified aughlin argument Quantization & conservation law

Number of the discontinuities (SUM) are EVEN !

Conservation of charge & periodicity in time

become occupied paired

Quantization & conservation law

odified Laughlin argument

 $\Delta P(t_i) = P(t_i^+) - P(t_i^-)$ $= \begin{cases} -1/2: \text{ become unoccupied at } R \\ +1/2: \text{ become occupied at } R \\ +1/2: \text{ become unoccupied at } L \\ -1/2: \text{ become occupied at } L \end{cases}$

$$\Delta Q = -\sum_{i} \Delta P(t_i) = -\sum_{i} \left(\pm \frac{1}{2} \right) = \text{integer } I$$

Number of the discontinuities (SUM) are EVEN !

Conservation of charge & periodicity in time

Quantization & conservation law

odified Laughlin argument

 $\Delta P(t_i) = P(t_i^+) - P(t_i^-)$ $= \begin{cases} -1/2: \text{ become unoccupied at } R \\ +1/2: \text{ become occupied at } R \\ +1/2: \text{ become unoccupied at } L \\ -1/2: \text{ become occupied at } L \end{cases}$

$$\Delta Q = -\sum_{i} \Delta P(t_i) = -\sum_{i} \left(\pm \frac{1}{2} \right) = \text{integer } I$$

Identify the discontinuities as massive Dirac fermions $-\frac{1}{2} \operatorname{sgn} m$

Edge states correspond to massive Dirac fermions (fractionalized)

Pumped charge as a Chern number

(ithout edges (BULK)

Pumped charge as a Chern number

Pumped charge as a Chern number

 $iA_{\theta}^{(t)}(t) = P(t)$ CM is not well defined for the bulk (Bloch state) $iA_{\theta}^{(t)}(t)$ is still well defined (non periodic in time)

Pumped charge as a Chern number

$$\Delta Q = \mathbf{i} \int_{0}^{T} dt \,\partial_{t} A_{\theta}^{(t)} = \frac{1}{2\pi \mathbf{i}} \int_{0}^{T} dt \int_{0}^{\Delta k} dk_{x} \, b(k_{x}, t) \equiv C$$

$$b = \partial_{k_{x}} a_{t} - \partial_{t} a_{k_{x}}$$

$$a_{k_{x}}^{(t)} = \operatorname{Tr}_{M} \mathcal{A}_{k_{x}}^{(t)}$$

$$\mathcal{A}_{k_{x}}^{(t)} = u^{\dagger} \partial_{k_{x}} u$$

$$u = (u_{1}, \cdots, u_{M}),$$

$$u_{\ell}(k_{x}, t) \text{ Bloch state of the } \ell \text{-th band}$$

$$I(\operatorname{edge}) = C(\operatorname{bulk})$$
discontinuities Chern number
Bulk-edge correspondence between the topological numbers
Then the Chern number is integer at well 1 (non trivial)

CM is only well-defined with edges no way to define CM with periodic boundary condition

> Pumped charge is carried by bulk but is described by the discontinuity due to edge states

This is the bulk-edge correspondence Discontinuity: breakdown of the adiabaticity due to gapless edge states, then it is never observed in real experiments of finite speed pump !

Edge states: Do Not contribute the experiments BUT still protect quantization of the pumped charge

6

Note !

Discontinuity: breakdown of the adiabaticity due to gapless edge states, then it cannot be observed in real experiments of finite speed pump ! (if the system is large enough)

Thank you