
juggling at each site

## Bulk-edge corresponding in topological pumping

A simple reason of quantization of pumped charge

## Y. Hatsugai

## Univ. Tsukuba

"Bulk-edge correspondence in a topological pumping", Y.Hatsugai \& T. Fukui, Phys. Rev. B 94, 041102(R), (2016)
«Topological pumping
¿Back to Thouless
$\gtrsim$ Time as a synthetic dimension of QHE
$\approx$ Experimental realizations after 30 years
Edge states?
Pumped charge \& Berry connection
i Pumped charge, Berry connection \& Temporal gauge
Pumped charge \& edge states
Temporal gauge \& center of mass (CM)
Tingular motion of CM
$\approx$ The Chern number \& BEC
~Observations
A Adiabatic \& non-adiabatic
~ Direct simulations

## Adiabatic pump (Thouless '83)

Periodically driven 1D charge transport Many-body but non-interacting as IQHE

$$
\begin{aligned}
& \mathrm{i} \hbar \partial_{t}|G(t)\rangle=H(t)|G(t)\rangle \quad|G(t)\rangle=T e^{-(\mathrm{i} / \hbar) \int_{t_{0}}^{t} d \tau H(\tau)}\left|G\left(t_{0}\right)\right\rangle \\
& H(t)=\sum_{j}^{L}\left[-t_{x} c_{j+1}^{\dagger} c_{j}+\text { h.c. }+v_{j}(t) c_{j}^{\dagger} c_{j}\right] \begin{array}{l}
\text { free fermion } \\
\text { anybody }
\end{array} \\
& v_{j}(t+T)=v_{j}(t) \text { period } T \\
& \text { ex. } v_{j}(t)=-2 t_{y} \cos \left(2 \pi \frac{t}{T}-2 \pi \phi j\right) \\
& \phi=p / q
\end{aligned}
$$

Adiabatic: ground state is gapped \& slow pumping

## $\Delta E \gg \hbar / T$ Topological!

Pumped charge is quantized as an integer

## Back to Thouless ' 83

## Time dependent 1D charge transport

 PHYSICAL REVIEW BVOLUME 27, NUMBER 10
15 MAY 1983

$$
1+1=2
$$

Time as a synthetic dimension
Quantization of particle transport


> D. J. Thouless
(Received 4 February 1983)

## 2D Integer quantum Hall effect

TKNN '82 Hall conductance by the Chern number

## Brouwer '98 Wang-Troyer-Dai '13

Marra-Citro-Ortix '15
Experimentally realized in cold atoms after 30+ years in '15
Y.Takahashi, Kyoto Nakajima et al., Nature Phys. 12, 296 (2016)
I. Bloch, Munich Lohse et al.,
Nature Phys. 12, 350 (2016)

## Topological Thouless Pumping of Ultracold Fermions

Shuta Nakajima, Takafumi Tomita, Shintaro Taie, Tomohiro Ichinose, Hideki Ozawa, Lei Wang, Matthias Troyer, Yoshiro Takahashi

## A Thouless Quantum Pump with Ultracold Bosonic Atoms in an Optical Superlattice

Michael Lohse, Christian Schweizer, Oded Zilberberg, Monika Aidelsburger, Immanuel Bloch

Topoquant, KITP, Oct. 14 (2016)
If fopological, then edge states?


Not much for the topological pump
Try to revisit the old problem $\approx$ More than reinterpretation
New view points even technically

Topoquant, KITP, Oct. 14 (2016)
QHE (Hofstadter's)



$$
\phi=2 / 7
$$

## 

Periodic in

$$
k_{y} \rightarrow 2 \pi \frac{t}{T}
$$

periodic pumping in 1D
Harper eq. (1D for each $t$ )
 but many body

Adiabatic limit
$\Delta E \gg \hbar / T$

Filling states below EF $\xrightarrow[0.0]{ } \xrightarrow{-3.0}$| filled |  |  |  |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{k}_{\mathrm{y}}$ | period: $T$ |  |
| 0 |  |  |  |

$$
\begin{aligned}
& -t_{x}\left(\psi_{m+1}+\psi_{m-1}\right)-2 t_{y} \cos \left(k_{y}-2 \pi \frac{p}{q} m\right) \psi_{m}=E \psi_{m} \\
& -t_{x}\left(\psi_{m+1}+\psi_{m-1}\right)-2 t_{y} \cos \left(2 \pi \frac{t}{T}-2 \pi \frac{p}{q} m\right) \psi_{m}=E \psi_{m}
\end{aligned}
$$

Topoquant, KITP, Oct. 14 (2016)
Examples $1 \quad \phi=-1 / 7 \quad t_{x}=1, t_{y}=1$

$$
\rho=1 / 7 \quad \mathrm{C}=-1 \quad \rho=2 / 7 \quad \mathrm{C}=-2 \quad \rho=3 / 7 \quad \mathrm{C}=-3
$$




$0=4 \pi+43$
$\rho=5 / 7$
$\mathrm{C}=+2 \quad \rho=6 / 7$
$C=+1$


$$
v_{j}(t)=-2 t_{y} \cos \left(2 \pi \frac{t}{T}-2 \pi \phi j\right) \quad \phi=p / q
$$

The pumping is topological! (Thouless)
$\mathcal{O}\left(N^{0}\right)$ charge is pumped for an insulator with $N$ particles

Pumped charge is quantized if gapped
Independent of the parameters

Examples $2 \quad \phi=-1 / 7 \quad t_{x}=1, t_{y}=0.1$

$\rho=2 / 7$
$C=-2$
$\rho=3 / 7$
$C=-3$


$\rho=4 / 7$
$C=+3$
$\rho=5 / 7$
$\mathrm{C}=+2 \quad \rho=6 / 7$
$C=+1$



$t_{x} \gg t_{y}$
$t_{x} \gg\left|v_{j}\right|$
wave dynamics: quantum
(weak potential)

Topoquant, KITP, Oct. 14 (2016)
Examples $3 \quad \phi=-1 / 7 \quad t_{x}=0.01, t_{y}=1$
$\rho=1 / 7$
$C=-1$
$\rho=2 / 7$
$C=-2$
$\rho=3 / 7$
$C=-3$



$\rho=4 / 7 \quad \mathrm{C}=+3$
$\rho=5 / 7$
$\mathrm{C}=+2 \quad \rho=6 / 7$
$C=+1$

- $\hat{\boldsymbol{*}} \approx \rightarrow$



$t_{x} \ll t_{y} \quad$ quantum tunneling: semi-classical $t_{x} \ll\left|v_{j}\right|$ (deep potential)


## (quantum tunneling) $t_{x} / t_{y} \ll 1$

Topoquant, KITP, Oct. 14 (2016)
Dibphantine eq. (TKNN) $t_{x} \ll\left|v_{j}\right|$
Count in the tunneling limit if topological

$$
\begin{aligned}
& \phi=p / q=2 / 7 \\
& \rho=r / q=3 / 7
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{j}(t)=\epsilon_{j^{\prime}}(t) \quad \text { Tunneling condition } \\
& \epsilon_{j}(t)=-2 t_{y} \cos \left(2 \pi \phi j-2 \pi \frac{t}{T}\right) \\
& \star \quad \quad 2 \pi \phi j-2 \pi \frac{t}{T}=-\left(2 \pi \phi j^{\prime}-2 \pi \frac{t}{T}\right)+2 \pi s \quad s \in \mathbb{Z}
\end{aligned}
$$



Tunneling at the filling $r$ per unit
$\epsilon_{j}(t)=-2 t_{y} \cos \left(\pi \frac{r}{q}\right)$
$\star \approx \pi \frac{r}{q}=2 \pi \phi j-2 \pi \frac{t}{T}$

$$
\Delta j=t=C=-2
$$



$$
\begin{aligned}
& p=2, q= \\
& \begin{aligned}
\\
(r, t, s)=
\end{aligned} \\
&(1,-3,1) \\
&(2,+1,0) \\
&(3,-2,1) \\
&(4,+2,0) \\
&(5,-1,1) \\
&(6,+3,0)
\end{aligned}
$$

Diophantine eq. (TKNN)

$$
\begin{aligned}
r & =p t+q s \equiv p t(\bmod q) \\
t & =\Delta j=j-j^{\prime} \quad|t| \leq q / 2 \\
& =\text { Chern number } \mathrm{C}
\end{aligned}
$$

Magic!

Streda formula: $C=\frac{d N}{d B}=\frac{d(r / q)}{d \phi}=\frac{r / q}{p / q}=t$

Dophantine eq. (TKNN) $t_{x} / t_{y} \ll 1$ (quantum tunneling)

$$
\begin{aligned}
& \phi=p / q=2 / 7 \\
& \rho=r / q=3 / 7
\end{aligned}
$$

夫 $12 \pi \phi j-2 \pi \frac{t}{T}=-\left(2 \pi \phi j^{\prime}-2 \pi \frac{t}{T}\right)+2 \pi s$

$$
\frac{p}{q} j=-\frac{p}{q} j^{\prime}+\frac{2 t}{T}+s
$$



$$
\begin{array}{r}
\star 2 \quad \pi \frac{r}{q}=2 \pi \phi j-2 \pi \frac{t}{T} \\
\frac{r}{q}=2 \frac{p}{q} j-\frac{2 t}{T}
\end{array}
$$

II

$$
\frac{r}{q}=\frac{p}{q}\left(j-j^{\prime}\right)+s
$$

$$
\Delta j=t=C=-2
$$



$$
\begin{aligned}
& { }^{\star 1 \& \star 2} \text { Diophantine eq. (TKNN) } \\
& r=p t+q s \equiv p t(\bmod q): \text { algebraic } \\
& t=\Delta j=j-j^{\prime} \quad|t| \leq q / 2 \\
& (2,+1,0) \\
& \text { = Chern number } \mathrm{C} \text { : analytic (integral) } \\
& \text { Magic! } \\
& \text { Streda formula: } C=\frac{d N}{d B}=\frac{d(r / q)}{d \phi}=\frac{r / q}{p / q}=t
\end{aligned}
$$

## Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto, ${ }^{(a)}$ M. P. Nightingale, and M. den Nijs Department of Physics, University of Washington, Seattle, Washington 98195 (Received 30 April 1982)

$$
s \in \mathbb{Z}
$$


(a)

(b)

FIG. 1. Motion of electrons in the $\boldsymbol{x}$ direction under the influence of an electric field in the $y$ direction for $V \ll V^{\prime}$, for the two cases (a) $\varphi=5$ and (b) $\varphi=\frac{5}{3}$.


$$
(6,+3,0)
$$

$$
\text { Streda formula: } C=\frac{d N}{d B}=\frac{d(r / q)}{d \phi}=\frac{r / q}{p / q}=t
$$

Dbphantine eq. (TKNN) $\quad t_{x} / t_{y} \ll 1$ (quantum tunneling)

$$
\begin{aligned}
\phi & =p / q=2 / 7 \\
\rho & =r / q=3 / 7
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{j}(t)=\epsilon_{j^{\prime}}(t) \quad \text { Tunneling condition } \\
& \quad \epsilon_{j}(t)=-2 t_{y} \cos \left(2 \pi \phi j-2 \pi \frac{t}{T}\right) \\
& \star \quad 2 \pi \phi j-2 \pi \frac{t}{T}=-\left(2 \pi \phi j^{\prime}-2 \pi \frac{t}{T}\right)+2 \pi s \quad s \in \mathbb{Z}
\end{aligned}
$$

Tunneling at the filling $r$ per unit
$\epsilon_{j}(t)=-2 t_{y} \cos \left(\pi \frac{r}{q}\right)$
$\star 2 \pi \frac{r}{q}=2 \pi \phi j-2 \pi \frac{t}{T}$

$$
\Delta j=t=C=-2
$$


$\begin{aligned} p=2, q= & 7 \\ (r, t, s)= & (1,-3,1) \\ & (2,+1,0) \\ & (3,-2,1) \\ & (4,+2,0)\end{aligned}$
$(5,-1,1)$
$(6,+3,0)$

Diophantine eq. (TKNN)

$$
r=p t+q s \equiv p t(\bmod q) \quad: \text { algebraic }
$$

$$
t=\Delta j=j-j^{\prime} \quad|t| \leq q / 2
$$

$$
=\text { Chern number } \mathrm{C}
$$

Magic!
Streda formula: $C=\frac{d N}{d B}=\frac{d(r / q)}{d \phi}=\frac{r / q}{p / q}=t$

## Adiabatic pump (Thouless '83)

Periodically driven 1D charge transport

$$
\begin{aligned}
& \mathrm{i} \hbar \partial_{t}|G(t)\rangle=H(t)|G(t)\rangle \quad|G(t)\rangle=T e^{-(\mathrm{i} / \hbar) \int_{t_{0}}^{t} d \tau H(\tau)}\left|G\left(t_{0}\right)\right\rangle \\
& H(t)=\sum_{j}^{L}\left[-t_{x} c_{j+1}^{\dagger} c_{j}+\text { h.c. }+v_{j}(t) c_{j}^{\dagger} c_{j}\right] \quad \begin{array}{l}
\text { free fermion } \\
\text { manybody }
\end{array} \\
& v_{j}(t+T)=v_{j}(t) \text { period } T \\
& \quad \text { ex. } v_{j}(t)=-2 t_{y} \cos \left(\frac{t}{T}+2 \pi \phi j\right)
\end{aligned}
$$

Adiabatic: ground state is gapped \& slow pumping

## $\Delta E \gg \hbar / T$ Topological!

Pumped charge is quantized as an integer

## Pumped charge by adiabatic approximation

$$
\begin{aligned}
& \begin{aligned}
j & =\langle G| J|G\rangle
\end{aligned} \quad H(\theta, t)=\sum_{j}^{L}\left[-t_{x} e^{-\mathrm{i} \frac{\theta}{L_{x}}} c_{j+1}^{\dagger} c_{j}+h . c .+v_{j}(t) c_{j}^{\dagger} c_{j}\right] \\
& J=\frac{1}{L_{x}}\left(+\mathrm{i} \frac{t_{x}}{\hbar} e^{-\mathrm{i} \theta / L_{x}}\right) \sum_{j} c_{j+1}^{\dagger} c_{j}+h . c \\
&=+\hbar^{-1} \partial_{\theta} H(\theta) \quad|\alpha(t)\rangle: \text { Snapshot eigen state } \\
&|G(t)| \alpha(t)\rangle=E_{\alpha}(t)|\alpha(t)\rangle, \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta} . \\
&|G\rangle=e^{-(\mathrm{i} / \hbar) \int_{0}^{t} d t^{\prime} E_{g}\left(t^{\prime}\right)} e^{\mathrm{i} \gamma(t)}\left[|g\rangle+\mathrm{i} \hbar \sum_{\alpha \neq g} \frac{|\alpha\rangle\left\langle\alpha \mid \partial_{t} g\right\rangle}{E_{\alpha}-E_{g}}\right]
\end{aligned}
$$

$$
\delta j_{x}=\langle G| J|G\rangle-\langle g| J|g\rangle=-\mathrm{i} B
$$

$$
B=\partial_{\theta} A_{t}-\partial_{t} A_{\theta}, \quad A_{\mu}=\left\langle g \mid \partial_{\mu} g\right\rangle, \quad \mu=\theta, t .
$$

## Pumped charge \& Berry connection

- Pumped charge in $T$

$$
\Delta Q=\int_{0}^{T} d t \delta j_{x}=-\mathrm{i} \int_{0}^{T} d t B
$$

Thouless '83

$$
\begin{aligned}
B & =\partial_{\theta} A_{t}-\partial_{t} A_{\theta} \\
\text { Berry connection } A_{\mu} & =\left\langle g \mid \partial_{\mu} g\right\rangle, \quad \mu=t, \theta \quad \begin{array}{|c}
\text { twist } \\
t_{x} \rightarrow t_{x} e^{-\mathrm{i} \theta / L}
\end{array}
\end{aligned}
$$

$$
|g(t)\rangle: \quad H(t)|g(t)\rangle=E(t)|g(t)\rangle
$$

snapshot ground state
$B$ is invariant for the phase choice of $|\mathrm{g}\rangle$ : gauge freedom
Temporal gauge: $A_{t}^{(t)}=0 \quad B=\partial,\left\langle A_{t}-\partial_{t} A_{\theta}\right.$

$$
\Delta Q=\mathrm{i} \int_{0}^{T} d t \partial_{t} A_{\theta}^{(t)}=\mathrm{i}\left[A_{\theta}^{(t)}(T)-A_{\theta}^{(t)}(0)\right]
$$

Physical observable
Berry connection (gauge fixed)

## Temporal gauge

Temporal gauge: $A_{t}^{(t)}=0 \quad B=\partial \Rightarrow A_{t}-\partial_{t} A_{\theta}$
Gauge transformation $\left\langle g^{\prime} \mid \partial_{\mu} g^{\prime}\right\rangle=\left\langle g \mid \partial_{\mu} g\right\rangle+i \partial_{\mu} \chi,\left|g^{\prime}\right\rangle=|g\rangle e^{i \chi}$ temporal general

$$
A_{\mu}^{(t)}(t, \theta)=A_{\mu}(t, \theta)+\mathrm{i} \partial_{\mu} \chi(t, \theta)
$$



$$
C:(0,0) \rightarrow(0, \theta) \rightarrow(t, \theta)
$$

$$
\chi(t, \theta)=\mathrm{i} \int_{0}^{t} d \tau A_{t}(\tau, \theta)+\mathrm{i} \int_{0}^{\theta} d \vartheta A_{\theta}(0, \vartheta)
$$

$$
A_{t}^{(t)}(t, \theta)=A_{t}(t, \theta)+\mathrm{i} \partial_{t} \chi(t, \theta)=0
$$

$$
A_{\theta}^{(t)}(t, \theta)=A_{\theta}(t, \theta)+\mathrm{i} \partial_{\theta} \chi(t, \theta)
$$



$$
\begin{aligned}
= & A_{\theta}(t, \theta)-A_{\theta}(0, \theta)-\partial_{\theta} \int_{0}^{t} d \tau A_{t}(\tau, \theta) \\
& A_{\theta}^{(t)}(t, \theta) \neq A_{\theta}^{(t)}(t+T, \theta) \quad \text { non periodic gauge fixing }
\end{aligned}
$$

## Pumped charge \& Center of mass (CM)

$$
H(\theta, t)=\sum^{L}\left[-t_{x} e^{-\mathrm{i} \frac{\theta}{L_{x}}} c_{j+1}^{\dagger} c_{j}+h . c .+v_{j}(t) c_{j}^{\dagger} c_{j}\right]
$$

twist : gauged out for an open system (with edges)

$$
H(\theta, t)=\mathcal{U} H(0, t) \mathcal{U}^{\dagger} \quad \mathcal{U}(\theta)=\prod e^{-\mathrm{i} \theta n_{j}\left(j-j_{0}\right) / L_{x}}
$$

$\mathcal{U}_{c_{j}} \mathcal{U}^{+}=e^{+\boldsymbol{i \theta j} / L_{x}} c_{j}|g(\theta)\rangle=\mathcal{U}(\theta)|g(0)\rangle \quad \begin{gathered}j=1 \\ \text { large gauge tr. }\end{gathered} \quad j_{0}=L / 2$
$\mathcal{U}_{j}^{\dagger} \mathcal{U}^{\dagger}=c_{j}^{\dagger} e^{-\mathrm{i} \theta j / L_{x}} \quad \theta$ independent

$$
A_{\theta}=\left\langle g(\theta) \mid \partial_{\theta} g(\theta)\right\rangle=\langle g(0)| \underbrace{\mathcal{U}^{\dagger} \partial_{\theta} \mathcal{U}}\left|g_{j-j_{0}}^{(0)}\right\rangle=-\mathrm{i} P(t)
$$

Center of mass (CM) $\quad P(t)=\sum x_{j} \rho_{j}$

$$
{ }_{-i} \sum_{j} \frac{j-j_{0}}{L} n_{j}
$$

$$
x_{j}=\left(j-j_{0}\right) / L \in[-1 / 2,1 / 2]
$$



$$
\sum_{i} \rho_{j}=N^{j}
$$

$$
\begin{gathered}
j=N \\
\text { number of particles }
\end{gathered} \rho_{j}=\rho\left(x_{j}\right)=\langle g(0)| n_{j}|g(0)\rangle
$$

$$
P(t)=\mathcal{O}\left(N^{0}\right)
$$ insulator

$$
\Delta Q=P(T)-P(0)
$$

Shift of CM
$\phi=1 / 7, \rho=3 / 7, C=3$ With/without edges

## periodic


with edges


Not so much difference

# Center of mass with edges 

$$
\begin{aligned}
& \phi=1 / 7, \quad \quad N \sim L \gg 1 \\
& E_{F}=-1.5, \rho \sim 2 / 7 \\
& P(t)=\sum x_{j} \rho_{j} \sim O\left(N^{0}\right) \\
& x_{j}=\left(j-j_{0}\right) / L \in[-1 / 2,1 / 2]_{E_{F}} \\
& \rho_{j}=\rho\left(x_{j}\right)=\langle g(0)| n_{j}|g(0)\rangle \\
& L=139 \\
& \Delta \mathrm{P}=0.483893 \text { at time }=0.0266667 \mathrm{~T}, \mathrm{Lx}=139 \\
& \Delta \mathrm{P}=0.475871 \text { at time }=0.266667 \mathrm{~T}, \mathrm{Lx}=139 \\
& \triangle \mathrm{P}=0.475871 \text { at time }=0.736667 \mathrm{~T}, \mathrm{Lx}=139 \\
& \triangle \mathrm{P}=0.483893 \text { at time }=0.976667 \mathrm{~T}, \mathrm{Lx}=139 \\
& \text { Total } \mathrm{P}=1.91953 \\
& \text { empty } \\
& \text { filled } \\
& L=1399 \\
& \Delta \mathrm{P}=0.491839 \text { at time }=0.0266667 \mathrm{~T}, \mathrm{LX}=1399 \\
& \Delta \mathrm{P}=0.490793 \text { at time }=0.266667 \mathrm{~T}, \mathrm{Lx}=1399 \\
& \Delta \mathrm{P}=0.490793 \text { at time }=0.736667 \mathrm{~T}, \mathrm{Lx}=1399 \\
& \Delta \mathrm{P}=0.491839 \text { at time }=0.976667 \mathrm{~T}, \mathrm{LX}=1399
\end{aligned}
$$

Topoquant, KITP, Oct. 14 (2016)

## Singular motion of CM

## due to edge states

Contribution of the edge state for $P$ is

$$
\Delta P\left(t_{i}\right)=P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right)
$$

$$
(-1 / 2: \text { becomes unoccupied at } R
$$

$$
\text { +1/2: becomes occupied at } t^{R}
$$

$$
+1 / 2 \text { : becomes unoccupied at } L
$$

$$
-1 / 2 \text { : becomes occupied at } L
$$

$$
P(t)=\sum_{i} x_{j} \rho_{j} \begin{aligned}
& x_{j}=\left(j-j_{0}\right) / L \in[-1 / 2,1 / 2] \\
& \rho_{j}=\rho\left(x_{j}\right)=\langle g(0)| n_{j}|g(0)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \frac{j-j_{0}}{L} \rightarrow \pm \frac{1}{2} \begin{array}{r}
\text { exponentially } \\
j \sim L \\
j \sim 1
\end{array} \\
& j_{0}=L / 2 \quad(L \rightarrow \infty)
\end{aligned}
$$

Topoquant, KITP, Oct. 14 (2016)

## Singular motion of CM



## due to edge states

Contribution of the edge state for $P$ is

$$
\Delta P\left(t_{i}\right)=P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right)
$$

$=\left\{\begin{array}{l}-1 / 2: \text { becomes unoccupied at } R \\ +1 / 2: \text { becomes occupied at } R \\ +1 / 2: \text { becomes unoccupied at } L\end{array}\right.$
-1/2: becomes occupied at $L$

$$
P(t)=\sum_{j} x_{j} \rho_{j} \begin{aligned}
& x_{j}=\left(j-j_{0}\right) / L \in[-1 / 2,1 / 2] \\
& \rho_{j}=\rho\left(x_{j}\right)=\langle g(0)| n_{j}|g(0)\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \frac{j-j_{0}}{L} \rightarrow \pm \frac{1}{2} \begin{array}{r}
\text { exponentially } \left.\begin{aligned}
j & \sim L \\
j & \sim 1
\end{aligned} \right\rvert\,
\end{array} \\
& j_{0}=L / 2 \quad(L \rightarrow \infty)
\end{aligned}
$$

## How much pumped?

$P(t)$ is periodic function!


$$
\begin{aligned}
& \Delta P\left(t_{i}\right)=P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right) \\
& =\left\{\begin{array}{l}
-1 / 2: \text { become unoccupied at } R \\
+1 / 2: \text { become occupied at } R \\
+1 / 2: \text { become unoccupied at } L \\
-1 / 2: \text { become occupied at } L
\end{array}\right.
\end{aligned}
$$

Pump by bulk patch work in time domain

$$
\begin{aligned}
& \Delta Q=\sum_{i} \int_{t_{i}^{+}}^{t_{i+1}^{-}} d t \partial_{t} P(t)=\sum_{i}\left[P\left(t_{i+1}^{-}\right)-P\left(t_{i}^{+}\right)\right] \\
& \overline{\bar{\uparrow}}-\sum_{i}\left[P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right)\right]=-\sum_{i} \Delta P\left(t_{i}\right) \\
& \text { periodicity in time } \\
& \text { Bulk-edge correspondence in time domain } \xrightarrow{\text { sum of the discontinuities }} \text { due to edge states }
\end{aligned}
$$

Topoquant, KITP, Oct. 14 (2016)

## Quantization \& conservation law





$$
\Delta Q=-\sum_{i} \Delta P\left(t_{i}\right)
$$

Number of the discontinuities (SUM) are EVEN! Conservation of charge \& periodicity in time become occupied $\underset{\text { paired }}{\longleftrightarrow}$ become unoccupied

## Quantization \& conservation law



$$
\Delta P\left(t_{i}\right)=P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right)
$$

$\int-1 / 2$ : become unoccupied at $R$
$=\left\{\begin{array}{l}\text { 1/2: } \text { : become occupied at } R\end{array}\right.$
$+1 / 2$ : become unoccupied at $L$
-1/2: become occupied at $L$

$$
\Delta Q=-\sum_{i} \Delta P\left(t_{i}\right)=-\sum_{i}\left( \pm \frac{1}{2}\right)=\text { integer } I
$$

Number of the discontinuities (SUM) are EVEN!
Conservation of charge \& periodicity in time

## Quantization \& conservation law



$$
\Delta P\left(t_{i}\right)=P\left(t_{i}^{+}\right)-P\left(t_{i}^{-}\right)
$$

$\int-1 / 2$ : become unoccupied at $R$
$=\left\{\begin{array}{l}+1 / 2: \text { become occupied at } R\end{array}\right.$
$+1 / 2$ : become unoccupied at $L$
$-1 / 2$ : become occupied at $L$

$$
\Delta Q=-\sum_{i} \Delta P\left(t_{i}\right)=-\sum_{i}\left( \pm \frac{1}{2}\right)=\text { integer } I
$$

Identify the discontinuities as massive Dirac fermions $\frac{1}{2} \operatorname{sgn} m$
Edge states correspond to massive Dirac fermions (fractionalized)

Topoquant, KITP, Oct. 14 (2016)

## Pumped charge as a Chern number



## Pumped charge as a Chern number



## Pumped charge as a Chern number

 $\mathrm{i} A_{\theta}^{(t)}(t)=P(t) \mathrm{CM}$ is not well defined for the bulk (Bloch state)

## Pumped charge as a Chern number

$$
\Delta Q=\mathrm{i} \int_{0}^{T} d t \partial_{t} A_{\theta}^{(t)}=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{T} d t \int_{0}^{\Delta k} d k_{x} b\left(k_{x}, t\right) \equiv C
$$

$$
b=\partial_{k_{x}} a_{t}-\partial_{t} a_{k_{x}}
$$

$$
a_{k_{x}}^{(t)}=\operatorname{Tr}_{M} \mathcal{A}_{k_{x}}^{(t)}
$$

$$
\mathcal{A}_{k_{x}}^{(t)}=u^{\dagger} \partial_{k_{x}} u
$$

$$
u=\left(\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{M}\right),
$$

$\boldsymbol{u}_{\ell}\left(k_{x}, t\right)$ Bloch state of the $\ell$-th band

$$
I(\text { edge })=C(\text { bulk })
$$


non periodic gauge fixing
discontinuities Chern number
Bulk-edge correspondence between the topological numbers Then the Chern number is integer as well! (non trivial)

## Note!

CM is only well-defined with edges no way to define CM with periodic boundary condition

## Pumped charge is carried by bulk

 but is described by the discontinuity due to edge statesThis is the bulk-edge correspondence
Discontinuity: breakdown of the adiabaticity due to gapless edge states, then it is never observed in real experiments of finite speed pump !

## Edge states:

## Do Not contribute the experiments

 BUT stillprotect quantization of the pumped charge


Discontinuity: breakdown of the adiabaticity due to gapless edge states, then it cannot be observed in real experiments of finite speed pump !
(if the system is large enough)

## Thank you

