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Motivations

* We focus on bosonic topological (SET or SPT) phases, which require strong
interactions to realize.

(1) Conceptual issues:

-- Classification problems

(SPT phases with spatial symmetries.)

(2) “Practical” issues: How to realize them?
-- Physical intuitions/guiding principles?
(Are there criteria like the band-inversion picture in topological insulators?)

-- Numerical methods suitable for searching for these topological phases in
models?

(How to write down generic variational wavefunctions?)



Main result

Based on tensor-network formulation, we develop a machinery to:
(1) systematically (but partially) classify topological phases

(2) construct generic variational wavefunctions for these phases

- _

, , 1D-MPS, 2D-PEPS, and 3D generalizations
e This machinery answers: o b peps

How many classes of symmetric tensor- MPS
network wavefunctions that cannot be ? ? ? ?
smoothly deformed into each other under

certain assumptions?

figures from R. Orus,
Annals Phys. (2014)



Main result

Based on tensor-network formulation, we develop a machinery to:
(1) systematically (but partially) classify topological phases

(2) construct generic variational wavefunctions for these phases

Combining with tensor-based
variational numerical algorithms
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(1) Classification and simulation of competing spin liquids in the spin-1/2
Heisenberg model on the kagome lattice
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Plan: Three applications of this machinery

(1) Classification and simulation of competing spin liquids in the spin-1/2
Heisenberg model on the kagome lattice

(2) Classification of bosonic cohomological SPT: H4+1(SG, U(1))

¢ SG: on-site and lattice symmetries (onsite (Chen, Llu, Gu, Wen...), lattice (Chen, Hermele, Fu,

Ql, Furusakl, Cheng...) )
e T and P(mirror) should be treated as “anti-unitary”

« Generic tensor wavefunctions for every class (if SG is discrete)

(3) A by-product: a general connection between “conventional” SET phases and
SPT phases in 2D. For example:

* Toric code + Z, Ising symmetry = {I, g} with [g(e)]? = —1,[g(m)]* = 1
* Condense m with g(m) = 1 -> trivial SPT

¢ Condense m with g(m) = —1 - nontrivial Z, SPT



What are tensor networks?
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Why tensor networks?

1D-MPS, 2D-PEPS, and 3D generalizations ...)

(a) (b) PEPS

MPS

9. 9. figures from R. Orus, Annals
\Ij \r Phys. (2014)

* In the past, indeed the first deep insight and systematic results of SPT phase
were obtained by studying symmetry properties of MPS in 1d. (Polimann, Berg,
Turner, Oshikawa, Chen, Gu, Wen...)

* Powerful numerical algorithms

* 1D MPS: DMRG (S. White ...)
2D PEPS:iTEBD, CTM, TRG... (Cirac, Verstraete, Vidal, Gu, Levin, Wen, Xiang ...)



Why tensor networks?

1D-MPS, 2D-PEPS, and 3D generalizations ...)

(a) (b) PEPS

MPS
figures from R. Orus, Annals
Phys. (2014)

* |In particular, the tensor-network formulation is particularly suitable to
understand the local symmetry properties of a global wavefunction, which are

essential for symmetric topological phases.

L

B
a/\/é/y = Aaﬁya ~ ZAaByali) X |apyo)
)

symmetry properties of these local quantum states (in enlarged Hilbert space)
=>» symmetry properties of the global physical state




Plan
* Spin liquids on the kagome lattice
* SPT phases: H4*1(SG, U(1))

* Anyon condensation mechanism:
“conventional” SET phases = SPT phases



The Heisenberg model on the kagome lattice

* For systems on the kagome lattice with spin-% per site, what is
the quantum phase of the following Hamiltonian?

H=]Z§i.‘§.'j - : & - 5 . L] L
(ij) . . L .

Symmetries: on-site spin rotation, time reversal,
lattice translation, rotation, reflection L e e

/ txl 1 f{i - 7
LN /
TETIAN /‘u. uh, S
3 {, ___________ -0 / Sachdev, Marston, Senthil, Singh, Evenbly, Vidal, Ran, Hermele,
‘g"f_ \ ET"' ﬁ\’\ ,z'! Wen, Lee, Wang, Vishwanath, Igbal, Becca, Sorella, Poilblanc,
_|!r .

White, Huse, Depenbrock, McCulloch, Schollwock, Jiang, Balents,
Mei, Xiang, He, Zaletel, Oshikawa, Pollmann... and many more

DMRG -2 spin liquid phase (SET for both onsite and lattice symmetries)?
Which spin liquid???



Different Z2 Spin liquids in tensor formulation

e Let me firstly summarize some results: WL WL L W

Classifying symmetric PEPS describing Z2 Spin liquids |
32 classes (Z3) X X )

* ¥s, ¥r =2 new classes, “weak SPT” index . .. . .

* N2, N6, Ne =2 Symmetry fractionalization of e v v v

(consistent with Schwinger boson results) (SachdevWang,Vishwanath)

For every class, constrained Hilbert space for a local tensor

—> generic wavefunctions

?E

For D = 6, can realize four classes
Unconstrained: DIM;,; = d - D® =~ 2600

D=60®>B 1)
- 2



* How to implement global symmetries into tensor-network?

Basic assumption:

Symmetries on physical Gauge transformation

~

wavefunctions on internal legs



Gauge redundancy in a tensor-network

M M ’M Gauge redundancy
d[ [ [ [ ~ [GL(D, C)]Nbond




Gauge redundancy & symmetry

1Y) = gly)

global symmetries on gauge transformation on
physical wavefunctions internal legs

P %3(%3)_ —® %6 ......

Wy Wy

N
.

T¢ = W,g ° T@ Classify symmetric phases by different symmetry
transformation rules of local tensors.

What are consistent conditions for I/I{g?



Implementing spin rotation symmetry

Ugs
Wosr
= Weg Was
Wei

Ws: representation of SU(2) symmetry > Local tensors are spin singlets




Invariant Gauge Group (IGG)

21 spin rotation:

o J%2=1,Z, matrixIGG:
* apure gauge transformation

* |eaves a single tensor invariant
* relate to Z, gauge theory (Swingle, Wen, Pollblanc, Schuch, Pérez-Garcfa,Clrac ....)
* Minimal required Z, IGG in spin-1/2 kagome system ~ no featureless
symmetric phase

* Thereis always “trivial IGG"— leg dependent phase factors



Physical interpretation of IGG

* What is the physical meaning of IGG?

e Z, IGG ~ Z, gauge theory (toric code); J ~ flux line

* Four-fold GSD on torus

R S T

. ¢ = |GS)




Physical interpretation of IGG

* Topological excitations:

e (spinon)

m (vison)

//J/
e

* deconfined = spin liquid

(=) ]

o
4
o

f=eXm

* confined = ordered phase (VBS, magnetic order)



Tensor equations: interplay between symmetries and IGG

o o
/\/ /\/

= WTl T,
T *.¥) Wi, T *=1)
1
/L/ /L/ o
D = Wp e Wr,
T*¥) Wi, T (*y=1)
2

* translationforma Z X Z group, definedby 1T, = T, Ty
> Wr,T\Wp, T, =y -n -Wr,To,Wr, Ty
x: leg dependentU(1),n =1or]



Physical interpretation for tensor equations

Wr, TiWr,T; = x -1 - W, T,Wp Ty
* For translations, y can always be set to 1 by redefining W/

* 77 label symmetry fractionalization of spinon e
¢ 7 = I - zero flux spin liquid
* 7 =J => n flux spin liquid

* Solving equations by fixing gauge

zero-flux class: Wr, = Wr, = I - tensors translation invariant

n-flux class: Wy, = I, Wr, (x, y,i) = n¥ > unit cell of tensors doubled

m-flux class




Symmetry fractionalization from tensor equations

Wr,hWr, T, =n - Wr,LWr, T4
* n =1, trivial SET
* n =], e carries fractional “translational” quantum number

Ty T, T - ]



.
| >
W,geT*=T*%
tensor numerics
| >




Kagome Heisenberg model

Topological invariants of tensor symmetry transformation rules:

* Xeo Xt B
“weak SPT” index, 2D AKLT like ; ; g 4 - ] . § 1
physics . A A

* MNz2.Mce Mo VY VvV Y
label symmetry fractionalization of R

spinon-e in the Z, QSL member

phase.

For D = 6, can realize four classes

* Unconstraint: DIM;,; =d D® =~ 2600

p=6(0®;®1) * Constraint: DIMconseraine = 19



Symmetric iPEPS algorithm

* Focus on infinite PEPS (iPEPS)

* Optimization

* Minimize “approximate” energy densities within constrained Hilbert spaces

of four promising classes (Simple update method) (Jiang,Xiang...)

* Measurement
* Measure energy density for the optimized state

e Tensor RG + variational Monte Carlo

(Nave,Levin,Gu,Wen,Xiang,Jiang,Wang, Sandvik, Verstraete,...)



Energy densities for optimal state of four classes

D=7 kagome PEPS

B

D+ ~ virtual states
kept when performing

tensor contraction

0.02 0.04 0.06 0.08 0.10 0.12 Deut

o Fero—flux i » zero-fux i « mfuxi » m-flux if

* ForD =17,8x8 x 3 latticesize, E~ — 0.4366(3)], comparable to
(slightly higher than) DMRG report. .
Which class?

* Two zero-flux classes have nearly degenerate energy



Competing spin liquids?

E(Zero-Flux ) =~ E(Zero-{lux 2)

Sachdev’s Q1=Q2 state Q1=-Q2 state
* Two possibilities:

1. Their energy densities are different. But our numerics is not
accurate enough to distinguish them.

2. Theyindeed share degenerate energy. Any physical reason?

Future work:

—>
U(1) Dirac spin liquid?

(Hastings, Ran, Hermele, Lee,

E(k, . k)

1. Long-range behavior?

-

e 5
Wen, Igbal, Becca, Pollblanc... 2. Excitation spectrum-

3. More advanced

optimization method
zero-flux | zero-flux Il



Plan
 Spin liquids on the kagome lattice
* SPT phases: H4*1(SG, U (1))

* Anyon condensation mechanism:
“conventional” SET phases = SPT phases



Bosonic cohomological SPT phases

In our framework, SPT: H4*1(SG, U(1)) (not complete)

* SG: on-site and lattice symmetries (onsite (Chen, Liu, Gu, Wen), lattice [Chen, Hermele, Fu, Q,
Furusaki,Cheng...}}

= 1 Haldane chain
» T and P(mirror) ~ “anti-unitary”

p . ® O
Example:

Spm-— spin-;

Protected by SO(3)

o 1d, H2(Z1 ,U(1)) = H%(Z% ,U(1)) = Z;, the “Haldane phase”

+ 2d,P&T > H3(2] x 2£,U(1)) = 2}

Generic wavefunctions (constrained tensor Hilbert space) for every class

A by-product: a general connection between SET and SPT phases in 2D.



SPT phases: H4*1(SG,U(1)) (d=1)

Warm-up: d=1 (Pollmann, Berg, Turner, Oshikawa, Chen, Gu, Wen...)
The main purpose here is to demonstrate the anti-unitary action of

mirror reflection in the tensor formulation.

Just like the spin liquid example, let us firstly identify IGG, then find
the consistency equations for the tensor symmetry transformation rules.



SPT phases: H*1(SG,U(1)) (d=1)

¢ ¢ o o
o

g
Symmetry Condition: o = Wy(a,l) CL/ W,(a,r)

_ _ _ -1
IGG: )(J\xlxi)(l)()\xl)(/LX
& /4 & 4

a single U(1) phase variable over the whole lattice.

(On an infinite lattice, we require W, - g (Vg € SG) as well as IGG to send all local tensors
back to themselves without extra U(1) phase)



SPT phases: H*1(SG,U(1)) (d=1)

¢ ¢ o o

g

Symmetry Condition: L = Wy(a,l) L W,(a,r)

= W, 91W;,92 = x(91, 92)W,, 4,91 92, X(91, 92) € IGG

IGG: X‘fl X‘X_l x‘x‘l XLX_l




SPT phases: H*1(SG,U(1)) (d=1)

¢ ¢ o o

g

Symmetry Condition: L = W(al) L W,(a,1)
= W, 91W, 92 = x(91, 922V, g,9192: X(91,92) € 1GG

and x(g1, 92) x(9192,93)=""x(92, 93)x(g1, 9293)- x(91,92) € H2(SG, U(1))

IGG: X Lfl ka_li X Lx_l X L x

b
Just as time-reversal, mirror reflectionsend y = ¥~1,
so they should be treated as anti-unitary




SPT phases: H4*1(SG,U(1)) (d=2)

Plaquette IGG:

For every plaquette, there is
at least a phase variable € IGG.



SPT phases: H*1(SG,U(1)) (d=2)

Plaquette IGG:
11 x \ Y g by
- A A1
1 L ' A:-l A
LN N
For every plaquette, there is It turns out that, to describe strong SPT
at least a phase variable € IGG. phases, plaguette-/GG need to contain

nontrivial matrix transformations.



SPT phases: H*1(SG,U(1)) (d=2)

Plaquette IGG:
In order to describe cohomological
SPT phases, we assume: Yy
A AFt
global matrix IGG At Ar
decomposition: \ \.
] =TlpA ardt
— llpsp

A A
O Q It turns out that, to describe strong SPT

phases, plaquette-/GG need to contain

@ @ nontrivial matrix transformations.




SPT phases: H*1(SG,U(1)) (d=2)

In order to describe cohomological
SPT phases, we assume:

global matrix IGG
decomposition:

oo
ol

Physical interpretation:

If ] cannot be decomposed, then the
tensor-network would be topologically ordered.

I

J




SPT phases: H*1(SG,U(1)) (d=2)

In order to describe cohomological
SPT phases, we assume:

global matrix IGG
decomposition:

oo
ol

Physical interpretation:

If ] can be decomposed, then:

i.e. the would-be topological order is confined
by the J-string condensation.



SPT phases: H*1(SG,U(1)) (d=2)

In order to describe cohomological
SPT phases, we assume:

This decomposition has an

global matrix /GG overall U(1) phase ambiguity:
decomposition: /

ool %'y
OO Y




SPT phases: H*1(SG,U(1)) (d=2)

In order to describe cohomological
SPT phases, we assume:

This decomposition has an

global matrix /GG overall U(1) phase ambiguity:
decomposition: /

= np"{p = an"‘lp

It turns out that the y ambiguity in this decomposition directly leads to
topological invariants of tensor symmetry transformation rules: 3-cocycles



SPT phases: H*1(SG,U(1)) (d=2)

Wy, 91Wy,92 = 1(91,92)Wy, 49,9192

Wy

g
1091, 9)1(9192,93) = °*"'1(g2,9:)1 (91, 9292)




SPT phases: H*1(SG,U(1)) (d=2)

Wy, 91Wy,92 = 1(91,92)Wy, 49,9192

Wg. 9
1091, 9)1(9192,93) = °*"'1(g2,9:)1 (91, 9292)

“Global” IGG n(g4,9>) can be decomposed to plaquette IGG:
n=1Ilp2




SPT phases: H*1(SG,U(1)) (d=2)

Wy, 91Wy,92 = 1(91,92)Wy, 49,9192

Wy

g
1091, 9)1(9192,93) = °*"'1(g2,9:)1 (91, 9292)

“Global” IGG n(g4,9>) can be decomposed to plaquette IGG:
n=1Ilp2

Ap (.91; gZ)Ap(gngJ 93) —
3-cocycle

Wg.9
xX(91,92,93) 1Ap(92!g3);{p(91J9293)




SPT phases: H*1(SG,U(1)) (d=2)

Wy, 91Wy,92 = 1(91,92)Wy, 49,9192

Wy

g
1091, 9)1(9192,93) = °*"'1(g2,9:)1 (91, 9292)

“Global” IGG n(g4,9>) can be decomposed to plaquette IGG:
n=1Ilp2

2p(91,92)2p (9192, 93) = P
3-cocycle, |

N W, 9
xX(91,92,93) 1Ap(92!g3);{p(91J9293)

Just like time-reversal,
mirror reflectionssend x = ¥~ (anti-unitary),

while rotations/translations send x = ¥ (unitary)



SPT phases: H*1(SG,U(1)) (d=2)

Examples:
+ H3(Z,U() = 2,
Constructing the nontrivial SPT with D=4 PEPS (square lattice)

Constrained tensor sub-Hilbert space=®» 15 variational parameters

« H3(ZI xZ5,u(1) =2, xZ2,
Constructing three nontrivial SPT with D=6 PEPS (square lattice)

Constrained sub-Hilbert spaces=» 79/79/87 variational parameters



SPT phases: H4*1(SG,U (1)) (d=3)

* Similar construction can be generalized to 3D. (need cubic IGG& plaquette
1IGG).

» After complicated algebra, one can show that the topological invariants of
tensor symmetry transformation rules are given by four cocycles.

* And time-reversal and mirror reflections should be treated as anti-unitary.



Plan
 Spin liquids on the kagome lattice
* SPT phases: H4*1(SG, U(1))

* Anyon condensation mechanism:
“conventional” SET phases = SPT phases



A by-product: anyon condensation — from SET to SPT

An example:
condense m particle
Toric code Trivial phase
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Toric code with global condense m particle

Z, symmetry {/,g}

?7?




A by-product: anyon condensation — from SET to SPT

An example:
condense m particle _
Toric code Trivial phase

Toric code with global condense m particle

Z, symmetry {/,g}

?7?

+ SET:[g(e))* =-1[g(m)]*=1

This is a rather conventional SET without gapless edge states



A by-product: anyon condensation — from SET to SPT

An example:
condense m particle _
Toric code Trivial phase

Toric code with global condense m particle

Z, symmetry {/,g}

?7?

» SET:[g(e)]?*=-1,[gm)]* =1
* Condensem with g(m) = 1 - trivial Ising paramagnet

* Condense m with g(m) = —1 - nontrivial Ising SPT

Trivial paramagnet «—— SET — 7 Nontrivial SPT

Schematic phase diagram



A by-product: anyon condensation — from SET to SPT

An example:
condense m particle _

Toric code Trivial phase

Toric code with global condense m particle

???
Z, symmetry {/,g}

» SET:[g(e)]?*=-1,[gm)]* =1
* Condensem with g(m) = 1 - trivial Ising paramagnet

* Condense m with g(m) = —1 = nontrivial Ising SPT

Subtlety in the definition of g(m):
Precisely, these quantum numbers are measured by g-defect
featuring trivial symmetry fractionalizations



anyon condensation after gauging the symmetry

» Why the phase we obtained is nontrivial SPT? One could justify by gauging the Z,

symmetry {1, g}. ievn, cu)

Z, SPT??

double semion??

“Parent” phase

SET with e carry
fractional quantum

Z4 gauge theory

object

mwith(Q,(m) = -1

number
g(gxg=m) Z, symmetry defect Z, gauge flux
mmxm=1) Z, gauge flux double-Z, gauge flux
Qg(%) = -1 Z, symmetry charge double-Z, charge
Condensing double-Z4 charge &

double-Z flux




anyon condensation after gauging the symmetry

The gauged theory describes Z, gauge theory
-> double-semiontheory via condensing 2e2m

]HX, X




anyon condensation after gauging the symmetry

The gauged theory describes Z, gauge theory
-> double-semiontheory via condensing 2e2m

: X X
M
1 x X
X X

Gauging picture of time reversal or spatial symmetries is unclear beyond TN formulation.

But it turns out these nontrivial SPT can also be obtained from anyon condensation.

condense m with

e.g.: toric code with ZJ x Z¥ T-P(m)=-1
e fractionalized in different ways
(ZI: time-reversal, Z%: mirror)

four types of SPT phases
(H3(Z] % Z3,U(1)) =Z;, % Z;)




General criteria for anyon condensation

Condense certain fluxes
an SET phase an SPT phase

* Gauge group: Zy, X Zy_ X -+ & symmetry group: SG
» e-particles feature nontrivial symmetry fractionalization

* m-particles have trivial fractionalization, but can carry usual quantum numbers
Qg, * Qg, = A(g1,92) ' Qg,4, Qg ~ symmetry defect, A ~ certain m-particle

(Barkeshll, Bonderson, Cheng, Wang, Hermele, Chen,Fidkowskl...)



General criteria for anyon condensation

Condense certain fluxes
an SET phase an SPT phase

* Gauge group: Zy, X Zy_ X -+ & symmetry group: SG

» e-particles feature nontrivial symmetry fractionalization

* m-particles have trivial fractionalization, but can carry usual quantum numbers
Qg, * Og, = A(g1,92) ' Qg,4, Oy ~ symmetry defect, A ~ certain m particle

 Condensing m-particles without breaking symmetry, which requires:

1. Condensed m’s carry 1D symmetry Irrep: ¥, (g)

2. Xm(@) Xw'(9) = X' (9)

* After condensing those m’s, we get an SPT phase

(g1, 92, 93) = Xi(ga0.)(91),  [w] € H3(SG,U(1))



Possible model realizations?

* Quantum dimer models on non-bipartite lattice can host Z, toric code
topological order. (Rokhsar,Kivelson,Sondhi,Moessner)

* These models can be mapped to hard-core boson models (or XXZ models),
with a U(1) symmetry, and spinons carry half-charge. (Balents, Fisher, Girvin,
Isakov, Kim...)

» Tuning parameters, these models (e.g.: kagome 1/3-filled hard-core boson
model) can go from the Z, spin liquid into Valence Bond Solid phases (VBS)
via vison condensation. (Pollmann et.al.)

* One could add interactions breaking the U(1) down to Ising. If the the
condensed vison is Ising odd, then, the resulting VBS phase is a nontrivial
Ising-SPT phase. (SPT-VBS)

(In tensor-based algorithms, the quantum number carried by low energy vison
near condensation can be measured.)



Summary

e o 8 o o o o o

Input: symmetries of the model A
L] - .._

e s s s s s o o

. . . .
s o & & s o s 8

Running Machinery L S

32 gapped Z, spin liquid

Output: SET/SPT classes and generic Nearly degenerate energy

wavefunctions for every classes

densities for two classes

SPT partially classified by H4+1[SG, U(1)]

SG: on-site & spatial symmetries anyon condensation
SET

SPT
T and P antiunitary



Discussion/future directions

* Previously in 2D PEPS, MPO-invariance was used to characterize onsite

SPT in PEPS(Williamson et.al.), connection with our formulation?
e Classifying and simulating fermion phases?

 Combining state of the art numerical techniques with this analytical

construction (vanderstraeten, Verstraete, Corboz...)
« More accurate energy density, correlators, ...

e Excitation spectrum?

e Possible realization of SPT?
* Numerical simulation for SPT tensor wavefunctions

e Condensing visons carrying nontrivial quantum number in spin liquid

phases = SPT-VBS phase? Thank You!






Motivations
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Motivations

 How to represent generic SPT states using tensor-network
wavefunctions (particularly in 2 and higher spatial dimensions) ?

In this talk: tensor-network=MPS(1d), PEPS(2d), and their 3d analog (Cirac, Verstraeta, Vidal...)
PEPS

999 ?*{;@i\r\
M

(figures from Orus, Annals Phys. (2014))

But how to systematically understand higher dimensional SPT using tensor-network
formulation?



Main results:

 We focus on bosonic
cohomological SPT.

* We have identified a general
machinery to classify/construct
generic SPT states using
tensor-network.

Input: symmetries of the model

Running Machinery

wavefunctions for every class

(Finite bond-dimension tensor-network
construction works for all discrete symmetries,
and continuous symmetries in some cases)



Main results: Input: symmetries of the model

 We focus on bosonic
cohomological SPT.

Running Machinery

* We have identified a general
machinery to classify/construct

generic SPT states using utput: 35SeS 3
tensor-network. wavefunctions for every class

* |In our construction, SPT are classified by Hd+1(SG, U(1)), where
SG is the full symmetry group including both onsite and space-
group. Both time-reversal and mirror reflections should be
treated as anti-unitary operations.

Previously H**1(SG,U(1)) classificationis obtained for onsite SG (Chen,Liu,Gu,Wen..)
many new phases can be constructed:

e.g. in 2d, inversion symmetry (180° spatial rotation) = Z, classification



A simple example

* PEPS representation of an Ising system on a square lattice with
bond-dimension D=4:
tensor

o PEPS %b D=4
()
U
\r\ In the absence of symmetry:
) each local tensor livesin a local Hilbert
\|/ ? space whose dimension=d - D*=512

a trial wavefunction with a lot of variational parameters:

# of parameters=512-1(normalization)=511

The price to pay is that one may not be able to sharply distinguish
different quantum phases.



A simple example

* PEPS representation of an Ising system on a square lattice with

bond-dimension D=4
tensor

PEPS \’\f\ D=4

- ()
™ o2
\r\ In the absence of symmetry:
) each local tensor livesin a local Hilbert
\|I space whose dimension=d - D*=512

* For onsite Ising symmetry: H3(SG = Z,,U(1)) = Z,. There is
one nontrivial SPT. (chen,LiuGuwen,Levin..)




A simple example

* PEPS representation of an Ising system on a square lattice with

bond-dimension D=4
tensor

PEPS \’\f\ D=4

- ()
™ o2
\r\ In the absence of symmetry:
) each local tensor livesin a local Hilbert
\|I space whose dimension=d - D*=512

* For onsite Ising symmetry: H3(SG = Z,,U(1)) = Z,. There is
one nontrivial SPT.

* To represent this SPT by PEPS with D=4, it turns out each local
tensor lives in a sub-Hilbert space whose dimension=16.

--- a generic SPT trial wavefunction with 15 variational parameters



Plan:

Instead of keep going on tensor-network wavefunctions,

let me talk about a by-product of our main results, which is also
qguite general and can be formulated in more conventional
languages.



A by-product of main results

* a general connection between SET (topological ordered states
with symmetry) and SPT phases via anyon condensation.

Basic idea:

Starting from a rather conventional gauge theory (i.e., an SET
phase like a Z, spin liquid), if one condenses certain bosonic
anyons to confine the gauge field, under “certain conditions”, the

resulting phase is necessarily an SPT phase.

We will soon provide a general criterion about the “certain
conditions”. But let me show you some examples first.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.




Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Starting from a Z, spin liquid phase-A, in which :

the bosonic spinon e has nontrivial symmetry fractionalization:
T(e)?=-1,P(e)*=+1,T-P(e) =P -T(e)

But the bosonic vison m has no symmetry fractionalization. (m still
can carry usual quantum numbers.)



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Starting from a Z, spin liquid phase-A, in which :

the bosonic spinon e has nontrivial symmetry fractionalization:
T(e)?=-1,P(e)*=+1,T-P(e) =P -T(e)

But the bosonic vison m has no symmetry fractionalization. (m still
can carry usual quantum numbers.)

This spin liquid is rather usual, there is no stable gapless edge
states.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Starting from a Z, spin liquid phase-A, in which :

the bosonic spinon e has nontrivial symmetry fractionalization:
T(e)> =—1,P(e)*=+1,T-P(e) =P -T(e)

But the bosonic vison m has no symmetry fractionalization.

Claim:
If condensing the T - P odd vison m to confine the Z, gauge,

then the resulting phase is an SPT phase (a bosonic topological

crystalline insulator) with gapless edge states on the P symmetric
edges. --- let me call it as SPT phase-A



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Summary:

Z2 Spin liquid Spinon e nontrivial Resulting Phase
symmetry
Condensing

fractionalization

SPT-A

Spin-liquid-A T(e)? = -1
T - P odd vison m

visons are assumed to have trivial symm. fractionalization,
but could carry usual quantum numbers.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Resulting Phase
Condensing

Summary:

Z2 Spin liquid Spinon e nontrivial

symmetry

fractionalization
o 2 SPT-A
Spin-liquid-A T(e)- =-1
T - P odd visonm
Spin-liquid-B P(e)* = —1 SPT-B

visons are assumed to have trivial symm. fractionalization,
but could carry usual quantum numbers.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P
where Z§ = {I,P}, ZI = {I,T}.

P is a mirror reflection, T is the time-reversal.

Resulting Phase
Condensing

Summary:

Z2 Spin liquid Spinon e nontrivial

symmetry

fractionalization
. 2 SPT-A
Spin-liquid-A T(e)- =-1
T - P odd visonm
Spin-liquid-B P(e)* = —1 >PT-B
Spin-liquid-C T(e)? = -1 SPT-C
P(e)? = -1

visons are assumed to have trivial symm. fractionalization,
but could carry usual quantum numbers.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P

P _ T _
where Z; ={I,P},Z; = {1,T}. These are exactly the three nontrivial

P is a mirror reflection, T is the time-re SPT phases corresponding to:
H3(SG,U(1)) = 72

Summary:
Z2 Spin liquid Spinon e nontrivial
symmetry
fractionalization
Spin-liquid-A T(e)? = -1
T - P odd visonm
Spin-liquid-B P(e)* = —1 >PT-B
Spin-liquid-C T(e)? = -1 SPT-C
P(e)? = -1

visons are assumed to have trivial symm. fractionalization,
but could carry usual quantum numbers.



Examples: vison condensation in a Z, spin liquid

* Let us consider a 2d spin system with SG = Z§ x Z1, P

where Zg = {I: P]’ ’ Z%' = {I: T} These are exactly the three nontrivial
P is a mirror reflection, T is the time-rey 1 F s celi el e
H3(SG,U(1)) = Z2
Summary: And we know how to write down generic

tensor-network wavefunc for each of them

Z2 Spin liquid Spinon e nontrivial

symmetry
fractionalization
Spin-liquid-A T(e)? = —1
T - P odd visonm
Spin-liquid-B P(e)* = —1 >PT-B
Spin-liquid-C T(e)? = -1 SPT-C
P(e)? = -1

visons are assumed to have trivial symm. fractionalization,
but could carry usual quantum numbers.



Possible realizations?

* In spin-1/2 systems, T (e)?> = —1 in Z, spin liquids basically
comes for free.

* Condensing vison =» VBS (valence bond solids)

Breaking translational symmetry, a symmetry that we care but do not really care.

SPT-VBS phases?



Possible realizations?

* In spin-1/2 systems, T'(e)? = —1
comes for free.

* Condensing vison =» VBS (valenc

Breaking translational symmetry, a symmet

>
=2 (1=

Singlet pair

)—( )
(G

Valence bond crystal

(Figure from Singh, Physics, 2010)

SPT-VBS phases?

One may say that it is still highly nontrivial to have Z, spin liquids

to begin with, but what we really ca

re is the confined VBS phase.

VBS are quite common in spin models, e.g. deconfined criticality.
(Senthil, Balents, Sachdev, Vishwanath, Fisher, Sandvik...)



Possible realizations? _ G

=2 (1=

Singlet pair

* In spin-1/2 systems, T'(e)? = —1
comes for free.

)—( )
(G

* Condensing vison =» VBS (valenc P

Breaking translational symmetry, a symmet

(Figure from Singh, Physics, 2010)

SPT-VBS phases?

Consider the easy-plane case of deconfined-criticality.
The question is: what is the quantum number carried by the
condensed vortices?

This has to be determined by numerical simulations of models.
(e.g., in the J-Q model, sandvik...)



Possible realizations? _ G

=2 (1=

Singlet pair

* In spin-1/2 systems, T'(e)? = —1
comes for free.

)—( )
(G

* Condensing vison =» VBS (valenc P

Breaking translational symmetry, a symmet

(Figure from Singh, Physics, 2010)

SPT-VBS phases?

Consider the easy-plane case of deconfined-criticality.

The question is: what is the quantum number carried by the
condensed vortices?

Itis in fact nontrivial to numerically measure quantum numbers of a single vison or a
vortex.

If | am allowed to use tensor-network wavefunctions, | have an algorithm to do the job.



A general Criterion to obtain SPT from SET in 2+1d

(1) Consider an SET phase described by “usual” discrete Abelian gauge theory
(e.g. Zn,Zy X Zy) in the presence of symmetry group SG.

We have a bunch of bosonic gauge charges (e-particles), and gauge fluxes (m-
particles).

I”

“usual” means: e.g., for Z,, only toric-code-like but not double-semion-like.



A general Criterion to obtain SPT from SET in 2+1d

(1) Consider an SET phase described by “usual” discrete Abelian gauge theory
(e.g. Zn,Zy X Zy) in the presence of symmetry group SG.

We have a bunch of bosonic gauge charges (e-particles), and gauge fluxes (m-
particles).

(2) We require only the e-particles could have nontrivial symmetry
fractionalization. Mathematically: Vg4, g2 € SG,

Oy, - Qg, = 1(91,92),g,, 4(g1,92) is an m-particle

.Q.g is symmetry action on aNyons. (M. Barkeshll, P. Bonderson, M. Cheng, Z. Wang, L. Fidkowskl, N. H.
Lindner, A. Kitaey, X. Chen, F. J. Burnell, A. Vishwanath, L. Fidkowskl, G. Y. Cho, J. C. Y. Teo, and S. Ryu ....)



A general Criterion to obtain SPT from SET in 2+1d

(1) Consider an SET phase described by “usual” discrete Abelian gauge theory
(e.g. Zn,Zy X Zy) in the presence of symmetry group SG.

We have a bunch of bosonic gauge charges (e-particles), and gauge fluxes (m-
particles).

(2) We require only the e-particles could have nontrivial symmetry
fractionalization. Mathematically: Vg4, g2 € SG,

Qg, - Qg, = 1(g1,92),g,, A(g1,92) is an m-particle

(3) Condensing all m-particles with quantum numbers y,,,(g) € U(1),
v m, satisfying following condition (ensuring no symmetry breaking in the m-
condensate):

Am, (.9') " Am, (.9') = Xmim, (.9')



A general Criterion to obtain SPT from SET in 2+1d

(1) Consider an SET phase described by “usual” discrete Abelian gauge theory
(e.g. Zn,Zy X Zy) in the presence of symmetry group SG.

We have a bunch of bosonic gauge charges (e-particles), and gauge fluxes (m-
particles).

(2) We require only the e-particles could have nontrivial symmetry
fractionalization. Mathematically: Vg4, g2 € SG,

Qg, - Qg, = 1(g1,92),g,, A(g1,92) is an m-particle

(3) Condensing all m-particles with quantum numbers y,,,(g) € U(1),
V m, satisfying following condition (ensuring no symmetry breaking in the m-

condensate):
Xmy(9) * Xm;(9) = Xmym,(9)

(4) The resulting phase is an SPT phase characterized by the 3-cocycle:
@ (g1, 92, 93) = Xi(g,92)(91) € U(1)



Input: symmetries of the model
summary

» Classification/construction of bosonic

cohomological SPT using tensor: H4+1(SG,U(1)) Running Machinery

5G is the full symmetry group including both onsite
and space-group. Time-reversal and mirror reflections

should be treated as anti-unitary operations. Output: SPT classes and generic
wavefunctions for every class



Input: symmetries of the model
summary

» Classification/construction of bosonic
cohomological SPT using tensor: Hd“(SG, U(1))

Running Machinery
5G is the full symmetry group including both onsite
and space-group. Time-reversal and mirror reflections
should be treated as anti-unitary operations. Output: SPT classes and generic

* A by-product: A general Criterion to obtain wavefunctions for every class

SPT from SET via anyon condensation:

gauge-charge sym. frac.: Qg - Q, = A(g1,92)Qg. g, ‘ w(g1,92,93) = Xi(g,.g5)(91)

gauge-flux quantum number: y,,,(g) Condensing gauge-fluxes
while preserving symmetry

(traditional Ginzburg-Landau treatment for confinement-deconfinement transition may need to be revisited.)
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cohomological SPT using tensor: H4+1(SG,U(1)) Running Machinery

5G is the full symmetry group including both onsite
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* A by-product: A general Criterion to obtain wavefunctions for every class

SPT from SET via anyon condensation:
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gauge-flux quantum number: y,,,(g) Condensing gauge-fluxes
while preserving symmetry

(traditlonal Ginzburg-Landau treatment for conflnement-deconfinement transitlon may need to be revisited.)

* Possible realizations? SPT-VBS phases?



Input: symmetries of the model
summary

» Classification/construction of bosonic

cohomological SPT using tensor: H4+1(SG,U(1)) Running Machinery

5G is the full symmetry group including both onsite
and space-group. Time-reversal and mirror reflections

should be treated as anti-unitary operations. T L p—
* A by-product: A general Criterion to obtain wavefunctions for every class

SPT from SET via anyon condensation:

gauge-charge sym. frac.: Qg - Q, = A(g1,92)Qg. g, ‘ w(g1,92,93) = Xi(g,.g5)(91)

gauge-flux quantum number: y,,,(g) Condensing gauge-fluxes
while preserving symmetry

(traditlonal Ginzburg-Landau treatment for conflnement-deconfinement transitlon may need to be revisited.)

* Possible realizations? SPT-VBS phases?
Thank youl!






By-products of main results

e Lattice translational symmetry (Z% < SG ) leads to “weak
indices”.

e.g.: recently we showed that there are 4 featureless Mott
insulators at half-filling on the honeycomb lattice. Now we

understand it is due to two Z, weak indices in H4*1(SG, U(1)).



