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Spin liquids

2

• Exactly solvable models


• Material candidates and experiments


• This talk


• Topological degeneracy of the ground state


• Long-range quantum entanglement 


• Fractionalized excitations


• Transport


• Spectroscopy 


• Spin-1 NaCaNi2F7 and spin-3/2 MgCr2O4


• Antiferromangetic Heisenberg model on a pyrochlore lattice


• Neutron scattering probe of spin correlations


• Modeling the spin dynamics
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Outline
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• Heisenberg pyrochlore antiferromagnet:


• Classical model: A classical spin liquid


• Quantum model: A quantum spin liquid?


• Material realizations


• NaA’B2F7 (A’ = Ca, B = Ni spin-1; A’ = Sr, B = Mn spin-5/2)


• ACr2O4 (A = Cd; Zn; Mg spin-3/2; …)


• …


• A general picture for spin dynamics


• Theoretical modeling of NaCaNi2F7 and MgCr2O4


• Discussion 
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Heisenberg pyrochlore antiferromagnet
Pyrochlore: corner-sharing tetrahedra


Antiferromagnetic Heisenberg interaction
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Heisenberg pyrochlore antiferromagnet

⟹ Magnetic frustration

Moessner and Chalker 1998

Pyrochlore: corner-sharing tetrahedra


Antiferromagnetic Heisenberg interaction

Ground state is macroscopically degenerate



7

Heisenberg pyrochlore antiferromagnet
Pyrochlore: corner-sharing tetrahedra


Antiferromagnetic Heisenberg interaction

Searching for the Coulomb phase…
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Spin ice

Ice rule: two in two out

Gingras and McClarty 2014
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Spin ice

Divergence free magnetic field
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Magnetostatics

Momentum space

Vector potential



11

Magnetostatics

Momentum space

Real space

Vector potential

Dipolar correlation

Pinch point

Oleg Tchernyshyov
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Coulomb phase

Ising

Spin correlation with power-law decay: 

Disordered but strongly correlated


qx = qy

qz

Canals and Lacroix  1998

Isakov et. al. 2004


Henley 2005
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Ising Heisenberg

qx = qy

qz

Canals and Lacroix  1998

Isakov et. al. 2004


Henley 2005

Coulomb phase

Spin correlation with power-law decay: 

Disordered but strongly correlated
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Ising Heisenberg

qx = qy

qz

Canals and Lacroix  1998

Isakov et. al. 2004


Henley 2005

Coulomb phase

Spin correlation with power-law decay: 

Disordered but strongly correlated


Measured by neutron scattering
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Macroscopic degeneracy Spin diffusion

[HH0]

[0
0L
]

Coulomb correlation

Moessner Chalker 1999
Isakov Greger Moessner Sondhi 2004
Conlon Chalker 2009
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A classical spin liquid
Heisenberg pyrochlore antiferromagnet



Nearest 
Neighbor

S = 1/2 S = 1 S = 3/2
Next-Nearest Neighbor
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Iqbal et.al. 2019
PFRG

A quantum spin liquid?
Heisenberg pyrochlore antiferromagnet (quantum version)



• Ni2+ on one pyrochlore lattice and Na1+/Ca2+ on another
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Quantum spin liquid candidate NaCaNi2F7

Krizan and Cava 2015

Kate Ross
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• Ni2+ on one pyrochlore lattice and Na+/Ca2+ on another


• Heisenberg interaction


Quantum spin liquid candidate NaCaNi2F7

Plumb et. al. 2019
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• Ni2+ on one pyrochlore lattice and Na+/Ca2+ on another


• Heisenberg interaction 


• Spin-1 system


Quantum spin liquid candidate NaCaNi2F7

Plumb et. al. 2019
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• Ni2+ on one pyrochlore lattice and Na+/Ca2+ on another


• Heisenberg interaction 


• Spin-1 system


• No magnetic ordering down to 0.35K


• ~90% spectral weight from inelastic scattering at 1.8K


•

Plumb et. al. 2019[22L]                  [HH2]

E

Quantum spin liquid candidate NaCaNi2F7

Classical expectation: 

S/S(S+1) = 50%
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qx = qy, qz = 0

× 2

Single tetrahedron

Canals and Lacroix  1998

Tchernyshyov, Moessner, and Sondhi  2002

An example of spin dynamics

Ideal Heisenberg model 

Collinear ground state

Spin wave

E



• Ground states: many degenerate/nearly-degenerate disordered states

• Fluctuations: finite-frequency spin waves

• Dynamical picture: spin waves drive the motion between ground states
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Zhang et. al. 2019

Spin dynamics of NaCaNi2F7

Tangential

Transverse

Phase space Ground state manifold

Low energy excitations

• Tangential motion: 


      inside ground state manifold


• Transverse motion: 


      out of ground state manifold



• Stochastic Large-n model

• Molecular dynamics simulation

• Linear spin wave theory
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Dynamical models

• Tangential motion: slow


• Transverse motion: fast

• Brownian motion

Garanin and Canals 1999

Conlon and Chalker 2009

White noise



• Stochastic Large-n model

• Molecular dynamics simulation

• Linear spin wave theory
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Dynamical models

• Tangential motion: slow


• Transverse motion: fast

• Brownian motion

• To conserve spins (angular momentum)

Generalized force• Discrete lattice

Garanin and Canals 1999

Conlon and Chalker 2009



• Stochastic Large-n model

• Linear spin wave theory

• Molecular dynamics simulation
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Dynamical models

SLN

• Long time scale


• Relaxation



• Stochastic Large-n model

• Linear spin wave theory

• Molecular dynamics simulation
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Dynamical models

Linearized for small deviations from a ground state u

v
w

Walker and Walstedt  1980

Savary and Balents 2014

• Long time scale


• Relaxation



• Stochastic Large-n model

• Linear spin wave theory

• Molecular dynamics simulation

Dynamical models

• Long time scale


• Relaxation

• Finite-frequency excitations


• Around one ground state

LSWT
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• Stochastic Large-n model

• Linear spin wave theory

• Molecular dynamics

Dynamical models

• Finite-frequency excitations


• Around one ground state

• Full simulation

• Short + long time scale


MD
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• Long time scale


• Relaxation



• Stochastic Large-n model

• Linear spin wave theory

• Molecular dynamics
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Dynamical models

• Finite-frequency excitations


• Around one ground state

• Full simulation

• Short + long time scale
Thermal excitation

Zhang et. al. 2019

Zero temperature

Considering quantum statistics of spin waves:

βω

• Long time scale


• Relaxation
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Theoretical modeling 
Pinch point

Spin wave branch

Zhang et. al. 2019

Yan, Pohle, and Shannon 2018

Agreement for all momenta 
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experimental data for  2meV≳

Zhang et. al. 2019



• Not considered
• Lack of long-range order
• Quantum renormalization 
• Thermal broadening
• Multimagnon continuum
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Zhang et. al. 2019
Why linear spin wave theory



• Correct statistics
• Fluctuations of disordered ground states
• Averaged among similar spectra
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Zhang et. al. 2019
Why linear spin wave theory
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• Correct statistics
• Fluctuations of disordered ground states
• Averaged among similar spectra
• Without well-defined momenta
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Zhang et. al. 2019
Why linear spin wave theory
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• Correct statistics
• Fluctuations of disordered ground states
• Averaged among similar spectra
• Without well-defined momenta
• Delocalized 
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Zhang et. al. 2019
Why linear spin wave theory
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• Correct statistics
• Fluctuations of disordered ground states
• Averaged among similar spectra
• Without well-defined momenta
• Delocalized 
• Driving the motion between ground states
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Zhang et. al. 2019
Why linear spin wave theory
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Zhang et. al. 2019

Spin dynamics

Tangential

Transverse

Phase space Ground state manifold

Low energy excitations

For system with larger spin?

• Ground states: many degenerate/nearly-degenerate disordered states

• Fluctuations: finite-frequency spin waves

• Dynamical picture: spin waves drive the motion between ground states
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• Cr3+ on pyrochlore lattice 


• Spin-3/2 system


• Magnetostructural transition at 13K


• Broad scattering patterns at 20K 


Bai et. al. 2019

Approximate classical spin liquid MgCr2O4
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• Cr3+ on pyrochlore lattice 


• Spin-3/2 system


• Magnetostructural transition at 13K


• Broad scattering patterns at 20K


• Heisenberg interaction 


Bai et. al. 2019

Approximate classical spin liquid MgCr2O4
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Approximate classical spin liquid MgCr2O4

Bai et. al. 2019
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Discussion

Linear spin wave theory as a good description for 

Heisenberg pyrochlore antiferromagnets


Spin-3/2 

MgCr2O4

Spin-1 

NaCaNi2F7

Spin-1/2 


A peek into quantum spin liquids


with classical tools

?
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Summary

• Heisenberg pyrochlore antiferromagnet 


• Theoretical modeling


• A general picture for spin dynamics


• Quantum nature?

• Stochastic large-n + linear spin wave theory + molecular dynamics


• Spin-1 quantum spin liquid NaCaNi2F7 


• Spin-3/2 classical spin liquid MgCr2O4 

• Slow & fast motion
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• Computation: HHPC&MARCC, Maryland 


• Experiments: NIST&Oak Ridge
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Deutsche Forschungsgemeinschaft via grant SFB 1143 
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(a)

(b)

(a)

E, p
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Fractionalized excitations

Two spinons sharing
ΔE = E′�− E, Δp = p′�− p, Δ𝒥 = − ℏ

E′�, p′�

• Created in pairs 


• Fractional charge

Mourigal et. al. 2013
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Fit the exchange parameters
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Specific heat
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Ground states


