Majorana in Iron Superconductors & Pairing of Spin-Helical Electrons

Liang Fu

Majorana Fermion

Two spatially separated Majoranas γ_1 , γ_{2N} constitute a fermionic qubit At **T=0**, zero-energy Majorana qubits are protected by spatial separation and the gap

"The condition is satisfied ... by proximity of a 3-dimensional p-wave superconductor"

"Physical realization ... is a difficult task because electron spectra are usually degenerate with respect to spin...

Two difficulties: absence of spin degeneracy, presence of p-wave SC

Creating Majorana from Spin-Helical Electrons

s-wave SC + spin-helical (instead of spin-polarized) electrons

Surface of TI:

- spin degeneracy removed
- opposite spins at k and -k; T-symmetry maintained

Under π rotation $x \rightarrow -x$

- spinless: $c_k^+ c_{-k}^+ \rightarrow -c_k^+ c_{-k}^+$ p-wave
- spin-helical: $|\uparrow\rangle \rightarrow |\downarrow\rangle$, $|\downarrow\rangle \rightarrow -|\uparrow\rangle$ s-wave! $\Rightarrow c_{k\uparrow}^+ c_{-k\downarrow}^+ \rightarrow c_{k\uparrow}^+ c_{-k\downarrow}^+$

 $(2\pi \text{ rotation on spin-1/2 gives -1})$

Momentum

LF & Kane (2008)

Superconductivity in Topological Insulator

$$H_{\text{eff}} = \sum_{k} v c_{k}^{\dagger} (|\boldsymbol{k}| - k_{F}) c_{k} + \Delta (e^{i\theta_{k}} c_{k}^{\dagger} c_{-k}^{\dagger} + h.c)$$

resembles s-wave dispersion + p-wave pairing

LF & Kane (2008)

Proximitized Topological Insulator under In-Plane B Field

- In-plane Zeeman field couples to spin-helical electrons as vector potential
- At finite B<B_p, the external conventional SC maintains Q=0 pairing

Partial Fermi Surface in Superconductor: FFLO Gap Structure at Q=0

Depairing of helical electrons is strongly direction dependent. At B>B₀, Fermi surface is partially gapped and partially gapless. Gap structure is identical to FFLO SC at finite Q and ordinary SC with finite supercurrent

Quasiparticle DOS and Interference

Coherence peak moves to higher energy under B ! In-gap states appear abruptly at B > B₀ (Lifshitz transition)

Noah Yuan & LF, PRB (2018) + in progress

Intrinsic Superconductivity of Helical Electrons under In-Plane B

Noah Yuan & LF, to appear

Detecting Finite-Momentum Pairing

Cooper momentum and Josephson current depends on B and its orientation Fraunhofer pattern has an anomalous period

Majorana in Superconducting Topological Insulator

Minigap Δ^2/E_F for $E_F \gg \Delta$

Majorana Wire

Lutchyn, Sau & Das Sarma; Oreg, von Oppen & Refael; Potter & Lee ... (since 2010)

Spin-orbit-coupled nanowire under a magnetic field hosts spin-helical electrons when Fermi level is tuned into the Zeeman gap.

Platform for Majorana modes

#1: Intrinsic chiral *p*-wave (Order parameter) 2D *p+ip* TSC or 1D-Kitaev chain
#2: Proximity effect (Single Dirac Fermi surface + full SC gap)

Common properties

1. Heterostructure

2. Ultra-low temperature

3. Small topological gap

Majorana in Iron Superconductors

Institute of Physics, Beijing

Brookhaven

Hong Ding

Hong-Jun Gao

Lingyuan Kong

Genda Gu

Michal Papaj

+ Peng Fan, Dongfei Wang, Shiyu Zhu, Hui Chen, Lu Cao, Wenyao Liu. Yujie Sun, Yuyang Zhang Yuqing Xing, Fazhi Yang. + John Schneeloch Ruidan Zhong

Fe(Te, Se): small E_F with large correlations

H. Miao et al., PRB 92, 1151119 (2012)

Band Inversion by Te/Se Composition

Z. J. Wang et al., PRB 92, 1151119 (2015)

Topological Surface States on FeTe_{0.55}Se_{0.45}

P. Zhang et al., Science 360, 182 (2018) (IOP + ISSP +Brookhaven)

- #1. Linear dispersion of surface states.
- #2. Spin-momentums locking.
- #3. s-wave SC gap on the surface states.
- Small Fermi energy comparable to SC gap

Fe(Te,Se): Nature's Gift

S-wave + spin-helical

High-T_C SC

Small E_F, Large gap

Single Material

Zero-bias conductance Peak

Science 362, 333 (2018)

Spatial Line Profile

> Majorana: Non-split spatial dispersion (Pure)

Spatial Line Profile

Majorana Bound State Wavefunction

Linewidth

SysWidth =
$$\sqrt{(0.23^2)_{STM} + (0.16^2)_{Tem}}$$

= 0.28 meV

- FWHM of ZBP approaches resolution limit in good cases.
- In bad cases extra broadening related to quasiparticle poisoning

Topological and Ordinary Vortex

 $T_{eff} \approx 85 \text{ mK}$, ultrahigh energy resolution of ~20 μ eV. *Hanaguri et.al.*, *Nat. Mat (2019)*

"80% and 40% of the vortices host the ZVBS (peak energy $|E| < 20 \ \mu eV$) at B = 1 and 3 T, respectively"

To approach the 'sweet spot': zero-doping limit

Kong et al, Nature Physics (2019).

Spatial pattern of topological vortices

Ultra-small k_F of TSS enables directly observation of spatial pattern of vortex bound states

Half-integer level shift by Dirac surface state

Quantum-limit vortex bound states

NbSe2: Hess et al (1990)

Parameters on Fe(Te, Se)					
T _{exp} = 0.4 K	Δ (meV)	E _F (meV)	Т _{QL} (К)		
TSS	1.8	4.4	5.9		
Γ (bulk)	2.5	5~30	1.2 ~ 7.25		
M(bulk)	4.2	15~40	1.5 ~ 4.1		

Fe(Te,Se) satisfies quantum limit in our experiments

Topological vortices and integer quantized CdGM states

#1_6.0 T Sample ^{#1} _STM ^{#2}				
	E∟(meV)	$EL/\Delta E$		
Eo	0	0		
Eı	0.65	1.00		
E2	1.37	2.11		
E3	1.93	2.97		

MBS is the 0th level of the integer-quantized CdGM states

Ordinary vortices: half-odd-integer quantized CdGM states

b	#8_2.0 T Sample ^{#3} _STM ^{#2}				
		E∟(meV)	E L /\[].E		
	Еı	0.26	0.50		
	E2	0.83	1.60		
	Eз	1.34	2.58		
	E4	1.84	3.54		
	Еs	2.34	4.5		

Vortex statistics

Vortex statistics

The inhomogeneity of Telluride/Selenide alloy

Strong inhomogeneity (break down strong-TI)

No TSS, Ordinary vortex, No MZM
With TSS, Topo. vortex, MZM

> Normal insulating state: easy to conquer 20 meV

> Weak Topological insulator state

S.-S. Qin, L.-H. Hu et al. arXiv:1901.03120v1

Quantized Majorana Conductance

> Majorana modes induced resonant Andreev reflection

$$\frac{dI}{dV} = \frac{2e^2}{h} \frac{4\Gamma^2}{(eV)^2 + 4\Gamma^2}$$

On resonance (V=0), universal conductance ($2e^2/h$) regardless of tunnel barrier (Γ) at low temperature $kT < \Gamma$

Law, Lee and Ng. PRL (2009)

> Majorana conductance plateau observed in nanowires

H. Zhang et al. Nature 556, 74 (2018)

Partially separated Andreev bound state

Smooth confinement potential at the end of the nanowire raise the possibility to exist a pair of spatially-overlapping MZMs localized at the same end of the nanowire arXiv:1806.02801 Phys. Rev. B 98,155314 (2018); Phys. Rev. B 97.165302 (2018)

Nanowire Devices

Sharp confinement tunnel-barrier remove the possibility of partially separated Andreev bound state.

Quasiparticle poisoning

Zero-bias conductance plateau observed on FeTe_{0.55}Se_{0.45}

In stark contrasts with CBS and continues states

Distribution of the plateau value

CaKFe₄As₄ (Tc = 33K): double Fe-As layers, self-doping

CaKFe4As4: band inversion induced by symmetry breaking

Z2

Comparison between ARPES and DMFT caculation

ARPES measurements of superconducting gap

STM observation of MZM and CBSs

Integer level spacing and "ring-pattern" of CBSs

An amazing new field for Majorana

Experiments:

Zhang et al. Science 360, 182 (2018) Wang et al. Science 362, 333 (2018) Machida et al. Nat. Mater. (2019) Kong et al. arXiv: 1901.02293 (2019) Zhu et al. arXiv: 1904.06124 (2019) Liu et al. Phys. Rev. X 8, 041056 (2018) Zhao et al. Phys. Rev. B.97.224504 (2018) Liu et al. arXiv: 1807.07259 (2018) Chen et al. Sci. Adv. 4, eaat1084 (2018) Zhang et al. Nat. Phys. 15, 41 (2019) Peng et al. arXiv: 1903.05968 (2019) Rameau et al, Phys. Rev. B 99. 205117 (2019) Gray et al, arXiv: 1902.10723 (2019) Wang et al, arXiv: 1903.00515 (2019) Chen et al. Chin.Phys.Lett. 36, 057403 (2019) Liu et al, arXiv: 1907.00904 (2019) Chen et al. arXIv: 1905.05735 (2019) Yuan, Xue (WS2) et al, Nat. Phys. (2019)

Theory:

.

Berthod et al. Phys. Rev. B.98.144519 (2018) Jiang et al. Phys. Rev. X 9. 011033 (2019) Liu et al. arXiv: 1901.06083 (2019) Chiu et al. arXiv: 1904.13374 (2019) Qin et al. arXiv: 1901.03120 (2019) Qin et al. arXiv: 1901.04932 (2019) Konig et al. Phys. Rev. Lett. 122.207001 (2019) Zhang et al. Phys. Rev. Lett. 122. 187001 (2019) November et al. arXiv: 1905.09792 (2019) Zhang et al. arXiv: 1905.10647 (2019) Wu et al. arXiv: 1905.10648 (2019) Hu et al. arXiv: 1906.01754 (2019) Kawakami et al. arXiv: 1906.09286 (2019) Ghazaryan et al. arXiv: 1907.02077 (2019)

Journal Club for Condensed Matter Physics https://www.condmatjclub.org JCCM_January_2018_01

Iron-based superconductors went topological ?

Journal Club for Condensed Matter Physics https://www.condmatjclub.org

 $JCCM_December_2018_03$

Spontaneous vortex formation and Majorana zero mode in iron based superconductor.

Journal Club for Condensed Matter Physics https://www.condmatjclub.org

JCCM_June_2019_02

Trails of Mobile Majoranas in an Iron Chalcogenide?

Iron Home for Majorana: Nature's Gift

S-wave + spin-helical

High-T_C SC

Small E_F, Large gap

Single Material

