Classification theory of topological crystalline gapless superconductivity

Department of Physics, Kyoto University Shuntaro Sumita

SS & Y. Yanase, Phys. Rev. B 97, 134512 (2018).
S. Kobayashi, SS, Y. Yanase, & M. Sato, Phys. Rev. B 97, 180504(R) (2018).
SS, T. Nomoto, K. Shiozaki, & Y. Yanase, Phys. Rev. B 99, 134513 (2019).

Topology in gapped systems

- Topological invariant: defined for gapped Hamiltonian
 - e.g.) insulators, fully gapped SCs
- Classification by symmetry and dimensionality
 - Onsite symmetry: 10 Altland-Zirnbauer (AZ) classes A. Altland & M. R. Zirnbauer, PRB (1997)
 - TRS, PHS, & CS

TRS P

0

0

+1

+1

0

 $^{-1}$

0

• "Topological periodic table" A. P. Schnyder et al. (2008) A. Kitaev (2009) / S. Ryu et al. (2010)

1	1
cl	class
Δ	Δ
1	L
II	III
т	ιт
11	41
D	DI
D	D
тт	ттт
11	111
[]	II
'II	II
~	~
J	U
CI	CI

- Topological invariant: defined for gapped Hamiltonian
 - e.g.) insulators, fully gapped SCs
- Classification by symmetry and dimensionality
 - Onsite symmetry: 10 Altland-Zirnbauer (AZ) classes A. Altland & M. R. Zirnbauer, PRB (1997)
 - TRS, PHS, & CS
 - "Topological periodic table" A. P. Schnyder et al. (2008) A. Kitaev (2009) / S. Ryu et al. (2010)
 - Crystal symmetry: **point groups**, **space groups**
 - "Topological crystalline insulators" L. Fu (2011)
 - Various methods

Symmetry-based indicator: H. C. Po *et al.* (2017), H. Watanabe *et al.* (2018) Topological quantum chemistry: B. Bradlyn *et al.* (2017) Atiyah-Hirzebruch spectral sequence: K. Shiozaki *et al.* (2018)

Topology in gapless systems

Topology is useful even for gapless Hamiltonian

Semimetals

- Jumps of topological # in BZ
 = Topological gapless points
 - Weyl points (Chern #)
 - Dirac points on a C_n -axis

Nodal superconductors

- Gapless points = SC nodes
 - Unusual nodes due to crystal symmetry ^{Norman (1995)} Nomoto-Ikeda (2017)
 - Topological protection ?

Bulk property	Normal	Superconducting					
Gapped	Topological insulators	(Fullgap) topological SCs					
Gapless	Topological semimetals	????					

Motivation

Aim

(a) SS-Yanase, PRB (2018). / Kobayashi-SS-Yanase-Sato, PRB (2018).(b) SS-Nomoto-Shiozaki-Yanase, PRB (2019).

Background: gapless physics

- Semimetal case:
 - Gapless points characterized by a topological invariant
 - Crystal sym. → an additional invariant of gapless points
- Nodal SC case: examples of symmetry-protected nodes

Do SC nodes meet topology ?

Do crystal symmetries give an invariant of nodes ?

Topologically classify symmetry-protected SC nodes for centrosymmetric superconductors (a) (Line) nodes on high-symmetry plane (b) Nodes on high-symmetry line

Collaborators

(a) SS-Yanase, PRB (2018). / Kobayashi-SS-Yanase-Sato, PRB (2018). (b) SS-Nomoto-Shiozaki-Yanase, PRB (2019).

Dept of Phys., Kyoto Univ. Youichi Yanase

Supervisor

- Superconductivity
- SCES
- Multipole physics

Dept. of Appl. Phys., Nagoya Univ. (a) Shingo Kobayashi

Dept. of Appl. Phys., The Univ. of Tokyo Takuya Nomoto

YITP, Kyoto Univ. Ken Shiozaki

YITP, Kyoto Univ.

Masatoshi Sato

Methods

► High-sym. $k \rightarrow$ normal Bloch state $a_1, a_2, ...$

- Symmetry of SC order parameter
 - → maps of (pseudo-) TRS, PHS, & CS among a_1 , a_2 , ...

PHS w/ $(CI)^2 = + E$: class D \rightarrow Classification = Z_2

(a) For mirror- or glide-invariant SCs:

- Complete classification on high-symmetry planes for all symmorphic & nonsymmorphic symmetries
- No unusual node beyond previous examples UPt₃: Norman (1995), Micklitz-Norman (2009), Kobayashi-Yanase-Sato (2016), Nomoto-Ikeda (2016) CrAs: Micklitz-Norman (2017) / UCoGe, UPd₂Al₃: Nomoto-Ikeda (2017) / Sr₂IrO₄: SS-Nomoto-Yanase (2017)

(b) For rotation-invariant SCs:

- Classification on high-symmetry axes only for symmorphic symmetries
- Novel type of gap structure on C_3 and C_6 -axes

Complete classification on mirror- or glide-planes

S. Kobayashi, SS, Y. Yanase, & M. Sato, Phys. Rev. B 97, 180504(R) (2018).

 $\mathsf{ZF} k_z = \pi$

 $\mathsf{BP} \ k_z = 0$

- Nontrivial results: differences between BP & ZF
 - Nonsymmorphic (screw and/or AFM) sym.
 - → unusual node structures on ZF

Classification of 59 space groups

SS & Y. Yanase, Phys. Rev. B 97, 134512 (2018).

		(a)				(b)			(c)					
	No.	Short	$\perp = y$	No.	Short	$\perp = x$	$\perp = y$	$\perp = z$	No.	Short	$\perp = z$	$\perp = x, y$		
	10	P2/m	(RM)	47	Pmmm	(RM)	(RM)	(RM)	83	P4/m	(RM)	N/A		
UPd ₂ Al ₃	(11	$P2_1/m$	(SM)	48	Pnnn	(RG)	(RG)	(RG)	84	$P4_2/m$	(RM)	N/A		
	13	P2/c	(RG)	49	Pccm	(RG)	(RG)	(RM)	85	P4/n	(RG)	N/A		
UCoGe	14	$P2_{1}/c$	(SG)	50	Pban	(RG)	(RG)	(RG)	86	$P4_2/n$	(RG)	N/A		
				51	Pmma	(SM)	(RM)	(RG)	123	P4/mmm	(RM)	(RM)		
				52	Pnna	(RG)	(SG)	(RG)	124	P4/mcc	(RM)	(RG)		
				53	Pmna	(RM)	(RG)	(SG)	125	P4/nbm	(RG)	(RG)		
		S	r ₂ IrO ₄	54	Рсса	(SG)	(RG)	(RG)	126	P4/nnc	(RG)	(RG)		
		-	. 2 • 4	55	Pbam	(SG)	(SG)	(RM)	127	P4/mbm	(RM)	(SG)		
				56	Pccn	(SG)	(SG)	(RG)	128	P4/mnc	(RM)	(SG)		
				57	Pbcm	(RG)	(SG)	(SM)	129	P4/nmm	(RG)	(SM)		
				58	Pnnm	(SG)	(SG)	(RM)	130	P4/ncc	(RG)	(SG)		
				59	Pmmn	(SM)	(SM)	(RG)	131	$P4_2/mmc$	(RM)	(RM)		
				60	Pbcn	(SG)	(RG)	(SG)	132	$P4_2/mcm$	(RM)	(RG)		
		L	ICoGe	61	Pbca	(SG)	(SG)	(SG)	133	$P4_2/nbc$	(RG)	(RG)		
				62	Pnma	(SG)	(SM)	(SG)	134	$P4_2/nnm$	(RG)	(RG)		
		C	C rAs	63	Cmcm	N/A	N/A	(SM)	135	$P4_2/mbc$	(RM)	(SG)		
				64	Cmca	N/A	N/A	(SG)	136	$P4_2/mnm$	(RM)	(SG)		
				65	Cmmm	N/A	N/A	(RM)	137	$P4_2/nmc$	(RG)	(SM)		
				66	Cccm	N/A	N/A	(RM)	138	$P4_2/ncm$	(RG)	(S G)		
				67	Cmma	N/A	N/A	(RG)						
				68	Ccca	N/A	N/A	(RG)						
				(d)				(e)					
	No.	S	hort	\perp	= z	⊥=[1-1	0],[120],[21	10]	No.	Short		$\perp = x, y, z$		
	175	Р	6/ <i>m</i>	(F	RM)		N/A			200 Pm3		(RM)		
	176	P	$6_3/m$	(S	SM)	N/A (RM)			201	Pn3	(RG)			
	191	P6,	/ mmm	(F	RM)				205	PaĪ	(SG)			
	192	Pe	b/mcc	(F	RM)			221	Pm3m	(RM)				
	193	<u>P</u> 63	s/mcm	(S	SM)	((RM)		222	PnĪn		(RG)		
UPt ₂	P_{12} (194 $P_{6_3/mmc}$			(S	SM)			223	Pm3n	!	(RM)			
									224	Pn3m	(RG)			

(a) For mirror- or glide-invariant SCs:

- Complete classification on high-symmetry planes
 for all symmorphic & nonsymmorphic symmetries
- No unusual node beyond previous examples UPt₃: Norman (1995), Micklitz-Norman (2009), Kobayashi-Yanase-Sato (2016), Nomoto-Ikeda (2016) CrAs: Micklitz-Norman (2017) / UCoGe, UPd₂Al₃: Nomoto-Ikeda (2017) / Sr₂IrO₄: SS-Nomoto-Yanase (2017)

(b) For rotation-invariant SCs:

- Classification on high-symmetry axes only for symmorphic symmetries
- Novel type of gap structure on C_3 and C_6 -axes

Classification on symmorphic $C_{n(v)}$ -axes

SS, T. Nomoto, K. Shiozaki, & Y. Yanase, PRB 99, 134513 (2019).

- **Four types** of gap structure
 - (G) Fullgap
 - (P) Point nodes
 - (L) Line nodes
 - (S) Bogoliubov FSs

Novel j_z -dependent feature for $C_3 \& C_6$ \rightarrow Examples: SrPtAs (even) & UPt₃ (odd)

(a) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_2, \alpha = \pm 1/2$		(b1) <i>G</i>	(b1) $\bar{\mathcal{G}}^{k} = C_{3}, \alpha = +(-)1/2$		(b2) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_3, \ \alpha = \pm 3/2$		(e) $\bar{\mathcal{G}}^{k} = C_{2v}, \alpha = 1/2$			(f1) $\bar{\mathcal{G}}^{k} = C_{3v}, \alpha = 1/2$			(f2)	(f2) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_{3v}, \ \alpha = 3/2$				
IR of C_{2h} E	EAZ	Classification	IR of S_6	EAZ	Classification	IR of S_6	EAZ	Classification	IR of D_{2h}	EAZ	Classification	IR of D_{3d}	EAZ	Classification	IR of D_{3d}	EAZ	Classification	
A_g A	AIII	0 (G)	A_g	AIII	0 (G)	A_g	DIII	0 (G)	A_g	CI	0 (G)	A_{1g}	CI	0 (G)	A_{1g}	AIII	0 (G)	
A_u A	AIII	0 (G)	A_u	AIII	0 (G)	A_u	CII	0 (G)	A_u	CI	0 (G)	A_{1u}	CI	0 (G)	A_{1u}	\mathbf{C}	0 (G)	
B_g	D	\mathbb{Z}_2 (L)	$^{2}E_{g}(^{1}E_{g})$	D	\mathbb{Z}_2 (S)	$^{1,2}E_{g}$	А	\mathbb{Z} (S)	B_{1g}	BDI	\mathbb{Z}_2 (L)	A_{2g}	BDI	\mathbb{Z}_2 (L)	A_{2g}	D	\mathbb{Z}_2 (L)	
B_u	С	0 (G)	${}^{1}E_{g}({}^{2}E_{g})$	Α	\mathbb{Z} (S)				B_{1u}	BDI	\mathbb{Z}_2 (P)	A_{2u}	BDI	\mathbb{Z}_2 (P)	A_{2u}	AIII	0 (G)	
			$^{2}E_{u}(^{1}E_{u})$	\mathbf{C}	0 (G)	$^{1,2}E_{u}$	Α	$\mathbb{Z}(\mathbf{P})$	B_{2g}	BDI	\mathbb{Z}_2 (L)							
			${}^{1}E_{u}({}^{2}E_{u})$	А	$\mathbb{Z}(\mathbf{P})$				B_{2u}	CI	0 (G)	2D IRs	see $(b1)$		2D IRs	see $(b2)$		
									B_{3g}	BDI	\mathbb{Z}_2 (L)							
(c) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_4, \ \alpha = +(-)1/2, +(-)3/2$		(d1) $\bar{\mathcal{G}}^{\boldsymbol{k}} = 0$	$C_6, \alpha = +$	(-)1/2, +(-)5/2	$(d2) \tilde{\mathcal{G}}$	$\bar{\ell}^{\boldsymbol{k}} = C_6,$	$\alpha = \pm 3/2$	B_{3u}	CI	0 (G)								
IR of C_{4h} E	EAZ	Classification	IR of C_{6h}	EAZ	Classification	IR of C_{6h}	EAZ	Classification										
A_g A	AIII	0 (G)	A_g	AIII	0 (G)	A_g	AIII	0 (G)	(g) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_{4v}, \ \alpha = 1/2, 3/2$			(h1) $\bar{\mathcal{G}}^{\boldsymbol{k}} = C_{6v}, \ \alpha = 1/2, 5/2$			(h2)	(h2) $\bar{\mathcal{G}}^{k} = C_{6v}, \alpha = 3/2$		
A_u A	AIII	0 (G)	A_u	AIII	0 (G)	A_u	AIII	0 (G)	IR of D_{4h}	EAZ	Classification	IR of ${\cal D}_{6h}$	EAZ	Classification	IR of D_{6h}	EAZ	Classification	
B_g	Α	\mathbb{Z} (L)	B_g	Α	\mathbb{Z} (L)	B_g	D	\mathbb{Z}_2 (L)	A_{1g}	CI	0 (G)	A_{1g}	CI	0 (G)	A_{1g}	CI	0 (G)	
B_u	А	$\mathbb{Z}(\mathbf{P})$	B_u	Α	$\mathbb{Z}(\mathbf{P})$	B_u	С	0 (G)	A_{1u}	CI	0 (G)	A_{1u}	CI	0 (G)	A_{1u}	CI	0 (G)	
${}^{2}E_{g}({}^{1}E_{g})$	D	\mathbb{Z}_2 (S)	${}^{1}E_{1g}({}^{2}E_{1g})$	D	\mathbb{Z}_2 (S)	$^{1,2}E_{1g}$	А	\mathbb{Z} (S)	A_{2g}	BDI	\mathbb{Z}_2 (L)	A_{2g}	BDI	\mathbb{Z}_2 (L)	A_{2g}	BDI	\mathbb{Z}_2 (L)	
${}^{1}E_{g}({}^{2}E_{g})$	А	\mathbb{Z} (S)	${}^{2}E_{1g}({}^{1}E_{1g})$	Α	\mathbb{Z} (S)				A_{2u}	BDI	\mathbb{Z}_2 (P)	A_{2u}	BDI	\mathbb{Z}_2 (P)	A_{2u}	BDI	\mathbb{Z}_2 (P)	
${}^{2}E_{u}({}^{1}E_{u})$	С	0 (G)	${}^{1}E_{1u}({}^{2}E_{1u})$	\mathbf{C}	0 (G)	$^{1,2}E_{1u}$	А	$\mathbb{Z}(\mathbf{P})$	B_{1g}	AI	\mathbb{Z} (L)	B_{1g}	AI	\mathbb{Z} (L)	B_{1g}	BDI	\mathbb{Z}_2 (L)	
${}^{1}E_{u}({}^{2}E_{u})$	Α	\mathbb{Z} (P)	${}^{2}E_{1u}({}^{1}E_{1u})$	А	$\mathbb{Z}(\mathbf{P})$				B_{1u}	AI	$\mathbb{Z}(\mathbf{P})$	B_{1u}	AI	$\mathbb{Z}(\mathbf{P})$	B_{1u}	CI	0 (G)	
			$^{1,2}E_{2g}$	А	\mathbb{Z} (S)	$^{1,2}E_{2g}$	А	\mathbb{Z} (S)	B_{2g}	AI	\mathbb{Z} (L)	B_{2g}	AI	\mathbb{Z} (L)	B_{2g}	BDI	\mathbb{Z}_2 (L)	
			$^{1,2}E_{2u}$	А	$\mathbb{Z}(P)$	$^{1,2}E_{2u}$	Α	$\mathbb{Z}(\mathbf{P})$	B_{2u}	AI	$\mathbb{Z}(P)$	B_{2u}	AI	$\mathbb{Z}(\mathbf{P})$	B_{2u}	CI	0 (G)	
									2D IRs	see (c)		2D IRs	see $(d1)$		2D IRs	see $(d2)$		

- SrPtAs: a pnictide SC w/ a hexagonal lattice (D_{6h})
- Pairing symmetry is still under debate
- **Even-parity chiral d-wave (E**_{2g}) order parameter

 π/c

- $C_3\hat{\Delta}_+(\boldsymbol{k})C_3^T = e^{\pm i2\pi/3}\hat{\Delta}_+(\boldsymbol{k})$
- TRS broken & C₃ preserved

by choosing one of "±"

• Surface nodes on K-H line

D. F. Agterberg et al., PRL (2017) T. Bzdušek & M. Sigrist, PRB (2017)

▶ j_z-dependent topological protection on K-H line

- Nodes on *K*-*H* line
 - = Parts of **Bogoliubov FSs**

irrespective of j_z

D. F. Agterberg *et al*., PRL (2017) T. Bzdušek & M. Sigrist, PRB (2017)

Background of UPt₃

- UPt₃: a heavy-fermion SC w/ a hexagonal lattice (D_{6h})
- Multiple SC phases: odd-parity E_{2u} order parameter R. A. Fisher *et al.* (1989) / S. Adenwalla *et al.* (1990)
 R. A. Fisher *et al.* (1989) / S. Adenwalla *et al.* (1990)

$$\hat{\Delta}(\boldsymbol{k}) = \eta_1 \hat{\Gamma}_1^{E_{2u}} + \eta_2 \hat{\Gamma}_2^{E_{2u}}$$

- TRS broken in B phase
- C_3 preserved on $\eta = 1$
- First-principles study of UPt₃ *T. Nomoto & H. Ikeda, PRL (2016)*
 → Γ-FSs, A-FSs, & K-FSs
 - *K*-FSs: NOT sufficiently studied

▶ j_z-dependent node structures on K-H line

Nodes on K-H line = Point nodes depending on j_z

Novel type of nodes !

Numerical calc.

Model: Y. Yanase (2016)

Conclusion

SS & Y. Yanase, Phys. Rev. B **97**, 134512 (2018). S. Kobayashi, SS, Y. Yanase, & M. Sato, Phys. Rev. B **97**, 180504(R) (2018). SS, T. Nomoto, K. Shiozaki, & Y. Yanase, Phys. Rev. B **99**, 134513 (2019).

- ► Do SC nodes meet topology ? → Yes !
- Do crystal symmetries give an invariant of nodes $? \rightarrow$ Yes !
- Classification of topological crystalline SC nodes
- (a) For mirror or glide symmetry
 - Complete classification
 - Condition for Majorana flat band
- (b) For rotation symmetry
 - Novel j_z-dep. node protections or structures on C₃ & C₆
 - Applications: SrPtAs & UPt₃
- All nodes are topological ?

