really Fast Radio Transients

Tom Prince (Caltech/JPL) KITP Talk 6 November 2007

Fast Radio Transients

• Seconds or less

- Source size $\leq 10^{6}$ km
- e.g. Lorimer et al burst < 5 ms</p>
- Typically expected to be coherent
- Typically dispersed/scattered by interstellar and intergalactic medium (ISM/IGM)
- Possible sources
 - Pulsar giant pulses
 - Rotating Radio Transients (RRATs)
 - Gamma-ray bursts?
 - AGN?

Two Primary References

- Searches for Fast Radio Transients, Cordes and McLaughlin, ApJ, 596, 1142 (2003)
 - Nuts and bolts of fast radio transient searches
 - Dedispersion, scintillation, pulse broadening, etc
- A bright millisecond radio burst of extragalactic origin, Lorimer et al., astro-ph/0709.4301 (2007)
 - Detection of a fast radio transient
- Other references
 - The Dynamic Radio Sky, Cordes, Lazio, & McLaughlin, astro-ph/0410045 (2004). Future transient searches with the Square Kilometer Array.
 - On the Detectability of Prompt Coherent Gamma-Ray Burst Radio Emission, Macquart, ApJL, 658, L1 (2007)

Preliminaries - Brightness Temperature

Plank Law:

$$B(v,T) = \frac{2hv^3}{c^2} \frac{1}{e^{hv/kT} - 1}$$
(Watt / m² rad Hz)

Rayleigh-Jeans:

$$B_{R-J}(\nu,T) = \frac{2\nu^2}{c^2}kT$$

hv << kT

 $\nu(GHz) << 20.8 \ T(K)$

Relates temperature to radiation flux

Brightness Temperature:

$$T_{B}(v) \equiv \frac{c^{2}B(v)}{2kv^{2}}$$

Preliminaries: Giant pulses and RRATs

- Giant pulses
 - Extremely large pulses from normal pulsar (e.g. Crab, typical once per hr pulse is 10⁵ Jy)
 - Up to 1000 x's larger than mean pulse intensity
 - Power law distribution of pulse intensities
 - Could be detected in nearby external galaxies
- RRATs
 - 2-30 ms in duration
 - Pulse intensities: 0.1-5 Jy
 - Time between bursts: minutes hours
 - Roation periods: 0.4-7 s
 - Power law distribution of pulse intensities

Fast Radio Transient Surveys

Parkes pulsar survey

- Magellanic Clouds (0.2° beam @ 1.4 GHz w/ 64m dish)
- Archival single pulse search
- -9 sq deg x 2.3 hours = 21 sq deg hr
- Lorimer et al., astro-ph:0709.4301

• GBT350

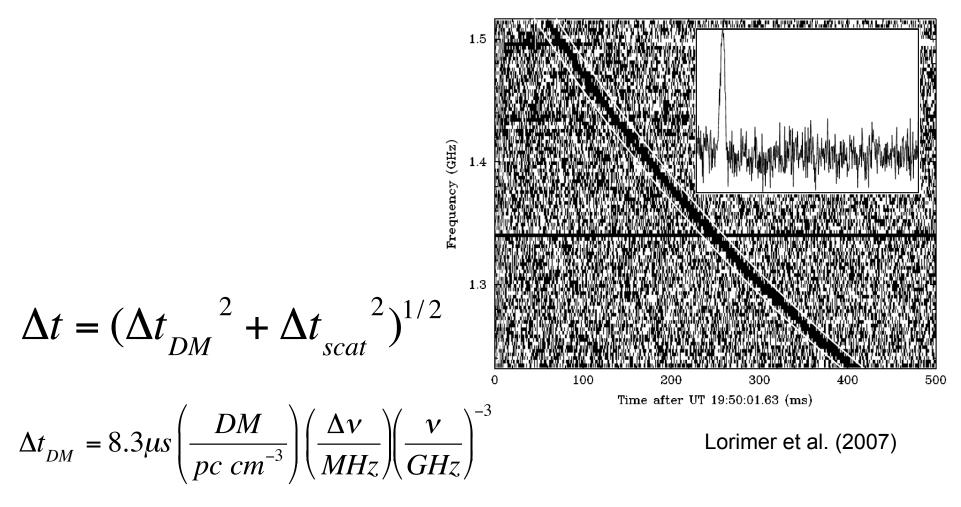
- Northern Galactic Plane (0.6° beam @ 350 MHz w/ 100m dish)
- Includes single pulse search
- 100 sq deg x 120s = 3.3 sq deg hr
- Hessels et al., astro-ph:0710.1745

• STARE

- Northern hemisphere
- 3 geographically separated antennas (125 ms resolution) 27 kJy threshold
- Katz et al., PSAP, 115, 675 (2003).

For reference - Lorimer et al. burst

- Obs. Frequency: 1.4 GHz
- Flux:
- Pulse width:
- Burst DM:


30 Jy 5 msec 375 pc cm⁻³

Effects of the ISM/IGM

- Pulse broadening (Δt)
 - Dispersion broadening (Δt_{DM})
 - Scatter broadening ($\Delta t_{scat} [= \tau_d]$)
- Scintillation
 - Bandwidth ($\Delta\upsilon_{d})$
 - Timescale ($\Delta \tau_d$)
- Angular Broadening (θ_d)

- [Eq 2,A4] [Eq 3] [Eq 6]
- [Sec 4.3] [Eq 20] [Sec 4.2, Eq A3]

Pulse Broadening

$$\log \Delta t_{scat}(\mu s) = -3.72 + 0.411 \log DM + 0.937 (\log DM)^2 - 4.4 \log \left(\frac{v}{GHz}\right)$$

Scintillation

- Much theoretical analysis of this effect
- Cordes and McLaughlin only a summary
- Predict and observe characteristic scintillation time and bandwidth
 - Bandwidth is inversely proportional to Δt_{scat} [= τ_{d}]

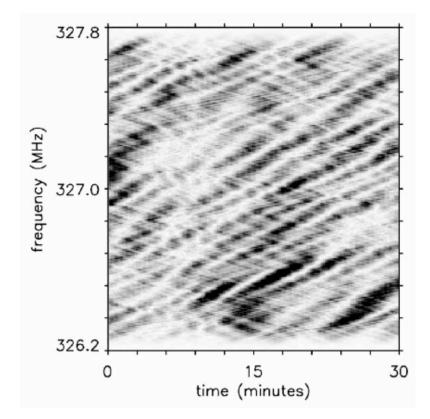
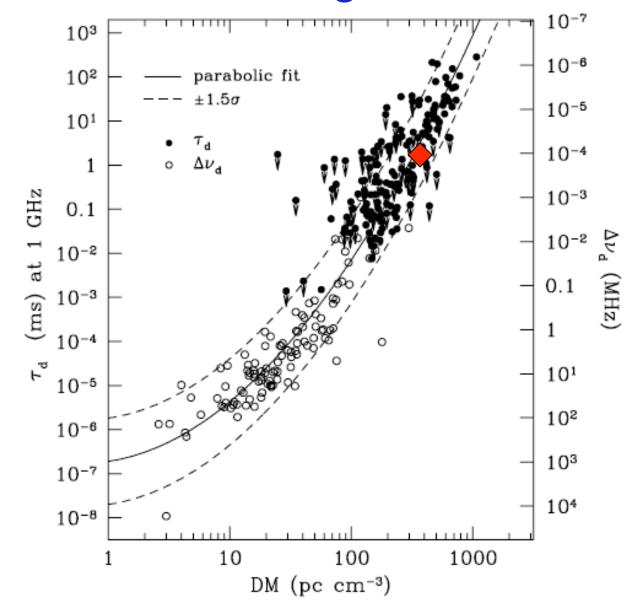
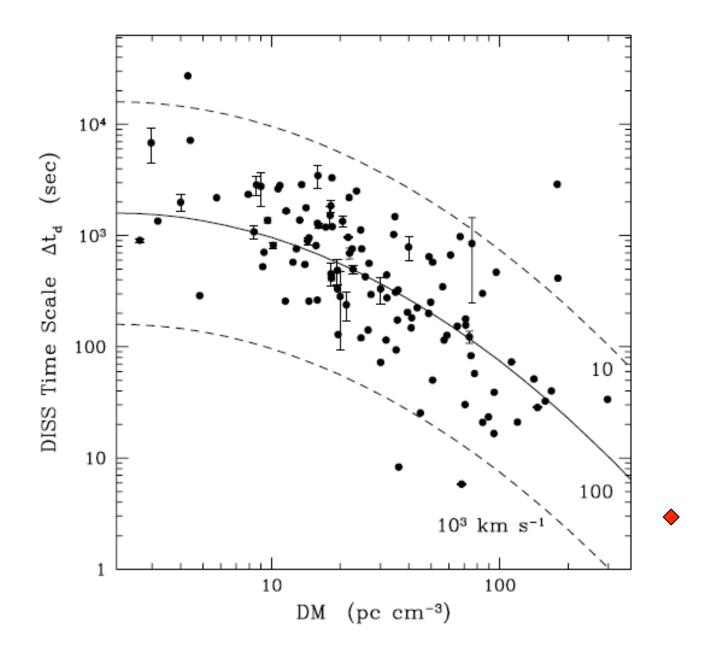
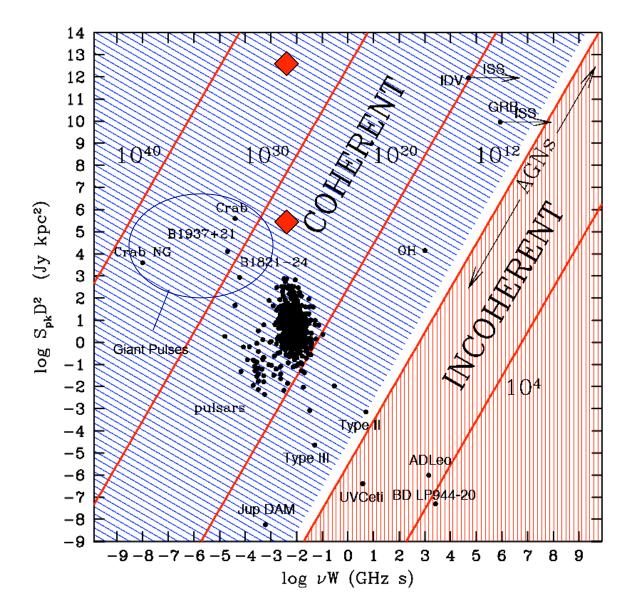




FIG. 1.—Dynamic spectrum of PSR B0834+06 observed on 2003 December 31. The flux density as a function of frequency and time is shown using a gray scale that is linear in power, with dark regions indicating high power. The criss-cross pattern is due to radio waves reaching the observer from a variety of angles (~10 mas away from the pulsar position), as detailed in the text.

Scintillation Bandwidth and Scatter Broadening Time

Scintillation Time Scale

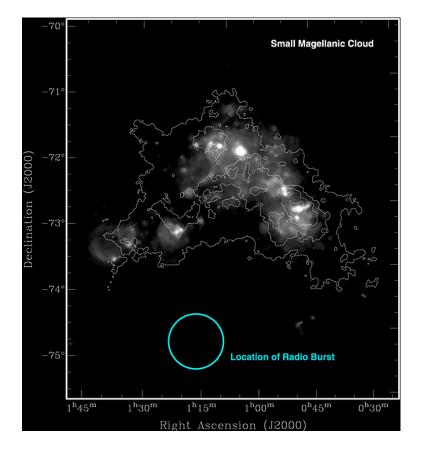


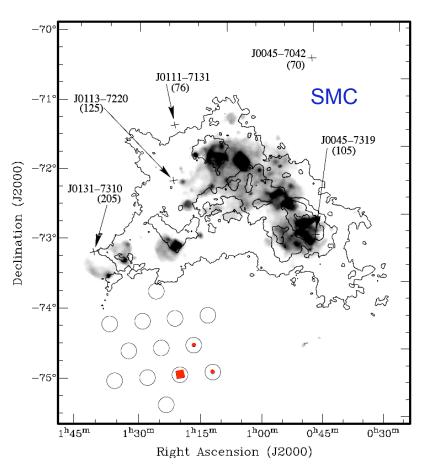
Brightness Temperature & Energetics

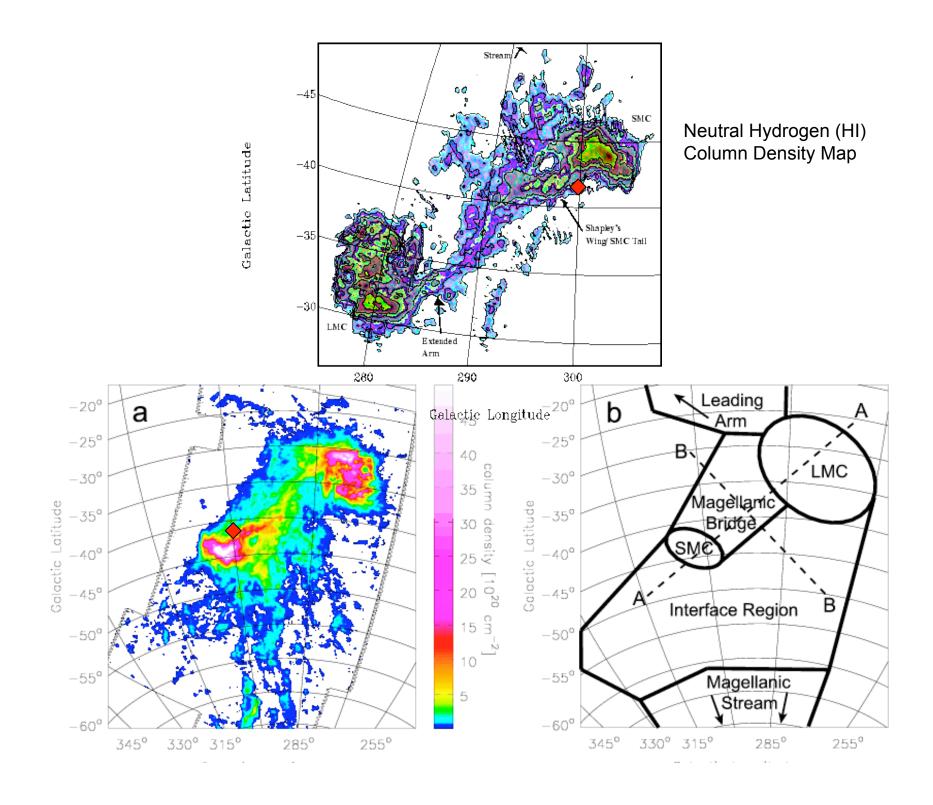
$$\left(\frac{T_B}{K}\right) \approx 10^{14.8} \left(\frac{S}{\text{mJy}}\right) \left(\frac{D}{\text{kpc}}\right)^2 \left(\frac{v}{\text{GHz}}\right)^{-2} \left(\frac{\Delta t}{\text{sec}}\right)^{-2}$$

- Brightness Temperature
 - Lorimer et al.
 - 10³⁴ K (at 500 Mpc)
 - Cordes & McLaughlin
 - + 2 x 10 34 K / Γ^2 at 500 Mpc
 - 4 x 10²⁶ K / Γ^2 at 61 kpc (SMC)
- Energetics
 - 10⁴⁰ erg (at 500 Mpc)
 - 2 x 10³² erg (at 61 kpc)

Pseudo-Flux and Time-Frequency




Is the Lorimer et al burst extragalactic?


- Indications of extragalactic origin
 - Large DM, no known high-column density in vicinity
 - No other bursts detected in follow-up observations as might be expected for a giant pulse source or a RRAT
- Issues with interpretation as extragalactic
 - Requires new source type
 - Flux is more than 100 times detection threshold; deeper searches have not yielded additional detections

(extragalactic => D>1 Mpc)

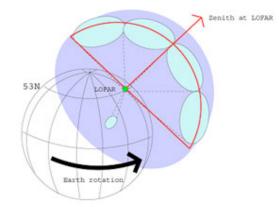
Position of Burst

Future Surveys

Allen Telescope Array (ATA)

- 42 antennas (~10³ m²); eventually 350 (~10⁴ m²)
- 5 sq deg FOV at 1.4 GHz

Low Frequency Array (LOFAR)


- 10-250 MHz (better for slow transients)
- 7700 antennas: 7 x 10⁴ m²
- ? sq deg FOV

• Mileura Wide-Field Array (MWA)

- 500 antennas (each w/ 16 dipoles)
- ~16 m² each (80-300 MHz)
- 25 deg steerable FOV for each antenna (150 MHz)

Square Kilometer Array (SKA)

- 1 sq deg FOV at 1 GHz
- 5 x 105 m2 collecting area

