Physics of Novae Accumulation and Explosion

Ken Shen, UCSB

KITP Extragalactic Transients Oct 16, 2007

Better off-line reviews

- Warner's CV book ('95)
- Bode & Evans nova book ('89); new version coming next year (Shafter's extragalactic nova review came from this)

What's a nova look like?

Maximum [Visual] Magnitude - Rate of [Visual] Decline (MMRD)

- "Faster-brighter" and "slower-fainter" (opposite of Ia's)
- Not great for doing distance measurements

Luminosity specific nova rate (LSNR)

- Pop. synth. (Yungelson et al. '97; Matteucci et al. '03) predicts dependence on SFR
- Observed LSNR pretty consistent with being constant...
- ...but maybe higher for irregulars / dwarf ellipticals
- Optical surveys will clean up here!

How many classical novae will we see with new optical surveys? LOTS.

- Typical nova: $M_V \sim -8$
- V ~ 24 survey (Pan-Starrs / LSST) will see novae out to 25 Mpc (Virgo: 20 Mpc)
- ~ 2 novae per $10^{10} L_{\odot,K}$ per yr
- ~ $5 \times 10^8 L_{\odot K}$ per Mpc³
- Depending on seeing / cadences / sky coverage, that's ~3000 novae per yr!

Outcomes of H-accretion on WDs

Accretion phase

- Thermal conditions set by compressing material:
 - accretion energy released in boundary layer (Piro & Bildsten '04) & nuclear burning negligible for now
 - calculation shows that $t_{\rm th} \sim t_{\rm acc}$ at the base of the layer, so profile set by conditions inside envelope
- Entropy equation yields

$$L_{\text{comp}} = \dot{M} \int_{P_{\text{base}}}^{0} T \frac{ds}{dP} dP = \frac{7}{4} \dot{M} \frac{k_B T_{\text{base}}}{\mu m_p}$$

• Radiative diffusion gives trajectory of envelope base:

$$T_{\text{base}} = 2 \times 10^7 \text{ K} \left(\frac{\dot{M}_{-8} \rho_3^2}{M_1} \right)^{2/11}$$

Ignition conditions

• Layer follows that trajectory until nuclear burning becomes non-negligible:

$$\left. \frac{\partial \epsilon_{\text{nuc}}}{\partial T} \right|_{P} > \left. \frac{\partial \epsilon_{\text{cool}}}{\partial T} \right|_{P},$$

- First nuclear reaction to go is $p+^{12}$ C (neglecting my current research)
- Rough scaling:

$$M_{\rm ign} \propto \dot{M}^{-1/2} M^{-1/2} R^3$$

• Also depends on $T_{\rm core}$ (see Townsley & Bildsten '04 for self-consistent $T_{\rm core}$ calculations; Yaron et al. '05 for grid)

Nova cycle

 Radiation can't transport heat away anymore, so convection sets in

• Convective phase lasts long time (10's of years), but M_{ign} already set

• Once convective zone reaches surface, L_{bol} jumps

• Super-Eddington due to convective transport of unstable β-nuclei (¹³N, ¹⁴O, ¹⁵O, ¹⁷F; Starrfield et al. '72)

• Optical peaks during expansion (larger photosphere) and then falls during constant L_{bol} phase

Mass loss

- Shock?
 - possibly in very energetic novae (Sparks '69), although
 MLT handling of convection isn't ideal
 - even if it exists, it doesn't play a huge role
- Optically thick wind (Kato & Hachisu '94):
 - radiation-driven wind from within photosphere
 - enabled by new OPAL opacities ('92); actually predicted by Kato & Iben ('92)
- Common envelope (e.g., MacDonald '80):
 - in CV, binary separation is roughly

$$a \sim 10^{11} \text{ cm} \left(\frac{P_{\text{orb}}}{5 \text{ h}}\right)^{2/3} \left(\frac{M}{M_{\odot}}\right)^{1/3}$$

 interesting that novae might be only practical way to observe CE's in real-time ("hey, look at me!")

Constant bolometric luminosity phase

- Just like max Mdot for stable burning (Fujimoto '82) and RG $M_{\rm core}$ -L relationship (Paczynski '71), there is a max $M_{\rm env}$ and L for given $M_{\rm WD}$
 - can think of this as an Eddington argument, but for the whole envelope (actually, it's hydrostatic equilibrium)
 - also depends on envelope composition

Constant bolometric luminosity phase

• Given M_{env} and L, can calculate length of phase: months to years (and not decades, as might be expected if M_{ign} used)

• What does this look like? Photosphere recedes back, so

spectrum becomes harder, optical falls

 $-L \sim 10^4 L_{\odot}$, $R \sim 10^9$ cm: 10's of eV's

shows up in EUV / soft X-rays

(Kahabka & van den Heuvel '97)

• Current M31 campaign (Pietsch et al. '05, '07) finding plenty of supersoft sources where optical novae occurred: bingo!

M31 Red Variable ('88; Rich et al. '89) and V838 Mon ('02; Munari et al. '02)

- M31 RV much slower for its high L...big H shell? (Iben & Tutukov '92); V838 Mon had 3 separate peaks
- Tylenda & Soker ('06) argue against nova (no way for nova to stay cool) and argue for stellar mergers