Transitional shear flows:
 Computing exact coherent states in two dimensions

Cédric Beaume ${ }^{1}$

Edgar Knobloch ${ }^{2}$ Greg Chini ${ }^{3,4}$ Keith Julien ${ }^{5}$
${ }^{1}$ School of Mathematics, University of Leeds
${ }^{2}$ Department of Physics, University of California, Berkeley
${ }^{3}$ Program in Integrated Applied Mathematics, University of New Hampshire
${ }^{4}$ Department of Mechanical Engineering, University of New Hampshire
${ }^{5}$ Department of Applied Mathematics, University of Colorado, Boulder

Asymptotic reduction of nonlinear flows

Strong restraint \Rightarrow reduce the flow in a particular direction, anisotropy

Small parameter \Rightarrow asymptotically consistent simplification of equations

- Boundary layers: P. Hall \& W. D. Lakin, Proc. R. Soc. London A (1988)
- Langmuir circulation: G. P. Chini, K. Julien \& E. Knobloch Geophys. Astrophys. Fluid Dyn. (2009)
- Rayleigh-Bénard convection: P. J. Blennerhassett \& A. P. Bassom, IMA J. Appl. Math. (1994)
- Strongly constrained convection: K. Julien \& E. Knobloch, J. Math. Phys. (2007)

Plane parallel shear flows

Plane Couette Flow

Wall BCs: $u= \pm 1, v=w=0$
Forcing: $\mathbf{f}(y)=\mathbf{0}$

Navier-Stokes equation \& incompressibility condition

$$
\begin{aligned}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v} & =-\nabla p+\frac{1}{\operatorname{Re}} \nabla^{2} \mathbf{v}+\mathbf{f} \\
\nabla \cdot \mathbf{v} & =0 \quad \operatorname{Re}=U H / \nu
\end{aligned}
$$

Plane parallel shear flows

Plane Couette Flow

Wall BCs: $u= \pm 1, v=w=0$
Forcing: $\mathbf{f}(y)=\mathbf{0}$

Waleffe Flow

Wall BCs: $\partial_{y} u=0, v=0, \partial_{y} w=0$
Forcing: $\mathbf{f}(y)=\frac{\sqrt{2} \pi^{2}}{4 R e} \sin \left(\frac{\pi y}{2}\right) \hat{\mathbf{e}}_{\mathbf{x}}$
Waleffe, Phys. Fluids 9 883-900 (1997)

Navier-Stokes equation \& incompressibility condition

$$
\begin{aligned}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v} & =-\nabla p+\frac{1}{\operatorname{Re}} \nabla^{2} \mathbf{v}+\mathbf{f} \\
\nabla \cdot \mathbf{v} & =0 \quad \operatorname{Re}=U H / \nu
\end{aligned}
$$

Exact coherent structures (ECS)

Turbulent and laminar states are both observable at $R e>R e_{c}$

Exact coherent structures (ECS)

Turbulent and laminar states are both observable at $R e>R e_{c}$

- Marginal threshold: edge
- Constrained dynamics \Rightarrow edge states
- Fixed points: lower branch states

Schneider Gibson, Lagha, De Lillo \& Eckhardt, Phys. Rev. E (2008)

Exact coherent structures (ECS)

Turbulent and laminar states are both observable at $R e>R e_{c}$

- Marginal threshold: edge
- Constrained dynamics \Rightarrow edge states
- Fixed points: lower branch states
- Turbulence: pinball
- Bounces from fixed point to fixed point
- Typically upper branch states

Schneider Gibson, Lagha, De Lillo \& Eckhardt, Phys. Rev. E (2008)

Asymptotic scaling

Basic characteristic: streamwise rolls are weak compared to streamwise streaks
Observation: Lower branch states in plane Couette flow
Fourier decomposition for steady-state ECS:

$$
\mathbf{u}(\mathbf{x})=\sum_{n=-\infty}^{n=+\infty} \hat{\mathbf{u}}_{n}(y, z) \mathrm{e}^{i n \alpha x}
$$

Scalings:

- $\hat{u}_{0}=O(1)$
- $\left(\hat{v}_{0}, \hat{w}_{0}\right)=O\left(R e^{-1}\right)$
- $\hat{\mathbf{u}}_{1}=O\left(R e^{-0.9}\right)$
- $\hat{\mathbf{u}}_{n}=o\left(R e^{-1}\right)$ for $n>1$

Wang, Gibson \& Waleffe, Phys. Rev. Lett. 98204501 (2007)

Methodology

Follow Wang et al., Phys. Rev. Lett. 98204501 (2007)

- $\epsilon \equiv 1 / R e \ll 1$
- $T=\epsilon t \Rightarrow \partial_{t} \rightarrow \partial_{t}+\epsilon \partial_{T}$
- Decompose: $(\mathbf{v}, p)=(\overline{\mathbf{v}}, \bar{p})(y, z, T)+\left(\mathbf{v}^{\prime}, p^{\prime}\right)(x, y, z, t, T)$ $\overline{(\cdot)}=$ average over (x, t), and $(\cdot)^{\prime}=$ fluctuation about mean
- Define $\mathbf{v}=u \hat{\mathbf{e}}_{\mathbf{x}}+\mathbf{v}_{\perp}$ and expand

$$
\begin{aligned}
u & \sim \bar{u}_{0}+\epsilon\left(\bar{u}_{1}+u_{1}^{\prime}\right)+\ldots \\
\mathbf{v}_{\perp} & \sim \epsilon\left(\overline{\mathbf{v}}_{1 \perp}+\mathbf{v}_{1 \perp}^{\prime}\right)+\ldots
\end{aligned}
$$

$\mathbf{v}_{\mathbf{1}}{ }^{\prime}(x, y, z, t, T)=\mathbf{v}_{\mathbf{1}}{ }^{\prime}(y, z, t, T) e^{i \alpha x}+c . c$.
Streamfunction-vorticity: $\bar{v}_{1}=-\partial_{z} \phi_{1}, \quad \bar{w}_{1}=\partial_{y} \phi_{1}, \quad \omega_{1}=\nabla_{\perp}^{2} \phi_{1}$

Reduced model

Mean equations

$$
\begin{aligned}
\partial_{T} u_{0}+J\left(\phi_{1}, u_{0}\right) & =\nabla_{\perp}^{2} u_{0}+f(y) \\
\partial_{T} \omega_{1}+J\left(\phi_{1}, \omega_{1}\right) & +2 \overline{\left(\partial_{y}^{2}-\partial_{z}^{2}\right)\left(\mathcal{R}\left(v_{1} w_{1}^{*}\right)\right)} \\
& +2 \overline{2 \partial_{y} \partial_{z}\left(w_{1} w_{1}^{*}-v_{1} v_{1}^{*}\right)}=\nabla_{\perp}^{2} \omega_{1}
\end{aligned}
$$

$J(a, b)=\partial_{y} a \partial_{z} b-\partial_{z} a \partial_{y} b, \quad \mathcal{R}$ real part, $\quad{ }^{*}$ complex conjugate

Reduced model

Mean equations

$$
\begin{aligned}
\partial_{T} u_{0}+J\left(\phi_{1}, u_{0}\right) & =\nabla_{\perp}^{2} u_{0}+f(y) \\
\partial_{T} \omega_{1}+J\left(\phi_{1}, \omega_{1}\right) & +2 \overline{\left(\partial_{y}^{2}-\partial_{z}^{2}\right)\left(\mathcal{R}\left(v_{1} w_{1}^{*}\right)\right)} \\
& +2 \overline{\partial_{y} \partial_{z}\left(w_{1} w_{1}^{*}-v_{1} v_{1}^{*}\right)}=\nabla_{\perp}^{2} \omega_{1}
\end{aligned}
$$

$J(a, b)=\partial_{y} a \partial_{z} b-\partial_{z} a \partial_{y} b, \quad \mathcal{R}$ real part, $\quad{ }^{*}$ complex conjugate

Fluctuation equations

$$
\begin{aligned}
\left(\alpha^{2}-\nabla_{\perp}^{2}\right) p_{1} & =2 i \alpha\left(v_{1} \partial_{y} u_{0}+w_{1} \partial_{z} u_{0}\right) \\
\partial_{t} \mathbf{v}_{1 \perp}+u_{0} i \alpha \mathbf{v}_{1 \perp} & =-\nabla_{\perp} p_{1}
\end{aligned}
$$

Why do we like it?

Reduced model

$$
\begin{aligned}
\partial_{T} u_{0}+J\left(\phi_{1}, u_{0}\right) & =\nabla_{\perp}^{2} u_{0}+f(y) \\
\partial_{T} \omega_{1}+J\left(\phi_{1}, \omega_{1}\right) & =\nabla_{\perp}^{2} \omega_{1}-2 \overline{\left(\partial_{y}^{2}-\partial_{z}^{2}\right)\left(\mathcal{R}\left(v_{1} w_{1}^{*}\right)\right)}-2 \overline{\partial_{y} \partial_{z}\left(w_{1} w_{1}^{*}-v_{1} v_{1}^{*}\right)} \\
\left(\alpha^{2}-\nabla_{\perp}^{2}\right) p_{1} & =2 i \alpha\left(v_{1} \partial_{y} u_{0}+w_{1} \partial_{z} u_{0}\right) \\
\partial_{t} \mathbf{v}_{1 \perp}+u_{0} i \alpha \mathbf{v}_{1 \perp} & =-\nabla_{\perp} p_{1}+\epsilon \nabla_{\perp}^{2} \mathbf{v}_{1 \perp}
\end{aligned}
$$

- 2D system (y, z) but 3 components (streamwise, wall-normal, spanwise)
- Mean system has unit effective Re
- Fluctuation equations are: (i) inviscid; (ii) quasi-linear and (iii) singular for equilibrium ECS on critical layer $u_{0}(y, z)=0$

$$
\left(\alpha^{2}-\nabla_{\perp}^{2}\right) p_{1}+\frac{2}{u_{0}}\left(\nabla_{\perp} u_{0} \cdot \nabla_{\perp} p_{1}-\epsilon \nabla_{\perp} u_{0} \cdot \nabla_{\perp}^{2} \mathbf{v}_{1 \perp}\right)=0
$$

Generalized Rayleigh equation

- Critical regions!

Problem statement

Calculating ECS is not easy!

They are:

- Fully nonlinear
- Unstable
- Not connected to the laminar state

Schneider et al., Phys. Rev. E 78, 037301 (2008)

Physical insight

Slow mean variables:

$$
\begin{aligned}
\partial_{T} u_{0}+J\left(\phi_{1}, u_{0}\right)= & \nabla_{\perp}^{2} u_{0}+f(y) \\
\partial_{T} \omega_{1}+J\left(\phi_{1}, \omega_{1}\right)= & \nabla_{\perp}^{2} \omega_{1} \\
& -2 \overline{\left(\partial_{y}^{2}-\partial_{z}^{2}\right)\left(\mathcal{R}\left(v_{1} w_{1}^{*}\right)\right)}-2 \overline{\partial_{y} \partial_{z}\left(w_{1} w_{1}^{*}-v_{1} v_{1}^{*}\right)}
\end{aligned}
$$

Fast fluctuating variables:

$$
\begin{aligned}
\left(\alpha^{2}-\nabla_{\perp}^{2}\right) p_{1} & =2 i \alpha\left(v_{1} \partial_{y} u_{0}+w_{1} \partial_{z} u_{0}\right) \\
\partial_{t} \mathbf{v}_{1 \perp}+u_{0} i \alpha \mathbf{v}_{1 \perp} & =-\nabla_{\perp} p_{1}+\epsilon \nabla_{\perp}^{2} \mathbf{v}_{1 \perp}
\end{aligned}
$$

Assume $\left(u_{0}, \omega_{1}\right)$ steady when solving for $\left(p_{1}, \mathbf{v}_{1 \perp}\right)$
Fluctuation system is linear \Rightarrow eigenvalue problem

Iterative algorithm

Reduced model

$$
\begin{aligned}
\partial_{T} u_{0}+J\left(\phi_{1}, u_{0}\right) & =\nabla_{\perp}^{2} u_{0}+f(y) \\
\partial_{T} \omega_{1}+J\left(\phi_{1}, \omega_{1}\right) & =\nabla_{\perp}^{2} \omega_{1}-2\left(\partial_{y}^{2}-\partial_{z}^{2}\right)\left(\mathcal{R}\left(v_{1} w_{1}^{*}\right)\right)-2 \partial_{y} \partial_{z}\left(w_{1} w_{1}^{*}-v_{1} v_{1}^{*}\right) \\
\left(\alpha^{2}-\nabla_{\perp}^{2}\right) p_{1} & =2 i \alpha\left(v_{1} \partial_{y} u_{0}+w_{1} \partial_{z} u_{0}\right) \\
\partial_{t} \mathbf{v}_{1 \perp}+u_{0} i \alpha \mathbf{v}_{1 \perp} & =-\nabla_{\perp} p_{1}+\epsilon \nabla_{\perp}^{2} \mathbf{v}_{1 \perp}
\end{aligned}
$$

Step 1: choose a fluctuation amplitude A and a profile u_{0}
Step 2: compute the fastest non-oscillatory growing $\mathbf{v}_{1 \perp}$ mode
Step 3: use A and the result of Step 2 to compute the Reynolds stresses
Step 4: time-advance u_{0} and ω_{1} to a steady state
Then: repeat Steps 2-4 until convergence
Repeat to find $A_{\text {opt }}$ such that the converged solution has marginal fluctuations.
Hall \& Sherwin, J. Fluid Mech. 661, 178-205 (2010)
Beaume, Proc. Geophys. Fluid Dyn. Program, 389-412 (2012) Mantič-Lugo, Arratia \& Gallaire, Phys. Fluids 27, 074103 (2015)

Initial iterate in Waleffe flow

$$
L_{z}=\pi, \alpha=0.5, \operatorname{Re}=400
$$

Fake streaks: set $\omega_{1}(y, z)=20 \sin (\pi y / 2) \sin (2 z)$ and converge the equation on u_{0} :

Toward a solution of Waleffe flow

$L_{z}=\pi, \alpha=0.5, R e=400$

Toward a solution of Waleffe flow

$$
L_{z}=\pi, \alpha=0.5, \operatorname{Re}=400
$$

Toward a solution of Waleffe flow

$$
L_{z}=\pi, \alpha=0.5, \operatorname{Re}=400
$$

Candidates at $A \approx 6.5$ and $A \approx 6.8$
Need to converge them!

Stokes preconditioning

$$
\gamma_{t} \partial_{t} U=N(U)+\gamma_{D} L U(=0)
$$

Tuckerman's Stokes preconditioner (1989)

Semi-implicit Euler scheme:

$$
U(t+\Delta t)=\left(I-\frac{\Delta t \gamma_{D}}{\gamma_{t}} L\right)^{-1}\left(\frac{\Delta t}{\gamma_{t}} N[U(t)]+U(t)\right)
$$

Substract $U(t)$:

$$
U(t+\Delta t)-U(t)=\frac{\Delta t}{\gamma_{t}}\left(I-\frac{\Delta t \gamma_{D}}{\gamma_{t}} L\right)^{-1}\left(N[U(t)]+\gamma_{D} L U(t)\right)
$$

Usually, take $\triangle t \gg 1$:

$$
U(t+\Delta t)-U(t) \approx-\left(\gamma_{D} L\right)^{-1}\left(N[U(t)]+\gamma_{D} L U(t)\right)
$$

\Rightarrow Asymptotic Laplacian preconditioner

Adaptive Stokes preconditioning

Remember

In the general case (forget $\Delta t \gg 1$):

$$
U(t+\Delta t)-U(t)=\frac{\Delta t}{\gamma_{t}} P^{-1}\left(N[U(t)]+\gamma_{D} L U(t)\right)
$$

Stokes preconditioner: $P=I-\frac{\Delta t \gamma_{D}}{\gamma_{t}} L$
For steady flows, we can use different preconditioners for the mean and fluctuation equations while solving simultaneously.

To precondition the slow, mean equations $\left(\gamma_{t}=\epsilon^{-1}, \gamma_{D}=1\right)$:

$$
\Delta t=\epsilon^{-1}=R e \Rightarrow P=I-L
$$

Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in Commun. Comput. Phys. (2017)

Adaptive Stokes preconditioning

For the fast, fluctuation equations $\left(\gamma_{t}=1, \gamma_{D}=\epsilon\right)$:

Remember: slow, mean equations preconditioned by $P=I-L$
Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in Commun. Comput. Phys. (2017)

Results for Waleffe flow: $\alpha=0.5, L_{z}=\pi$

$$
N_{u} \equiv \mathcal{D}^{-1} \int_{\mathcal{D}} u_{0}^{2} d y d z
$$

$$
N^{\prime} \equiv \mathcal{D}^{-1} \int_{\mathcal{D}}\left(v_{1}^{2}+w_{1}^{2}\right) d y d z
$$

Note that trivial solution has $N_{u}=1$ and $N^{\prime}=0$.

Lower branch states: $\operatorname{Re}=1500, \alpha=0.5, L_{z}=\pi$

Upper branch states: $\operatorname{Re}=1500, \alpha=0.5, L_{z}=\pi$

Dependence on $L_{z}: \operatorname{Re}=1500, \alpha=0.5$

Dependence on $L_{z}: \operatorname{Re}=1500, \alpha=0.5$

Gibson \& Brand, J. Fluid Mech. 745, 25-61 (2014)

Modulated patterns: The postulate

Saddle-nodes of subcritical branches in large domains yield modulational instabilities

Bergeon, Burke, Knobloch \& Mercader, Phys. Rev. E (2008)

Modulated patterns: Artificial modulation

Extend solutions to a $L_{z}=4 \pi$ domain

$$
g_{0}=\left[1-\frac{\chi}{2}\left(1+\cos \left(\frac{z}{2}\right)\right)\right] g_{p e r}+\left[\frac{\chi}{2}\left(1+\cos \left(\frac{z}{2}\right)\right)\right] g_{\text {lam }}
$$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: M_{1} states, $L_{z}=4 \pi$

Modulated patterns: Imperfect bifurcations

Modulated patterns: M_{2} states, $L_{z}=4 \pi$

Modulated patterns: M_{2} states, $L_{z}=4 \pi$

Modulated patterns: M_{2} states, $L_{z}=4 \pi$

Modulated patterns: M_{2} states, $L_{z}=4 \pi$

Modulated patterns: M_{2} states, $L_{z}=4 \pi$

Conclusions

\checkmark Closed reduced description of ECS in parallel shear flows
\checkmark Efficient numerical technique
\checkmark Lower, upper and modulated state branches obtained
\Rightarrow Localized pattern formation? (see Gibson, Kerswell, Schneider...)
\Rightarrow What level of accuracy do we achieve?
\Rightarrow Can we model temporal dynamics? (see Farrell, Gayme, Ioannou, Thomas, Marston, Tobias...)

References:
C. Beaume, Proc. Geophys. Fluid Dyn. Program, 389-412 (2012)
C. Beaume, E. Knobloch, G. P. Chini \& K. Julien, Fluid Dyn. Res. 47, 015504 (2015)
C. Beaume, G. P. Chini, K. Julien \& E. Knobloch, Phys. Rev. E 91, 043010 (2015)
C. Beaume, E. Knobloch, G. P. Chini \& K. Julien, Phys. Scr. 91, 024003 (2016)
C. Beaume, to appear in Commun. Comput. Phys. (2017)

