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Introduction Idea

Asymptotic reduction of nonlinear flows

Strong restraint ⇒ reduce the flow in a particular direction, anisotropy

Small parameter ⇒ asymptotically consistent simplification of equations

Boundary layers: P. Hall & W. D. Lakin, Proc. R. Soc. London A
(1988)

Langmuir circulation: G. P. Chini, K. Julien & E. Knobloch Geophys.
Astrophys. Fluid Dyn. (2009)

Rayleigh–Bénard convection: P. J. Blennerhassett & A. P. Bassom,
IMA J. Appl. Math. (1994)

Strongly constrained convection: K. Julien & E. Knobloch, J. Math.
Phys. (2007)
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Introduction Set up

Plane parallel shear flows

Plane Couette Flow

Wall BCs: u = ±1, v = w = 0
Forcing: f(y) = 0

Waleffe Flow

Wall BCs: ∂yu = 0, v = 0, ∂yw = 0

Forcing: f(y) =
√

2π2

4Re
sin
(
πy
2

)
êx

Waleffe, Phys. Fluids 9 883–900 (1997)

Navier–Stokes equation & incompressibility condition

∂v

∂t
+ (v · ∇) v = −∇p +

1

Re
∇2v + f

∇ · v = 0 Re = UH/ν
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Introduction Motivation

Exact coherent structures (ECS)

Turbulent and laminar states are both
observable at Re > Rec

Marginal threshold: edge

Constrained dynamics ⇒ edge
states

Fixed points: lower branch states

Turbulence: pinball

Bounces from fixed point to fixed
point

Typically upper branch states
Schneider Gibson, Lagha, De Lillo &

Eckhardt, Phys. Rev. E (2008)
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Introduction Motivation

Asymptotic scaling

Basic characteristic: streamwise rolls are weak compared to streamwise streaks

Observation: Lower branch states in plane Couette flow

Fourier decomposition for steady-state ECS:

u(x) =
n=+∞∑
n=−∞

ûn(y , z)einαx

Scalings:

û0 = O(1)

(v̂0,ŵ0)= O(Re−1)

û1 = O(Re−0.9)

ûn = o(Re−1) for n > 1

Wang, Gibson & Waleffe, Phys. Rev. Lett. 98 204501 (2007)
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Reduced model Assumptions

Methodology

Follow Wang et al., Phys. Rev. Lett. 98 204501 (2007)

ε ≡ 1/Re � 1

T = εt ⇒ ∂t → ∂t + ε∂T

Decompose: (v, p) = (v̄, p̄)(y , z ,T ) + (v′, p′)(x , y , z , t,T )
(·) = average over (x ,t), and (·)′ = fluctuation about mean

Define v = uêx + v⊥ and expand

u ∼ ū0 + ε
(
ū1 + u′1

)
+ . . .

v⊥ ∼ ε
(
v̄1⊥ + v′1⊥

)
+ . . .

v1
′(x , y , z , t,T ) = v1

′(y , z , t,T )e iαx + c .c .
Streamfunction-vorticity: v̄1 = −∂zφ1, w̄1 = ∂yφ1, ω1 = ∇2

⊥φ1
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Reduced model Derivation

Reduced model

Mean equations

∂Tu0 + J(φ1, u0) = ∇2
⊥u0 + f (y)

∂Tω1 + J(φ1, ω1) + 2(∂2
y − ∂2

z )(R(v1w∗1 ))

+ 2∂y∂z(w1w∗1 − v1v∗1 ) = ∇2
⊥ω1

J(a, b) = ∂ya∂zb − ∂za∂yb, R real part, ∗ complex conjugate

Fluctuation equations

(α2 −∇2
⊥)p1 = 2iα(v1∂yu0 + w1∂zu0)

∂tv1⊥ + u0iαv1⊥ = −∇⊥p1
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Reduced model Comments

Why do we like it?

Reduced model

∂Tu0 + J(φ1, u0) = ∇2
⊥u0 + f (y)

∂Tω1 + J(φ1, ω1) = ∇2
⊥ω1 − 2(∂2

y − ∂2
z )(R(v1w∗1 ))− 2∂y∂z(w1w∗1 − v1v∗1 )

(α2 −∇2
⊥)p1 = 2iα(v1∂yu0 + w1∂zu0)

∂tv1⊥ + u0iαv1⊥ = −∇⊥p1 + ε∇2
⊥v1⊥

2D system (y , z) but 3 components (streamwise, wall-normal, spanwise)

Mean system has unit effective Re

Fluctuation equations are: (i) inviscid; (ii) quasi-linear and (iii) singular for
equilibrium ECS on critical layer u0(y , z) = 0

(α2 −∇2
⊥)p1 +

2

u0

(
∇⊥u0 · ∇⊥p1 − ε∇⊥u0 · ∇2

⊥v1⊥

)
= 0

Generalized Rayleigh equation

Critical regions!
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Numerical strategy Problem statement

Problem statement

Calculating ECS is not easy!

They are:

Fully nonlinear

Unstable

Not connected to the laminar state

Schneider et al., Phys. Rev. E 78, 037301 (2008)
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Numerical strategy Physical insight

Physical insight

Slow mean variables:

∂Tu0 + J(φ1, u0) = ∇2
⊥u0 + f (y)

∂Tω1 + J(φ1, ω1) = ∇2
⊥ω1

−2(∂2
y − ∂2

z )(R(v1w∗1 ))− 2∂y∂z(w1w∗1 − v1v∗1 )

Fast fluctuating variables:

(α2 −∇2
⊥)p1 = 2iα(v1∂yu0 + w1∂zu0)

∂tv1⊥ + u0iαv1⊥ = −∇⊥p1 + ε∇2
⊥v1⊥

Assume (u0, ω1) steady when solving for (p1, v1⊥)

Fluctuation system is linear ⇒ eigenvalue problem
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Numerical strategy Iterative algorithm

Iterative algorithm

Reduced model

∂Tu0 + J(φ1, u0) = ∇2
⊥u0 + f (y)

∂Tω1 + J(φ1, ω1) = ∇2
⊥ω1 − 2(∂2

y − ∂2
z )(R(v1w

∗
1 ))− 2∂y∂z(w1w

∗
1 − v1v

∗
1 )

(α2 −∇2
⊥)p1 = 2iα(v1∂yu0 + w1∂zu0)

∂tv1⊥ + u0iαv1⊥ = −∇⊥p1 + ε∇2
⊥v1⊥

Step 1: choose a fluctuation amplitude A and a profile u0

Step 2: compute the fastest non-oscillatory growing v1⊥ mode

Step 3: use A and the result of Step 2 to compute the Reynolds stresses

Step 4: time-advance u0 and ω1 to a steady state

Then: repeat Steps 2–4 until convergence

Repeat to find Aopt such that the converged solution has marginal fluctuations.

Hall & Sherwin, J. Fluid Mech. 661, 178–205 (2010)
Beaume, Proc. Geophys. Fluid Dyn. Program, 389–412 (2012)

Mantič-Lugo, Arratia & Gallaire, Phys. Fluids 27, 074103 (2015)
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Numerical strategy Application to Waleffe flow

Initial iterate in Waleffe flow

Lz = π, α = 0.5, Re = 400

Fake streaks: set ω1(y , z) = 20 sin(πy/2) sin(2z) and converge the
equation on u0:

I(λ)

R(λ)

v1⊥ ∝ eλt
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Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

Lz = π, α = 0.5, Re = 400

A = 5

A = 5.5

A = 6

A = 6.5

Cédric Beaume Computing ECS in 2D January 10, 2017 13 / 27



Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

Lz = π, α = 0.5, Re = 400

A = 6.9

A = 7.5

A = 8
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Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

Lz = π, α = 0.5, Re = 400

Candidates at A ≈ 6.5 and A ≈ 6.8
Need to converge them!

Cédric Beaume Computing ECS in 2D January 10, 2017 13 / 27



Numerical strategy Preconditioner

Stokes preconditioning

γt∂tU = N(U) + γDLU (= 0)

Tuckerman’s Stokes preconditioner (1989)

Semi-implicit Euler scheme:

U(t +4t) =

(
I − 4tγD

γt
L

)−1(4t

γt
N[U(t)] + U(t)

)
Substract U(t):

U(t +4t)− U(t) =
4t

γt

(
I − 4tγD

γt
L

)−1

(N[U(t)] + γDLU(t))

Usually, take 4t � 1:

U(t +4t)− U(t) ≈ −(γDL)−1 (N[U(t)] + γDLU(t))

⇒ Asymptotic Laplacian preconditioner
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Numerical strategy Preconditioner

Adaptive Stokes preconditioning

Remember

In the general case (forget 4t � 1):

U(t +4t)− U(t) =
4t

γt
P−1 (N[U(t)] + γDLU(t))

Stokes preconditioner: P = I − 4tγD
γt

L

For steady flows, we can use different preconditioners for the mean and fluctuation
equations while solving simultaneously.

To precondition the slow, mean equations (γt = ε−1, γD = 1):

4t = ε−1 = Re ⇒ P = I − L

Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in

Commun. Comput. Phys. (2017)
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Numerical strategy Preconditioner

Adaptive Stokes preconditioning

For the fast, fluctuation equations (γt = 1, γD = ε):

⇒ 4t ≈ 1

⇒ P = I − εL = I − Re−1L

Remember: slow, mean equations preconditioned by P = I − L

Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in

Commun. Comput. Phys. (2017)
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Results for Waleffe flow Lower and upper branches

Results for Waleffe flow: α = 0.5, Lz = π

Nu ≡ D−1
∫
D u2

0 dy dz N ′ ≡ D−1
∫
D(v2

1 + w2
1 ) dy dz

Note that trivial solution has Nu = 1 and N ′ = 0.
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Results for Waleffe flow Lower and upper branches

Lower branch states: Re = 1500, α = 0.5, Lz = π

streamfunction fluctuation amplitude
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Results for Waleffe flow Lower and upper branches

Upper branch states: Re = 1500, α = 0.5, Lz = π

streamfunction fluctuation amplitude
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Results for Waleffe flow Domain size limits

Dependence on Lz : Re = 1500, α = 0.5
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Results for Waleffe flow Domain size limits

Dependence on Lz : Re = 1500, α = 0.5

Gibson & Brand, J. Fluid Mech. 745, 25–61 (2014)
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Results for Waleffe flow Modulated patterns

Modulated patterns: The postulate

Saddle-nodes of subcritical branches in large domains yield modulational
instabilities

Bergeon, Burke, Knobloch & Mercader, Phys. Rev. E (2008)
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Results for Waleffe flow Modulated patterns

Modulated patterns: Artificial modulation

Extend solutions to a Lz = 4π domain

g0 =
[
1− χ

2

(
1 + cos

(z
2

))]
gper +

[χ
2

(
1 + cos

(z
2

))]
glam
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Results for Waleffe flow Modulated patterns

Modulated patterns: M1 states, Lz = 4π
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Results for Waleffe flow Modulated patterns

Modulated patterns: M1 states, Lz = 4π
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Results for Waleffe flow Modulated patterns

Modulated patterns: Imperfect bifurcations
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Results for Waleffe flow Modulated patterns

Modulated patterns: M2 states, Lz = 4π
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Results for Waleffe flow Modulated patterns

Modulated patterns: M2 states, Lz = 4π
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Modulated patterns: M2 states, Lz = 4π
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Results for Waleffe flow Modulated patterns

Modulated patterns: M2 states, Lz = 4π
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TransTurb conference Santa Barbara, CA

Conclusions

X Closed reduced description of ECS in parallel shear flows

X Efficient numerical technique

X Lower, upper and modulated state branches obtained

⇒ Localized pattern formation? (see Gibson, Kerswell, Schneider...)

⇒ What level of accuracy do we achieve?

⇒ Can we model temporal dynamics? (see Farrell, Gayme, Ioannou, Thomas,
Marston, Tobias...)
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