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Introduction Idea

Asymptotic reduction of nonlinear flows

Strong restraint = reduce the flow in a particular direction, anisotropy

Small parameter = asymptotically consistent simplification of equations

@ Boundary layers: P. Hall & W. D. Lakin, Proc. R. Soc. London A
(1988)

@ Langmuir circulation: G. P. Chini, K. Julien & E. Knobloch Geophys.
Astrophys. Fluid Dyn. (2009)

o Rayleigh—Bénard convection: P. J. Blennerhassett & A. P. Bassom,
IMA J. Appl. Math. (1994)

@ Strongly constrained convection: K. Julien & E. Knobloch, J. Math.
Phys. (2007)
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Introduction Set up

Plane parallel shear flows

Plane Couette Flow
y A

u = +U

w=—U g

Wall BCs: u==+1, v=w=0
Forcing: f(y) =0

Navier—Stokes equation & incompressibility condition

ov 1 _,
E‘F(V'V)V = —Vp+%Vv+f

Vv = 0 Re = UH /v
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Introduction Set up

Plane parallel shear flows

Plane Couette Flow Waleffe Flow
Ya Y
u = +U

/ ' _——
/ /é F ~ sin(my/2H)ex

u=-U €T -H T
Wall BCs: u==+1, v=w =0 Wall BCs: d,u =0, v=20,0,w =0
H . — . 7{2 . iy ~
Forcing: f(y) =0 Forcing: f(y) = Y27 sin ()&

Waleffe, Phys. Fluids 9 883-900 (1997)

Navier—Stokes equation & incompressibility condition

ov 1,
E‘F(V'V)V = —Vp+%Vv+f

Vv = 0 Re = UH /v
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Introduction Motivation

Exact coherent structures (ECS)

Turbulent and laminar states are both
observable at Re > Re.
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Introduction Motivation

Exact coherent structures (ECS)

Turbulent and laminar states are both
observable at Re > Re.
@ Marginal threshold: edge
e Constrained dynamics = edge
states

o Fixed points: lower branch states

a | (s S
2 a2

Re

Schneider Gibson, Lagha, De Lillo &
Eckhardt, Phys. Rev. E (2008)
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Introduction Motivation

Exact coherent structures (ECS)

Turbulent and laminar states are both
observable at Re > Re.
@ Marginal threshold: edge

e Constrained dynamics = edge
states

o Fixed points: lower branch states

@ Turbulence: pinball

e Bounces from fixed point to fixed
point

a | (s S
2 a2

Re

Schneider Gibson, Lagha, De Lillo &
Eckhardt, Phys. Rev. E (2008)

o Typically upper branch states
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Introduction Motivation

Asymptotic scaling

Basic characteristic: streamwise rolls are weak compared to streamwise streaks

Observation: Lower branch states in plane Couette flow

Fourier decomposition for steady-state ECS:

° n=-+o00 3
107 u(x) = E ﬁn(y, Z)emax
EIEE_ n=—oo
. 107 \:~:::;
g N .
Lo Scalings:
P ® o= 0(1)
=10
@ (0o,W)= O(Re™)
10°
@ i = O(Reio'g)
10{2 3 4 5
10 ooy 1 @ (,=o(Re ') forn>1

Wang, Gibson & Waleffe, Phys. Rev. Lett. 98 204501 (2007)
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Reduced model Assumptions

Methodology

Follow Wang et al., Phys. Rev. Lett. 98 204501 (2007)
eec=1/Rex1
o T =¢t= 0y — 0t + 0T

° Eecompose: (V, p) = (‘_’7 p)(yv Z, T) + (V,, p/)(Xv}/a z,t, T)
(-) = average over (x,t), and (-) = fluctuation about mean

@ Define v= uéy + v, and expand

u o~ To+ e(Oy+uy) + ...

vV, o~ 6(\_/1L+V/1L) + ...

vll(vaa z, t, T) = Vll(y,Z, t, T)eiax + c.c.
Streamfunction-vorticity: v, = —0,¢1, w1 = 0y¢1, w1 = Viqﬁl
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Reduced model Derivation

Reduced model

Mean equations

Orug + J(p1,u0) = Viu + f(y)
Orwi + J(p1,w1) + 2(07 — 02)(R(vawy))
aF 2ayaz(wl Wik -V Vik) = Viwl

J(a, b) = 0yad,b — 0;ad, b, R real part, * complex conjugate
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Reduced model Derivation

Reduced model

Mean equations

Orug + J(p1,u0) = Viu + f(y)
Orwi + J(p1,w1) + 2(07 — 02)(R(vawy))

+ 20,0, (wiwf —vivy) = Viwl

J(a, b) = 0yad,b — 0;ad, b, R real part, * complex conjugate

Fluctuation equations

(@®—=V3)p = 2ic(v10yup + wid, o)
Ovi1 + wiavyy = —Vip
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Reduced model Comments

Why do we like it?

Reduced model

druo + J(¢1,u0) = Vi + f(y)

Orwi + J(¢1,w1) = Vi — 2(07 — 2)(R(viwy')) — 20y 0:(wawy — vavy')
(@ =V)p = 2ia(vidyuo + wid, o)

dvii + wioviy = —Vipi+eVivie

@ 2D system (y, z) but 3 components (streamwise, wall-normal, spanwise)
@ Mean system has unit effective Re

@ Fluctuation equations are: (i) inviscid; (ii) quasi-linear and (iii) singular for
equilibrium ECS on critical layer uy(y,z) =0

2
(a2 — Vi)m + o (VLUO -Vipt —€eViug- Vivu) =0
0

Generalized Rayleigh equation

@ Critical regions!
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Numerical strategy Problem statement

Problem statement

Calculating ECS is not easy!

They are:
@ Fully nonlinear
@ Unstable
@ Not connected to the laminar state

0.02

Of oo

Im A

-0.02 o

-0.01 0 0.05
y Re A

Schneider et al., Phys. Rev. E 78, 037301 (2008)
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Numerical strategy Physical insight

Physical insight

Slow mean variables:
druo + J(¢1,w0) = Vi + f(y)
orwr + J(pr,w1) = Vi
—2(07 — ) (R(viwy)) — 20, 0:(wawy — vivy)

Fast fluctuating variables:

(@ —V3)p 2ia(v10yug + w10, o)

, . 2
Ovit + wiaviy, = —=Vipi+eVivig

Assume (up,w1) steady when solving for (p1,vi.1)

Fluctuation system is linear = eigenvalue problem
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Numerical strategy Iterative algorithm

Iterative algorithm

Reduced model

Oruo + J(¢1,w0) = Viuo + f(y)

Oror +J(gr,w1) = Vien —2(8) - &)(R(vw)) — 20,8:(wiwi — vvy)
(@ =V = 2ia(vidyuo+ wid,uo)

OwviL + wiaviy = —Vipi+eVivi

Step 1: choose a fluctuation amplitude A and a profile ug

Step 2: compute the fastest non-oscillatory growing vi; mode

Step 3: use A and the result of Step 2 to compute the Reynolds stresses
Step 4: time-advance up and w; to a steady state

Then: repeat Steps 2—4 until convergence

Repeat to find Aop: such that the converged solution has marginal fluctuations.

Hall & Sherwin, J. Fluid Mech. 661, 178-205 (2010)
Beaume, Proc. Geophys. Fluid Dyn. Program, 389—-412 (2012)
Manti¢-Lugo, Arratia & Gallaire, Phys. Fluids 27, 074103 (2015)
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Numerical strategy ~ Application to Waleffe flow

Initial iterate in Waleffe flow

L, =7, a=0.5 Re =400

Fake streaks: set wi(y,z) = 20sin(my/2)sin(2z) and converge the
equation on ug:

At

Vi X e

0.4 . .
03| + ¥ —

1 ++ 7
0.2 | + L L -+ +

AP
+ '+ ++
olb #h i . 1
e .
. I()\) of* Lot + o —
Yy o1l HEt o+ + i
g o4 +4+
+ + N

N S 4

++ +

. +
-1 0.3 . J

0 J 0.4 ! 1 1 i

z 0.4 03 02 -0l 0 0.1

R(N)
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Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

L, =m a=0.5,

0.05

-0.05

A 0.1
-0.15
-0.2
-0.25

Cédric Beaume

Computing ECS in 2D

Re = 400
A=65 |
L At _
I Y A=55
L ypaars .
0 10 20 30 40 50
iteration

January 10, 2017
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Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

L, =7, a=0.5 Re =400

0.01

v [ AADANAAADAAAAL 4o
' -0:25 \// \f \/r \f \/ﬁ A=TS
/\ 0.05 \/ \/ \/ \/ \/ \/ -
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Numerical strategy Application to Waleffe flow

Toward a solution of Waleffe flow

L, =7, a=0.5, Re =400

0.1 T T T . T

_______________

-0.1 |

-0.4

5 5|.5 6 6.5 7 7|.5 8
A
Candidates at A~ 6.5 and A~ 6.8

Need to converge them!
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Numerical strategy Preconditioner

Stokes preconditioning

v0:U = N(U) + ypLU (= 0)

Tuckerman'’s Stokes preconditioner (1989)

Semi-implicit Euler scheme:

U(t + At) = (/ _ %L) - (%N[U(t)] 4 U(t)>

Substract U(t):

U(t + At) — U(t) = % (/ - %L) VU] + LU (E))

Usually, take At > 1:
U(t+ At) = U(t) = —(yoL) " (N[U(8)] + 7oL U(1))
= Asymptotic Laplacian preconditioner
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Numerical strategy Preconditioner

Adaptive Stokes preconditioning

Remember

In the general case (forget At > 1):
_a

Ye

U(t + Ot) — U(t) P~ (N[U(t)] + voLU(1))

Stokes preconditioner: P = | — %L

For steady flows, we can use different preconditioners for the mean and fluctuation
equations while solving simultaneously.

To precondition the slow, mean equations (y: = ¢~ %, vp = 1):

At=c¢l=Re=P=1-1L

Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in
Commun. Comput. Phys. (2017)
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Numerical strategy Preconditioner

Adaptive Stokes preconditioning

For the fast, fluctuation equations (y: =1, vp = €):
2500 T :

2000 - 10000 |
1500 | 100

n At
1000 1

500

0 . . 0.01 . .
0.01 1 100 10000 500 1500 2500 3500

At Re

= Atx1
= P=/]—¢L=1—-—Re 'L

Remember: slow, mean equations preconditioned by P =1 — L

Beaume, Adaptive Stokes preconditioning for steady incompressible flows, to appear in

Commun. Comput. Phys. (2017)

Cédric Beaume Computing ECS in 2D January 10, 2017 16 / 27



Results for Waleffe flow Lower and upper branches

Results for Waleffe flow: a = 0.5, L, =«

N, =Dt [, ud dy dz N' =D [ (v + w?)dydz
T T T 30 T
0.5 |
20 |
0.4 | N
M oa ] 10T
0.2 0 : : :
0 500 1000 1500 2000 0 500 1000 1500 2000
Re Re

Note that trivial solution has N, = 1 and N/ = 0.
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Results for Waleffe flow Lower and upper branches

Lower branch states: Re = 1500, « = 0.5, L, =7

streamfunction fluctuation amplitude
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Results for Waleffe flow Lower and upper branches

Upper branch states: Re

streamfunction fluctuation amplitude

S

z z z

Cédric Beaume Computing ECS in 2D January 10, 2017 19 / 27



Results for Waleffe flow Domain size limits

Dependence on L,: Re = 1500, « = 0.5

0.75

0.25
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Results for Waleffe flow Domain size limits

Dependence on L,: Re = 1500, « = 0.5

0.75

0.25

= /2 0 /2

Gibson & Brand, J. Fluid Mech. 745, 25-61 (2014)
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Results for Waleffe flow Modulated patterns

Modulated patterns: The postulate

Saddle-nodes of subcritical branches in large domains yield modulational
instabilities

0.65
|Iu||L2
(e) ¢’=n
T o T
(a) -0.375 —0345

Bergeon, Burke, Knobloch & Mercader, Phys. Rev. E (2008)

Cédric Beaume Computing ECS in 2D January 10, 2017 22 /27



Results for Waleffe flow Modulated patterns

Modulated patterns: Artificial modulation

Extend solutions to a L, = 47 domain

YGiam

3

=1 (1 (5)] g+ [3 (15 5))
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 . . . 20
50 | o
160 | P 16 ¢
N, 140 1 N
120 M E 12 +
100 | 1
10
80 - 1
60 - 8T
40 - X ‘ 6 ‘ ‘ .
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 . . ‘ 20
150 18
160 | P 16 1
N, 140} N T
120 | M, J 12t
100 | 1
10
80 |
60 f 81
40 . . . 6 . . .
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 . . ‘ 20

150 18

160 | P 16
N, 10} N T

120 f M, b 12t

100 | 1

10
80 |
60 f 81
. . . 6 . . .
100 200 300 400 500 100 200 300 400 500
Re Re

Re ~ 225

S g

Cédric Beaume Computing ECS in 2D 24 /27



Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 : 20
200 186
180 |
160 | P 16
N, 140t N M
120 f M, F 12 t
100 [
] .
80 | 0
60 | 81
40 ; X : 6 . . .
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 20
180 18 1
160 P 16
N, 140 N 14T
120 M, J 12t
100 1
10
80 |
60 8
© . . . . . .
100 200 300 400 500 100 200 300 400 500

Re

Re

Re =~ 145
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 . 20
200 18+
180 |
160 | P 16
N, 140t N
120 | M, 12
100 |
10
80 |
60 8T
: 6
100 200 300 400 500 100 200 300 400 500
Re Re
Re ~ 271
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Results for Waleffe flow Modulated patterns

Modulated patterns: M; states, L, = 4x

220 20
50 | i
160 P 16
N, 140F N4
120 M 4 12+
100 | 1
10
80
60 - 8
40 ; X ‘ 6 ‘ ‘ .
100 200 300 400 500 100 200 300 400 500
Re Re

Re = 500
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Results for Waleffe flow Modulated patterns

Modulated patterns: Imperfect bifurcations

100

J\IQC
17\‘(“ 75 4

50 -
200 225 250

Re

Wl at R( ~ 220. 0320

A[Z (11: Re ~ 221. 0741
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Results for Waleffe flow Modulated patterns

Modulated patterns: M, states, L, = 4r

220 T T T 20
200 | sl
180
160 16

7140 F B A 14 r

N, N
ot P M J Bl
100 E 0l
80 ¢ M, gl
60
40 : : ! 6 . . .
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M, states, L, = 4r

220 T 20
200 18 F
180
160 161
N, 140} N T
120 + P M,y P 12 F
100 4
10
80 M
60 | 2 St
40 : A R 6 . A A
100 200 300 400 500 100 200 300 400 500
Re Re
Re ~ 221
.’("' :‘—
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Results for Waleffe flow Modulated patterns

Modulated patterns: M, states, L, = 4r

220 20
50 | o
160 16 1
;140 F 114 F
N, N
120 P M, 1t
» o
I M.
60 - 2 8t
40 : 6 . .
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M, states, L, = 4r

220 20
50| 18 1
160 16
N, 140 - N 14
120 t P M, 12t
H
i M
60 2 8
40 ‘ 6 ‘ ‘
100 200 300 400 500 100 200 300 400 500
Re Re
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Results for Waleffe flow Modulated patterns

Modulated patterns: M, states, L, = 4r
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TransTurb conference =~ Santa Barbara, CA

Conclusions

v
v
v
=
=
=

Closed reduced description of ECS in parallel shear flows
Efficient numerical technique
Lower, upper and modulated state branches obtained

Localized pattern formation? (see Gibson, Kerswell, Schneider...)
What level of accuracy do we achieve?

Can we model temporal dynamics? (see Farrell, Gayme, loannou, Thomas,
Marston, Tobias...)
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