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Figure 12. View of the measurement array installed at the SLTEST site.

–3 –2 –1 0 1 2 3
–0.2

0

0.2

0.4

0.6

0.8

1.0

∆x/δ

Ruu

(a)

–1.0 –0.5 0 0.5 1.0
∆y/δ

(b)

Figure 13. (a) Streamwise and (b) spanwise two-point correlations of the streamwise velocity
fluctuation Ruu. (!) show rake data for 1840 <Reτ < 19960 at z/δ =0.05; solid line shows
Utah data for Reτ ≈ 660000 at z/δ = 0.036.

There are some signs that the ASL correlations are not fully converged. Even with
one hour of data, the total advection length for the ASL measurement is only
approximately 300δ as compared to over 37000δ for the Reτ = 19960 laboratory
data. Convergence of low-wavenumber information will always be problematic in
atmospheric measurements owing to limited periods of neutral stability and very large
structural length scales. Regardless, figure 13 shows that similar large-scale features
inhabit the log region of high Reynolds number atmospheric surface layers. The long
region of positive correlation, flanked in the spanwise direction by anti-correlated
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Figure 14. Example of signal across the spanwise array of sonic anemometers at SLTEST,
z/δ =0.037, Reτ = 660 000. The x-axis is reconstructed using Taylor’s hypothesis and a
convection velocity based on the local mean, U = 5.46m s−1. Shading shows only negative
u fluctuations (see grey scale).

behaviour is a typical statistical signature of the ‘superstructure’. Figure 14 shows
instantaneous streamwise velocity fluctuations for a 100 s trace across the spanwise
array. The streamwise ordinate is reconstructed using Taylor’s hypothesis, in exactly
the same way as for figure 4. It is immediately obvious that the same very long
meandering features inhabit the log region of the ASL. The feature shown in figure 14
is almost half a kilometre in length. Some sense of proportion can be obtained from
the schematic of the measurement array, which is drawn to scale on the figure
(compare to the photograph in figure 12). A comparison with laboratory results
would indicate that even longer features will occur (>20δ). Indeed, the meandering
tendency of these large-scale features means that they often wander into and out of
our measurement domain before we can assess their true length (the spanwise width
of the sonic anemometer array is only 0.5δ and the sample length is also somewhat
limited).

The feature shown in figure 4 is enormous in comparison to the near-wall structure
(1000 wall units in the ASL equates to 90 mm). With this kind of scale separation
between the near-wall cycle and the log region structure, it becomes increasingly less
intuitive to sanction a situation whereby the near-wall cycle can influence or give rise
to the ‘superstructure’. Certainly at lower Reynolds number the degree of scale-overlap
tends to give the impression that these two scales are intimately entwined. Perhaps this
is so at low Reynolds numbers, with the log region structure subject to a certain degree
of wall-up interaction from the near-wall cycle. However, for the ASL, we are left with
the notion that the inner and outer energy site (figure 11) could be two quite separate
regimes, and that any substantial interaction is likely to be top-down (Hunt &
Morrison 2000). Circumstantial evidence for this scenario comes from Jiménez &
Pinelli (1999), who demonstrate that the near-wall cycle is autonomous and can

Hutchins & Marusic 2007
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The problem to be addressed:  

Understand how these specific structures arise 
and how are they maintained



Claims

I.  The underlying dynamics of structure formation lies in the 
interaction of turbulent eddies with mean flows

II.  Often, structure formation has analytic expression 
only in the Statistical State Dynamics (SSD/DSS) 

(the dynamics that govern the statistics of the flow 
rather than the dynamics governing single flow realizations)

III.  Because of (I) a second-order closure of the SSD is adequate
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but this is fundamental for 
structure formation (claim (I))
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but this is fundamental for 
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Remarks on SSD — What is novel here?

By studying the dynamics of the statistics new phenomena arise 
that are either not present or are obscured in single flow realizations



Jet/large-scale wave emerge in planetary turbulence 
as an instability of the SSD 

(this shows that SSD capture the mechanism)

Roll/streak structures 
in pre-transitional free-stream Couette turbulence 

emerge as an instability of the SSD

I will show that within the framework of SSD we understand:

A.

B.
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barotropic β-plane turbulence exhibits 
large-scale structure formation

statistically  
homogeneous forcing 

(no inhomogeneity 
is imposed by the forcing) 

any random flow 
inhomogeneities organize the 
turbulence in a manner so that 

they are reinforced
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http://www.youtube.com/watch?v=ZtzW25NooDk

we observe: 
• jet emerge 
• jets appear to change much 

slower compared to the 
eddies 

• jet have a particular structure



various β-plane turbulence flows 
at statistically steady state: 

homogeneous — traveling waves — zonal jets
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S3T closure of SSD

under the ergodic assumption that 
take the   mean  as a zonal meanh i

= ensemble average over forcing realizationsmeanh i
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neglect of third cumulant 
is equivalent with 

neglect of the eddy—eddy term in eddy equation in the EOM

Note: The dynamics of the 1st & 2nd cumulants is necessarily quasi-linear (Herring 1963) 

(        PainInNeck-term Tobias was talking about on Monday)
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The S3T system 

 nonlinear 
 autonomous, deterministic (central limit theorem) 
 admits fixed point solutions 
 associated perturbation equations used to determine 

stability of these fixed points                         
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How does the state with no mean flow 
becomes unstable?

Consider the homogeneous turbulent equilibrium:

(for any ε, β and 
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Verification of the S3T predictions for the structure 
of the finite amplitude jet equilibria

S3T instabilities grow and reach finite amplitude 
to produce new inhomogeneous S3T equilibria

NCC, Farrell & Ioannou 2014



Roll/streak formation 
in pre-transitional free-stream 

Couette turbulence
B.

Farrell, Ioannou & Nikolaidis (2016) Instability of the roll/streak structure induced by free-stream 
turbulence in pre-transitional Couette flow, Phys. Rev. Fluids. (sub judice, arXiv:1607.05018)

Credit: T Zaki
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Analogously, in the 3D problem 
infinitesimal mean flows organize the turbulent Reynolds stresses 

so as to reinforce the very same mean flow

proof of concept
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2D problem



1. Perturb a shear flow by an infinitesimal streak in the presence of turbulence 
2. Calculate the response of the turbulence and the Reynolds stresses the are 

produce.

Interpretation: turbulent Reynolds stresses are organized by the 
streak to force a roll circulation configured to amplify the streak

proof of concept

minimal channel 
Re=400
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Figure 1.13 The rate of change of streamwise roll acceleration
induced by a streak perturbation to a Couette flow that is
maintained turbulent by stochastic forcing. Distortion of the
turbulence by the streak perturbation induces Reynolds stresses
that force roll circulations supporting the streak via the lift-up
mechanism. Shown are contours of the imposed streak
perturbations, �U = cos(⇡y/2) sin(2⇡z/L

z

), with �U > 0 in
z > 0, and vectors of the resulting rate of change of roll
acceleration, (V̇ , Ẇ ). The Reynolds number is R = 400,
L

x

= 1.75⇡ and L

z

= 1.2⇡.

bation equations (1.45), advection of perturbations by the
small V and W components of the streamwise mean veloc-
ity has been neglected4. Using nondivergence the mean flow
equation (1.43b) can be written as:

Ut = Uy z � Uz y � @yuv � @zuw +�1U/R ,

(1.46a)

�1 t = (@yy � @zz)( y z � vw)�

� @yz( 
2
y � 2

z + w2 � v2) +�1�1 /R .

(1.46b)

In (1.46b), �1 ⌘ @2yy + @2zz and V and W have been ex-
pressed in terms of the streamfunction,  , as V = � z and
W =  y.

We next Fourier expand the perturbation fields in x: v =

<
hP

k v̂k(y, z, t)e
ikx

i
, ⌘ = <

hP
k ⌘̂k(y, z, t)e

ikx
i
, and write

the equations for the evolution of the Fourier components
of (1.45) in the matrix form

d�k

dt
= Ak(U)�k +

p
✏FkdBtk , (1.47)

where the state of the system �k = [v̂k, ⌘̂k]
T comprises the

values of the v̂k and ⌘̂k on the N = NyNz grid points of the
(y, z) plane and

Ak(U) =

✓
LOS LC1

LC2
LSQ

◆
, (1.48)

4 The results presented are not a↵ected by neglecting the ad-
vection of the perturbation field by V and W velocities in the
perturbation equations, cf. Thomas et al. (2014).
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Figure 1.14 The most unstable streamwise roll and streak
eigenfunction of the S3T system linearized about the spanwise
uniform equilibrium at supercriticality ✏/✏

c

= 1.4. The growth
rate of this mode is �

r

= 0.014. Shown are velocity vectors
(�V, �W ) (left) and streamwise velocity �U (right). The ratio of
the maxima of (�U, �V, �W ) is (1, 0.06, 0.03). Other parameters
are as in Fig. 1.13.

Figure 1.15 The finite amplitude S3T equilibrium streamwise
roll and streak resulting from the equilibration of the eigenmode
shown in Fig. 1.14 at supercriticality ✏/✏

c

= 1.4. Shown are the
streamwise averaged streamwise flow, U(y, z), (contours) and
the streamwise averaged velocities, (V,W ) (vectors). The
maxima of the fields (U, V,W ) are (0.26, 0.02, 0.009).

with

LOS = ��1
h
�ikU�+ ik(Uyy � Uzz)� 2ikUz@z �

�2ik(Uz@
3
yyz + Uyz@

2
yz)�

�1
2 +��/R

i
, (1.49a)

LC1
= 2k2��1 (Uz@y + Uyz)�

�1
2 , (1.49b)

LC2
= Uz@y � Uy@z � Uyz + Uzz@

2
yz�

�1
2 , (1.49c)

LSQ = �ikU�+ ikUzz�
�1
2 +�/R , (1.49d)

being the conventionally designated Orr-Somerfeld, cou-
pling, and Squire operators respectively. In equations (1.49),
��1 and ��1

2 are the inverses of the matrix Laplacians, �
and �2 = @2xx + @2zz , which are rendered invertible by en-
forcing the boundary conditions. The boundary conditions
satisfied by the Fourier amplitudes of the perturbation fields
are: periodicity in x and z and v̂k = @y v̂k = ⌘̂k = 0 at
y = ±1 .

z/�

y/
�

it turns out that the stresses force a roll           .   
exactly such as to amplify the streak

(V,W )

Farrell & Ioannou 2012
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Conclusions

S3T generalizes the hydrodynamic stability of Rayleigh and allow us to study 
the stability of turbulent flows 

The emergence of coherent structures in a variety of flow settings is 
(analytically) predicted as an instability of the turbulent state 

S3T also predicts the final inhomogeneous turbulent state at which the system 
bifurcates to after the homogeneous state becomes unstable 

This is a first tool that enables us to determine the tipping points of the climate 
(climate = statistical turbulent equilibrium state)
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