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inertial manifold

strange attractor stuffed into a finite-dimensional body bag



1 why are we here
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3 dimension of the inertial manifold



a life in extreme dimensions

Navier-Stokes equations (1822)

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

describe turbulence
starting from the equations (no statistical assumptions)



1 why is Cvitanović talking?
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3 dimension of the inertial manifold



algorithmic advances

F. Ginelli, H. Chaté, G. Radons, A. Politi, P. Poggi, A. Turchi, R.
M. Samelson, C. L. Wolfe:

computation of covariant “Lyapunov” vectors
Phys. Rev. Lett. 99, 130601 (2007); Tellus A 59, 355 (2007);
J. Phys. A 46, 254005 (2013)

covariant vectors are non-normal

(references are hyperlinked)

http://doi.org/10.1103/PhysRevLett.99.130601
http://doi.org/10.1111/j.1600-0870.2007.00234.x
http://doi.org/10.1088/1751-8113/46/25/254005


beautiful insights of

F. Ginelli, H. Chaté, G. Radons, A. Politi, P. Poggi, A. Turchi,
H.-l. Yang, K. A. Takeuchi

physical dynamics is hyperbolically separated from
the infinity of transient modes :

physical dimension of an inertial manifold
Phys. Rev. Lett. 102, 074102 (2009); Phys. Rev. E 84, 046214 (2011);

Phys. Rev. Lett. 117, 024101 (2016)

Kuramoto-Sivashinsky? OK!
complex Ginzburg-Landau? OK!
Navier-Stokes? dunno...

(references are hyperlinked)

http://doi.org/10.1103/PhysRevLett.102.074102
http://doi.org/10.1103/PhysRevE.84.046214
http://doi.org/10.1103/PhysRevLett.117.024101


the killer slide

Kuramoto-Sivashinsky Lyapunov spectrum
cells L = 22,96,192 : it scales!
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Now double # computational elements, fixed L :
all new ones go to the transient spectrum 1

1Yang et al (Phys. Rev. Lett. 2009)



what this talk is about:

the attracting set of a dissipative flow
is embedded with the (curvilinear) inertial manifold
embedded into∞-dimensional state space

but try to draw THAT :)



what this talk is about:

it is believed that the attracting set of a dissipative flow

is confined to :
a finite-dimensional smooth inertial manifold
“z” directions :
the remaining∞ of transient dimensions



what this talk is about:

state space of dissipative flow is split into

inertial manifold : spanned locally by entangled covariant
vectors, tangent to unstable / stable manifolds
the rest : spanned by the remaining∞ of the contracting,
decoupled, transient covariant vectors



what this talk is about:

inertial manifold

dynamics of the vectors that span the inertial manifold is
entangled, with small angles and frequent tangencies
a transient covariant vector : isolated,
nearly orthogonal to all other covariant vectors



what this talk is about:

goal : construct inertial manifold for a turbulent flow

tile it with a finite collection of bricks centered on
recurrent states, each brick ≈ 10− 100 dimensions
span of∞ of transient covariant vectors :
no intersection with the entangled modes



if all this works out, it is kinda amazing

computation of turbulent solutions
requires at least
→ integration of 104-106 coupled ordinary differential equations

inertial manifold, tiled
50 linear tiles cover the (nonlinear, curved) inertial manifold

each tile 100 dimensional (fingers crossed :)



part 1

1 why are we here
2 state space
3 dimension of the inertial manifold



pipe experiment data point

a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe2

2Casimir W.H. van Doorne (PhD thesis, Delft 2004)
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dynamical description of turbulence

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time

integrate the equations

trajectory x(t) = f t (x0) = representative point time t later



1 spatial dimension “Navier-Stokes”

computationally not ready yet to explore
the inertial manifold of 3D turbulence - we start with

Kuramoto-Sivashinsky equation

ut + uOu = −O2u−O4u , x ∈ [−L/2,L/2] ,

describes spatially extended systems such as
flame fronts in combustion
reaction-diffusion systems
. . .



Kuramoto-Sivashinsky on a large spacetime domain

[horizontal] space x ∈ [0, 96] [up] time evolution

turbulent behavior
simpler physical, mathematical and computational setting
than Navier-Stokes



evolution of Kuramoto-Sivashinsky on small periodic domain
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a relative periodic orbit

full state space : many periods
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can explore shadowing
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periodic orbits are dense in the attractor
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[left] turbulent trajectory segment in [space×time]
Poincaré section, turbulent trajectory (natural measure)
periodic points, from 479 periodic orbits3

3Budanur (PhD thesis 2015)
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what is the dimension of the inertial manifold?

we determine it in 6 independent ways

Lyapunov exponents (diagnostic only, previous work)
Lyapunov vectors (sharp, previous work)
four periodic orbits determinations (presented here)



linearized deterministic flow

xn

xn+1

Jn vnvn+1

xn+1 + zn+1 = f (xn) + Jn zn , Jij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow
(2) transported by the Jacobian matrix Jn into a neighborhood

given by the J eigenvalues and eigenvectors



method (0) : global ergodic trajectory, t ∈ [−∞,∞]

Ginelli et al., Phys. Rev. Lett. (2007)

Jacobian matrix : orthogonal frame→ non-orthogonal frame
→
QR decomposed into an R-matrix + Gram-Schmidt frame
→
next Jacobian matrix, and so on



eigenvectors spanning “physical” manifold

t = −∞

t = +∞

blip!

a pair of “entangled” eigenvectors
distinct Lyapunov exponents
dance along t from −∞ to −∞ orbit

at the instant “blip!” they are (almost?) collinear



(0) distribution of angles between eigenvectors
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histogram of angles between nth leading covariant vector and
the next, accumulated over many long orbits :

(top) For n = 1 · · · 7 (eigenvector within the entangled
manifold) the angles can be arbitrarily small
(bottom ) For the remaining, transient eigenvectors,
n = 8,11,12, · · · : angles are bounded away from zero

.



OK, so the the
frame is
locally flat

but where the (blip) are we in the state space?



we are here

next : cartography of a roller coaster ride
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cartography for fluid dynamicists

cover the inertial manifold with a set of flat charts

we can do this with
finite-dimensional bricks embedded in 10100 000 dimensions!



tile the inertial manifold by recurrent flows

a fixed point

a 2-cycle, etc.

smooth dynamics (left frame)
tesselated by the skeleton of recurrent flows,
together with (right frame) their linearized neighborhoods



charting the inertial manifold

x̂(0)

x̂(t)

M̂ (2)

M̂
(1)

x̂2

x̂1

two tangent “entangled” tiles = finite-dimensional bricks

shaded plane :
when integrating your equations, switch the local chart



method (1) : local relative periodic orbit, one period

Ding & Cvitanović, SIAM J. Appl. Dyn. Syst. (2016)

[right panel]
all eigenvectors computed close to the machine precision



(1) algorithmic breakthrough :
all Floquet exponents to machine precision

µ(i) eiTpω(i)

1=2 0.0331970261043278 -0.42330856002164
+ i 0.905985575499084

3=4 (2 marginal)
5 -0.216338085869672 1

6=7 -0.265233812289065 -0.867175421594352
+ i 0.49800279937231

. . . . . . . . .
29 -316.19797864063 1
30 -320.666664811713 -1

Floquet exponents for the shortest pre-periodic orbit :

µ(i) = real part of the exponent.
either the multiplier sign for a real exponent, or
ω(i) → the multiplier phase for a complex Floquet exponent



(1) algorithmic breakthrough :
all Floquet exponents to machine precision

why is this a big deal?

periodic Schur decomposition : resolves Floquet multipliers
differing by thousands of orders of magnitude

here the smallest Floquet multiplier for the shortest periodic
orbit is

|Λ62| ' e−6080.4×10.25 ≈ 10−27069



(1) Floquet and Lyapunov exponents, L = 22 small cell
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(1) dimension of the inertial manifold from an individual orbit (??)

Floquet exponents separate into entangled vs. transient
for every single periodic orbit! (checked 500 orbits)

if true for Navier-Stokes, that would make life easy!



(2) dimension of the inertial manifold from ensemble of orbits

principal angles between hyperplanes spanned by Floquet
vectors



(2) Floquet vectors

e(1)

e(2) x(0)

x(τ)
Jτ

e(1)e(2)

a parallelepiped spanned by a pair of Floquet eigenvectors
(‘covariant vectors’) transported along the orbit

Jacobian matrix not self-adjoint : the eigenvectors are not
orthogonal, the eigenframe is ‘non-normal’
Measure the angle between eigenvectors
e(i)(x(t)) and e(j)(x(t))



(2) example : Kuramoto-Sivashinsky relative periodic orbit

dotted green : a group orbit
solid red : a relative periodic orbit
planes : a tangent space spanned and transported by 2 Floquet
vectors



(2) distribution of principal angles between Floquet subspaces
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histogram of angles between Sn (n leading Floquet vectors)
and S̄n (the rest), accumulated over the 400 orbits :

(top) For n = 1 · · · 7 (Sn within the entangled manifold) the
angles can be arbitrarily small
(bottom ) For the S̄n spanned by transient modes,
n = 8,10,12, · · · ,28 : angles bounded away from unity

.



(3), (4) dimension of the inertial manifold from
a chaotic trajectory shadowing a given orbit

two independent measurements

(3) shadowing separation vector lies within the orbit’s Floquet
entangled manifold

(4) shadowing separation vector lies within the chaotic
trajectories covariant vectors’ entangled manifold

‘separation vector’ = difference vector between the chaotic orbit
point and periodic orbit point at their (locally) closest passage

accumulate 1000’s of near recurrences



(3)
chaotic trajectory
shadows
periodic orbits
within the
entangled subspace
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what about large or∞ domains ?

spatiotemporal chaos

spatiotemporal chaos is extensive



Kuramoto-Sivashinsky physical dimension
grows linearly with the domain size!
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Now double # Fourier modes : all new ones go to the transient
spectrum 4

4Yang et al (Phys. Rev. Lett. 2009)



summary for the impatient

state space of dissipative flow is split into

inertial manifold : spanned locally by entangled covariant
vectors, tangent to unstable / stable manifolds
the rest : spanned by the remaining∞ of the contracting,
decoupled, transient covariant vectors



detailed summary
6 ways to determine the dimension of the inertial manifold

Tangent spaces separate into entangled vs. transient

1 Lyapunov exponents (plausible, previous work)
2 Lyapunov vectors (sharp, previous work)
3 for each individual orbit Floquet exponents separate into

entangled vs. transient (new)
4 for an ensemble of orbits principal angles between

hyperplanes spanned by Floquet vectors separate into
entangled vs. transient (new)

5 for a chaotic trajectory shadowing a given orbit the
separation vector lies within the orbit’s Floquet entangled
manifold (new)

6 for a chaotic trajectory shadowing a given orbit the
separation vector lies within the chaotic trajectories
covariant vectors’ entangled manifold (new)



what next? take the course!

student raves :
...106 times harder than any other online course...
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