Periodic solutions representing the origin of turbulent bands in channel flow

Takahiro Kanazawa Masaki Shimizu

Genta Kawahara

Graduate School of Engineering Science Osaka University

Plane channel flow

Isolated turbulent band

Isolated extending turbulent band in large computational domain

Xiong, Tao, Chen and Brandt, Phys. Fluids (2015)

System & Parameters

• Governing equation

Incompressible Navier-Stokes equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + \nu \Delta \boldsymbol{u}$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$

• Dimensionless parameter

Reynolds number : $Re_m = \frac{Uh}{v}$ (U: constant bulk mean velocity)

• Boundary conditions

streamwise & spanwise \Rightarrow periodic wall-normal \Rightarrow no-slip impermeable

System & Parameters

• Numerical domain & Grid numbers

(L_x, L_z)	(N_x, N_y, N_z)
(500,250)	(3840, 49, 1920)
(200, 200)	(768, 49, 768)
(100, 100)	(384, 49, 384)

Example

$$(L_x, L_z) = (500, 250), Re_m = 440$$

Example

$$(L_x, L_z) = (500, 250), Re_m = 440$$

Length & Angle

Measurement method

Length & Angle

 $(L_x, L_z) = (500, 250), Re_m = 440 \quad (Re = 3Re_m/2 = 660)$

- Streamwise length l_x
- Spanwise length l_z

•
$$\theta = \tan^{-1}(l_z/l_x)$$

Length & Angle

 $(L_x, L_z) = (500, 250), Re_m = 440 \quad (Re = 3Re_m/2 = 660)$

Effects of spatial periodicity

$$(L_x, L_z) = (500, 250)$$

Example

$$(L_x, L_z) = (500, 250), Re_m = 440$$

Downstream edge

$$(L_x, L_z) = (500, 250), Re_m = 450$$

Downstream edge

$$(L_x, L_z) = (500, 250), Re_m = 450$$

Downstream edge

Isolation of downstream edge

 \Rightarrow Add the spatially localized damping force

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\nabla p + \frac{1}{Re} \Delta \boldsymbol{u} - F(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{t}) (\boldsymbol{u} - \boldsymbol{U}_{LF} \boldsymbol{e}_{\boldsymbol{x}})$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}$$

Isolation of downstream edge

Isolation of downstream edge

Isolated downstream edge

Periodic solution extracted using damping force

'shear-layer' sinuous instability \Rightarrow staggered vortices \Rightarrow chaos

$$(L_x, L_z) = (100, 100), Re_m = 460, \alpha = 0.1$$

Mean flow field for periodic solution
$$\langle u - U_{LF} e_x \rangle_t = \frac{1}{T} \int_0^T (u - U_{LF} e_x) dt$$

High-speed region
High-speed region
Wall-normal roll
$$(u - U_{LF} e_x) = 0.1$$

 $u_x - U_{LF} = 0.1$
 $u_x - U_{LF} = -0.1$
velocity vectors
on $y=0$

Mean flow field for periodic solution

$$\langle \boldsymbol{u} - U_{LF} \boldsymbol{e}_x \rangle_t = \frac{1}{T} \int_0^T (\boldsymbol{u} - U_{LF} \boldsymbol{e}_x) \, \mathrm{d}t$$

Mean flow field for periodic solution

$$\langle \boldsymbol{u} - U_{LF} \boldsymbol{e}_x \rangle_t = \frac{1}{T} \int_0^T (\boldsymbol{u} - U_{LF} \boldsymbol{e}_x) \, \mathrm{d}t$$

Mean flow field for periodic solution

$$\langle \boldsymbol{u} - U_{LF} \boldsymbol{e}_{\chi} \rangle_t = \frac{1}{T} \int_0^T (\boldsymbol{u} - U_{LF} \boldsymbol{e}_{\chi}) \, \mathrm{d}t$$

Extension to turbulent band

 $(L_x, L_z) = (100, 100), Re_m = 460, \alpha = 0$

Extension to turbulent band

 $(L_x, L_z) = (100, 100), Re_m = 460, \alpha = 0$

Extension to turbulent band

$$(L_x, L_z) = (100, 100), Re_m = 460, \alpha = 0$$

Bifurcation diagram of periodic solution

 $(L_x, L_z) = (100, 100), \alpha = 0.1$

Snapshot

$$(L_x, L_z) = (100, 100), Re_m = 460, \alpha = 0.1$$

Bifurcation diagram of periodic solution

$$(L_x, L_z) = (100, 100), Re_m = 460$$

Bifurcation diagram of periodic solution

$$(L_x, L_z) = (100, 100), Re_m = 460$$

Relevance to full Navier-Stokes system

$$(L_x, L_z) = (100, 100), Re_m = 460$$

Relevance to full Navier-Stokes system

Concluding remarks

- Turbulent bands of equilibrium length have been observed in large numerical domain.
- Turbulent bands can be sustained up to around $Re_m = 440$.
- Relative periodic orbits have been discovered in spatially-localized damping-forced Navier-Stokes system.
- Periodic solutions mathematically provide self-sustaining mechanism of downstream edge (physically, inclined and thus stretched wall-normal rolls).
- If damping force is reduced, upper-branch solution loses its stability and eventually chaotic solution appears to represent turbulent bands of longer array of complex vortices.
- Periodic solutions representing turbulent bands might be connected to full Navier-Stokes system (cf. Hof et al.'s invariant solutions).