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Noise-sustained structures
Deissler (Phys D 25, 233 (1987); PLA 120, 334 (1987)) studied the
complex Ginzburg-Landau equation

ψt = aψ − vgψx + bψxx − c |ψ|2ψ, x ∈ [0,∞).

For 0 < ar < brv
2
g /4|b|2 the state ψ = 0 is convectively unstable:
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Convective vs absolute instability

Recktenwald et al., PRE 48, 4444 (1993): Taylor vortices with axial
through-flow

Edgar Knobloch (UC Berkeley) Localized structures 12 January 2017 3 / 30



The model

We study the model problem (Chomaz & Couairon: PF 11, 2977 (1999)):

At = Axx − (U − αA2)Ax + µA− A3, x ∈ [0, L].

Here A(x , t) is a real field, and U > 0 and α > 0 are real parameters.

On the real line the trivial state A = 0 is convectively unstable for µ > 0
and absolutely unstable for µ > µa ≡ U2/4.

The basic question is what happens in a finite domain 0 ≤ x ≤ L?

With A(0, t) = A(L, t) = 0 there is no instability until µ = µg ≈
µa + O(L−2) at which point there is a subcritical bifurcation to a branch
of stationary global modes of the system with O(

√
µ) amplitude. These

states are present for µ ≥ µ∗, 0 < µ∗ < µg.

We shall be interested in the regime with U � 1 (strong advection) with
0 < |A(0, t)| = η � 1, with η either constant or time-dependent. The
remaining parameters are all O(1). In all cases A(L, t) = 0.
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(a) Bifurcation diagram of steady states satisfying A(0, t) = A(L, t) ≡ 0.

(b) Time simulation with µ = 7.4 < µa, α = 5, U = 12.
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(a) Branches of steady states for α = 2, U = 12, L = 10π in terms of
S(A) ≡ −sgnA′(L)‖A‖2 for A(0, t) = η ∈ [0, 3.5× 10−5]. (b) The solution
profiles A(x), x ∈ [0, L]. The states in µ < µ∗ (µ > µ∗) originate in the
convective (absolute) instability of A = 0.
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The scaled model

We suppose that U−2 ≡ ε� 1 and rescale the equations as follows:

A = ε−1/4A′, x = ε1/2x ′, t = εt ′

and suppose that A′, x ′ and t ′ are O(1). Thus L = ε1/2`, where ` is
formally O(1) but is large compared to the scale of the front. These
scalings all follow from the observation that rapid advection will be
balanced by diffusion only on appropriately small spatial scales and that
evolution will then inevitably take place on the short, advective, time scale.
Dropping primes, we have:

At = Axx − (1− αA2)Ax + εµA−√εA3, (x , t) ∈ [0, `]× [0,∞).

This equation is to be solved subject to the Dirichlet boundary conditions

A(0, t) = η, A(`, t) = 0, t ∈ [0,∞).
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Steady states of the scaled model
The steady states of the PDE model constitute a spatial van der Pol
oscillator. We set z1 = A and use the Liénard transformation
z2 = −A′ + A− (α/3)A3 to obtain the first-order BVP (system A)

z ′1 = −z2 + z1 −
α

3
z31

z ′2 =
√
ε(
√
εµz1 − z31 )

z1(0) = η, z1(`) = 0.

The slow-fast structure of this problem makes it amenable to analysis.
Stability of solutions within this ODE system represents spatial stability
and must be distinguished from temporal stability which is determined
from the eigenvalues λ of the nonautonomous linear BVP

L[A(x)]ψ = λψ,

where

L[A(x)] := ∂2x − (1− αA2)∂x + 2αA∂xA + εµ− 3
√
εA2

and ψ(0) = ψ(`) = 0.
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Edgar Knobloch (UC Berkeley) Localized structures 12 January 2017 10 / 30



Orbit flip bifurcation
This takes place when W s(P+) coincides with the strong unstable
manifold of O, denoted by W uu(O). This occurs when µ = µ∗ =
3α−1(U − 3α−1) ≈ 3/(α

√
ε). For µ > µ∗ the separatrix W s(P+) must be

below W uu(O). Hence, continued backwards in ‘time’, it must intersect
the z2 axis at some z2,s < 0. It follows that for each z2 ∈ (0, z2,s) there
exists ` > 0 such that the BVP has a solution with this choice of ` and
z2(0) = z2. Note that `→∞ both as z2(0) tends to 0 and to z2,s . It
follows that for ` large enough there exist at least two solutions of the
BVP for the same `, one with z2 close to 0 and one with z2 close to z2,s .
The solution with z2(0) ≈ 0 spends a long ‘time’ near O since O is a fixed
point, which implies that its L2 norm is small. The solution starting near
z2,s spends a long ‘time’ near P+ for the same reason and its L2 norm is
therefore large. As µ approaches µ∗ from above these two solutions
approach each other and the solution with the small L2 norm develops a
longer segment near P+, implying rapid growth of the L2 norm. This
explains the quasi-vertical segment of the solution branch near µ = µ∗. A
second orbit flip takes place when W s(P+) coincides with the other
branch of W uu(O).Edgar Knobloch (UC Berkeley) Localized structures 12 January 2017 11 / 30
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Front location

In order to quantify the position of the front, we monitor the level sets of
A(x , t) as t varies:

X∗ = min
t∈[0,T ]

{x ∈ [0, `] : |A(x , t)| = 0.1}.

When A(0, t) = η(ω) with probability distribution pη the steady solutions
of

At = Axx − (1− αA2)Ax + µA−√εA3, (x , t) ∈ (0, `)× (0,T ),

A(0, t, ω) = η(ω), A(`, t, ω) = 0, t ∈ [0,T ],

A(x , 0, ω) = (1− x/`)η(ω), x ∈ [0, `],

generate a probability distribution pX∗ of X∗. One can check that
E[X∗]→ 0, var[X∗]→ 0 as µ→ µ∗ from below. For µ > µ∗ there may be
more than one attracting steady state for each event ω.
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Since for each sample there is a deterministic relation between η and X∗ (the blue

and red branches X∗(η)), we infer the density pX∗ directly from X∗(η) (upper

panels). (a) If pη = N (0, 0.01), then X∗ is approximately Beta-distributed; we

observe E[X∗]→ 0, [X∗]→ 0 as µ→ µ∗, i.e., the distribution of front locations
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repeated, with qualitatively similar results, for pη = U(−0.03, 0.03). The

distribution pX∗ is now approximately exponential. Parameters are as in

Figure ??.
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deterministic system possesses two stable solutions that depend on the inlet
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A(X∗) > 0 and A(X∗) < 0, respectively. These solutions remain stable (solid

lines) up to a maximum value of η and are unstable beyond (dashed lines). Since

S(A(x , 0, ω)) ≈ 0, we expect that the system (??) will evolve towards X+
∗ when

η(ω) > 0, and towards X−∗ when η(ω) < 0, as indicated by the arrows. (b), (c)

The hypothesis of panel (a) is used to approximate pX∗ (upper panels); for

µ = 17 the front is located very close to the inlet, and the histograms compare

favorably with Monte Carlo simulations of (??) with T = 103 and 104 samples.
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Stochastic simulation
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Direct numerical simulations with A(0, t) = κη(t), where κ > 0 and η(t) is a

Wiener process. We show contour plots of A(x , t) for (x , t) ∈ [0, 377]× [0, 500]

for µ = 6, ε = 1/144 and various values of κ (panels 1–4). For κ = 0, the only

attracting solution is the trivial steady state A ≡ 0 but, as the noise is turned on,

noise-sustained structures appear. As κ increases so does the maximum inlet

amplitude ηmax = maxt |η(t)|, resulting in decreased distance X∗ to the

noise-sustained front. The deterministic and stochastic setting have a common

scaling η = e−εµX∗ .
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In fact there are also branches of steady states corresponding to η < 0:
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system A (panel (a)), and when α = 1, ε = 1/144 in system B (panel (b)). The

panels show branches for z1(0) = η 6= 0; these differ in the sign of η and are

organized by an orbit-flip bifurcation at µ = µ∗.
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(a) Detail of the type I solution branch of system A with η = 10−10. (b) Portion
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Example: dynamo waves
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Conclusions

1 The model system displays a high sensitivity to the inlet condition
A(0, t) = η.

2 Numerical continuation of steady states for η 6= 0 reveals the presence of
two types of finite amplitude states, one originating in the convective
instability threshold and the other in the absolute instability threshold at
µ = µg. The former reveal extreme sensitivity to the value of η and
disappear abruptly as η → 0+.

3 The observed sensitivity wrt η finds a natural explanation in the presence of
canard segments on solutions of the spatial BVP for the steady states of the
model. These results are obtained by recasting the model as a slow-fast
system in space and focusing on its steady states subject to A(0, t) = η,
A(L, t) = 0. These states correspond to finite length trajectories of a
slow-fast spatial-dynamical system of van der Pol type.

4 The stability in time of all steady solutions of the BVP is determined and
corroborated using direct numerical simulations.

5 Numerical evidence is presented that demonstrates that the statistics of the
front location in the convectively unstable regime can be explained in terms
of the properties of the new solution branches in this regime when η 6= 0.
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The states in µ < µ∗ originate in convective instability of A = 0 while
those in µ > µ∗ originate in absolute instability of A = 0.
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Effect of profile of initial perturbation on pulse generation

Three-component reaction-diffusion system:

ut = u − u3 − v + Duxx

vt = εv (u − avv − aww − a0)

wt = εw (u − w) + wxx

See Yochelis et al, EPL 83 (2008) 64005 for details
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Effect of profile of initial perturbation on pulse generation
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