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Tools in self-sustaining turbulence: For a complete understanding;:

Exact coherent structures cause — eflect

Energy budget

Correlations

Linear stability analysis » No clear causal inference

Reduced-order models

DNS data interrogation

Present a tool to quantify causality and application to interaction
between streaks and rolls in the log-layer of a channel flow

Goal:
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Conclusions

- Causal inference is not straight forward for most common tools used in
turbulence research

- Proposed causality analysis based on information flow as a new tool for
investigating turbulence dynamics

- Data-driven method with low computational cost and applicable to a wide
variety of scenarios

- Application to self-sustaining process in the log-layer of wall-bounded tur-
bulence

- Rolls and straight /meandering streaks identified by POD

- Lift-up, streak breakdown and nonlinear effects quantified



