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Goals

» Determine models of dynamical systems directly from data.
» Use structure of known governing equations when helpful.
» Apply this to turbulence? Well, at least fluids.
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Example: jet in crossflow

1

Linearize a jet in crossflow about an unstable equilibrium.
(Resz =165, Vier/Uso =3, 33 /D =1/3)

Instantaneous snapshot Mean Unstable equilibrium

Compute eigenvalues and compare with observed frequencies:

Observed Linear theory
Shear layer St =0.141 St =0.169
Near wall St =0.0174 St = 0.043

Frequency mismatch for near-wall structures: failure of linear theory.

1Bagheri, Schlatter, Schmid, Henningson, JFM 2009
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Dynamic Mode Decomposition for jet in crossflow

» Dynamic Mode Decomposition (DMD) modes capture relevant
structures and frequencies

High-frequency mode captures
structures in the shear layer.

Low-frequency mode captures
near-wall structures associated with
horseshoe vortex.

St = 0.017

Main point: can use this method to separate the structure from the
randomness in a turbulent flow.
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Many applications of DMD in fluids?
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DMD modes and the Koopman operator

Dynamic Mode Decomposition (DMD) is a method for approximating
eigenvalues and eigenfunctions of linear dynamics, given snapshots
sampled from the system.3

It turns out that the DMD modes shown on the previous slide are related
to a linear operator called the Koopman operator.*

» Consider a state space M, with discrete-time dynamics given by a
map T : M — M.

» Let V be a vector space of functions from M to C. We call elements
of V observables. A measurement of a state x € V consists of the
value f(x) of a particular observable f € V.

» The Koopman operator is an operator U : V — V/, defined by

(UF)(x) = f(Tx).
That is, U maps a function f to another function Uf.
» U is a linear operator: for any f,g € V,
U(f + g)(x) = (f + g)(Tx) = f(Tx) + g(Tx) = Uf(x) + Ug(x).

3Schmid. J. Fluid Mech. 2010.
4Rowley, Mezic, Bacheri, Schlatter, and Henningson. J. Fluid Mech. 2009.

7/36



Why is this useful?

» Eigenfunctions of the Koopman operator determine coordinates in
which a system evolves linearly
» For dynamics given by a nonlinear system x(k + 1) = T(x(k)), we
have
Uf(x) = f(Tx).

» Suppose we have an eigenfunction of the linear operator U:
Up = .
» Define a new coordinate z(k) = ¢(x(k)). Then z evolves as
2(k+1) = p(x(k+1)) = @(Tx(k)) = Up(x(k)) = Ap(x(k)) = Az (k).

» The evolution is linear! An eigenfunction represents a “structured”
part of the nonlinear dynamics.

> If U has enough eigenfunctions so that we can reconstruct the state
x from the values of the eigenfunctions, then there is a coordinate
change in which the system is linear. (However, for chaotic systems,
there is not a “full set” of eigenfunctions.)
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Jet in crossflow revisited

High-frequency mode evolves
according to e'“1t

Low-frequency mode evolves
according to e'*2t,

Sty = 0.017
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Data-driven approximations of the Koopman operator

We will consider a new approach to data-driven approximations of the
Koopman operator:

» A data-driven inner product

» A subspace S spanned by a set of observables

» A projection theorem V = S @ S+

> Approximate U by projection onto the subspace S

Spoiler: In the end, the numerical method we obtain is the same as DMD
(actually, Extended DMD?). But the path we take to get there is
different.
Why a new path?

» Derivation is more natural, less ad hoc

» We will be able to say more about the correspondence between
DMD and Koopman.

5Williams, Kevrekidis, and Rowley, J. Nonlinear Sci., 2015.

11/36



Goal

As before:
» State space M, with dynamics given by T : M — M.
» V is the vector space of functions from M to C, called observables.
» The operator U : V — V is given by Uf(x) = f(Tx).
Now, suppose we are given observables fi,...,f, € V. At a particular
state x € M, our measurements consist of the n values f;(x).

Goal

Determine an approximation of U directly from data sampled from the
system, without explicit knowledge of T or U. In particular, we will
obtain the projection of U onto the subspace spanned by {f;,..., 7}
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A data-driven inner product

» To determine a projection, we would like some additional structure
on the function space V (e.g., an inner product).

» Here, we will not assume any structure on V a priori. Instead, we
will define structure based on some available data.

» Suppose we have sample points x1, x5, X3, ...,Xxn € M. For any
functions f, g € V, define

» If M is a probability space, with probability measure p, and the
points xi are drawn at random with probability u, then by the law of
large numbers, as m — oo,

(f.g) — / fgdpu,
M

which is the usual inner product on L2(M, p).
» Similarly, the above holds if the points x, are sampled from a
measure-preserving dynamical system xx 11 = Txx and T is ergodic.
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The data

The data we use consist of values of our observables fi, ..., f, at the
given sample points x1, ..., x,. Collect the data into an m x n matrix
fl(Xl) fn(Xl)
X=| 5
fl(Xm) T fn(Xm)
Let

S =span{fy,...,fp}, SL:{gEV:@‘,g):O}7

using our inner product just defined.
Note that rank X cannot be more than dim S. If rank X = dim S, have
some useful properties:

> (-,-) is a strictly positive-definite inner product on S.
» V=S@St. Thatis, any f € V may be written uniquely as a sum
of a function in S and a function in S*.

This latter property lets us define a projection P: V — S.
Henceforth, we shall always assume rank X = dim S.
(If not true, gather more data.)
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Main result: projected Koopman operator

» The data: In addition to the data fj(xx), assume we also have
measurements f;( Txx) (i.e., at the following “timestep”). Define

matrices
Xg = fi(x), X[ =f(Tx).

» The subspace: S =span{fi,...,f}.
> Assume rank X = dim S
» Let P: V — S denote the projection onto S.
» Defineamap F:C" — S by

n

F(v):Zvjﬂ', v=_(vi,...,Vn).

j=1

Theorem (Data-driven projection)
Let A= X*X#_ Then, for any v € C",

PU F(v) = F(Av).

That is, A is the matrix representation of the projection PU : S — S.
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Projected Koopman operator

According to the theorem, as long as rank X = dim S, we have
PUF(v) = F(Av).

In other words, the following diagram commutes:

s-—P,s
F] ) F]

» The matrix A= X+ X# is determined solely from the data. We did
not need to know the map T or the operator U.

» The projected Koopman operator PU is computed exactly, without
approximation.
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Connection with Dynamic Mode Decomposition (DMD)

» The matrix A = X X7 turns out to be identical to the matrix
computed in Extended Dynamic Mode Decomposition®.

> In that work, it was shown that A corresponds to an approximation
of U by a weighted residual method, with a particular choice of test
functions.

» Here, we see that A arises naturally as a Galerkin method
(orthogonal projection onto the subspace S), with a natural choice of
inner product.

» “Standard” Dynamic Mode Decomposition (DMD) is a special case
of this:

> If the state is x = (x1, ..., Xn), one considers the observables
fi(x) = x; (the “full state observable”).

» The DMD eigenvalues are then the eigenvalues of our matrix A, and
the DMD modes are the left eigenvectors of A.

SWilliams, Kevrekidis, and Rowley, J. Nonlinear Sci., 2015.
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What if an eigenfunction is in §7

Corollary 1

Suppose Up = Ap for some ¢ € S. Then there is a v € C" such that
Av =Av and ¢ = F(v).

So if a Koopman eigenfunction lies in the subspace S = span{f,...,f,},
there will be a corresponding eigenvalue and eigenvector of A.
(This is a restatement of a previously known result”.)

7Tu, Rowley, Luchtenburg, Brunton, and Kutz. J. Comput. Dyn., 2014.
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What if S is invariant?

Corollary 2

Suppose S is invariant under U (i.e., Uf € S whenever f € S). If
Av = Av, then Up = Ay, with ¢ = F(v).

» If S is invariant, then any eigenvalue of A will correspond to a
Koopman eigenvalue, and ¢ = F(v) will be a Koopman
eigenfunction (provided ¢ is nonzero).

> It is helpful to compare this with a recent result?, which considered
the special case that T is ergodic, the observables are
{f, Uf,U?f,...,U""1f}, and the sample points are x1, X2, ..., Xm
with xx411 = Txk. The authors showed that if S is invariant, then in
the limit m — oo, the eigenvalues/eigenfunctions determined by
DMD converge to Koopman eigenvalues/eigenfunctions.

» Corollary 2 strengthens this in several ways: the eigenvalues and
eigenfunctions are computed exactly with only a finite amount of
data (need only rank X = dim S), and T need not be ergodic.

2 Arbabi & Mezic, arXiv:1611.06664, 2016.
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Example: two-dimensional map

Consider the map

X1 s )\X]_
X2 uxo + (A2 — p)ox?

This system has an equilibrium at the origin, and invariant manifolds
given by x; = 0 and x; = ox?:

wu(x) =x2 — cx12.

X2 Koopman eigenvalues are A, i with
N H X2 j X1 eigenfunctions
N H A
NN ;x%\_’_ﬁzi,,,} X1 (,OA(X) = X1
|
|
|

In addition, ¢X is an eigenfunction with eigenvalue \¥, the product @y,
is an eigenfunction with eigenvalue Ap, etc.
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DMD for two-dimensional map

Apply DMD to this example, with initial states x given by
(1,1),(5,5),(-1,1),(-5,5), with A = 0.9, 1 = 0.5.

» Case 1: observables f(x) = (x1, x2). If ¢ =0, so that the problem is
linear, then DMD eigenvalues are 0.9 and 0.5: good!
If ¢ =1, however, then the DMD eigenvalues are 0.9 and 2.002.
These do not correspond to Koopman eigenvalues, and one might
even presume the equilibrium is unstable!

» Case 2: observables f(x) = (x1,x2,x2). (Note: the subspace
S = span{xi, xo, x}} is now invariant.) The DMD eigenvalues are
0.9, 0.5, and 0.81 = 0.9%, which agree with Koopman eigenvalues.

» Case 3: observables f(x) = (x1, x2, x3). Now, the DMD eigenvalues
are 0.9, 0.822, and 4.767. The eigenvalues do not correspond to
Koopman eigenvalues because the Koopman eigenfunction ¢, is not
in the span of the observables, and the subspace S is not invariant.
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Choice of observables

» The previous example illustrates that it is critical to choose an
appropriate set of observables f1, ..., f,.
» Some possible choices:
» Orthogonal basis functions (e.g., Fourier modes, Chebyshev
polynomials, Legendre polynomials,...)
> Indicator functions on small subsets (Ulam’s method)
» Spectral elements
> Time delay coordinates (f(x), f(Tx), f(T?x),...,f(T""'x))
(“Takens embedding”)
» Radial basis functions
> [your idea herel!]
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Example: basins of attraction in the Duffing equation

» Consider the Duffing equation
X+ox+x(x*-1)=0

» Compute approximation of Koopman operator (with § = 0.5):

» Data: 10° trajectories with 11 samples each, sampling interval
At =0.25
» Basis functions: 1000 radial basis functions (thin plate splines)

» Ao = —10~!: corresponding eigenfunction is the constant function
» A1 = —1073: eigenfunction reveals basins of attraction
2 I 0.050
19 0.025
> 0=
0.000
14
—0.025
—2 T T T
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Dynamics in each basin

» Ay = —0.237 + 1.387/ (analytically —0.250 + 1.392/)

192 2o

IP3

l 0.020
0.015
0.010

I 0.005
0.000
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Determining nonlinear models from data

» The use of data-driven approximations to the Koopman operator
shows promise for describing and modeling nonlinear systems.

» Can we use this method to extract nonlinear reduced-order models
from data?

» Can we incorporate known properties of the governing equations into
these models (e.g., quadratic nonlinearities, energy conservation)?

26 /36



What are we trying to model?

» While data-driven methods can be powerful, they often do not make
full use of what we know about a system.

» Assume that our system is described by the Navier-Stokes equations:

%—&-(wV)u:—VIH—VAlL V-u=0.

» How can this help us?

» Guiding the choice of observables.
» Enforcing conservation properties.
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Choice of observables

» Consider the projection of the velocity field onto a set of basis
functions u; (e.g., POD modes):

u(x, t) = ug(x) + Zu, (x)a;(t
» Projecting the governing equations onto these basis functions (under
certain assumptions) gives
a=La+B(a,a),

where L is linear and B is bilinear.

» It is hence reasonable to choose observables that include (at least)
monomials of POD coefficients, up to second order
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Data-driven models

» Suppose we have collected pairs of snapshots of data (yx, yk#)
which are separated by a fixed time interval At

» Choose as observables:

0 it

vec(a ® a)

» We seek the discrete propagation matrix (finite-dimensional
approximation to the Koopman operator) A such that

f(y;) = Af(yx).

» This may be obtained from the data by

A = [F5F) F6%) -+ Fy)] [F o) F(v2) - FCym)]*
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Example: flow past a cylinder

» Collect data between the unstable equilibrium and limit cycle of the
system

» The method works well, and often outperforms Galerkin projection
of the governing equations onto POD modes.

ata
Galerkin projection model
—— Extended DMD model
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Cylinder example: noisy data

What if the data are noisy?

Data corrupted with Gaussian white noise with standard deviation
o =0.06U

ata
Galerkin projection model
—— Extended DMD model
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Cylinder example: limited data

What if we only have access to a limited amount of data?
Spatially limited data:
Temporally limited data:

Galerkln ro jection model
—— Extende D model

@@@OEO ¢ ¢

Galerkln vc echon mode\

——Extendex
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Energy-conserving constraints

» The Navier-Stokes equations may be written
Otu = Lu + B(u,u),

where L is linear and B is bilinear.
» The quadratic terms satisfy

(B(u,u),u) = 0.

» Can we impose this constraint on the data-driven modeling
procedure?

» Yes. Solve the constrained optimization problem explicitly using
Lagrange multipliers.
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Energy-conserving constraint for cylinder flow

» Predicting the evolution of the system with identified models
» Take initial condition used for the system identification dataset

---- True data -
—— Least-squares prediction
—— Constrained least-squares prediction

0.12 S—
0.1 ]
0.08
<> 0.06
0.04
0.02

-0.02.]
0.4
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Energy-conserving constraint for cylinder flow

» Take initial condition away from the system identification dataset

---- True data -
——Least-squares prediction
—— Constrained least-squares prediction

0.12 — —
0.1
0.08
<" 0.06
0.04
0.02

-0.02 |
0.4

Incorporating the energy-conserving constraint leads to more robust

models.
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Summary

» Goal: identify structure in dynamics, directly from data

» Can determine a projection of the Koopman operator from data
» Data-driven inner product determined by sample points x1, ..., Xmn.
» Subspace S determined by chosen observables fi, ..., f,.

» Data determines an (exact) matrix representation of the projection of
the Koopman operator onto this subspace
» The matrix is the same as that determined by Extended DMD
Under certain conditions, eigenvalues/eigenvectors of this matrix
correspond precisely to Koopman eigenvalues/eigenfunctions

v

» Eigenfunction p € S
» The subspace S is invariant under U.

Choice of observables is critical.

v

» Some success using these methods to determine nonlinear models of
“simple” (non-turbulent!) fluid flows
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