Coherent structures in boundary layers in the quasilinear approximation

Stefan Zammert, Martin Lellep, Marina Pausch, and Bruno Eckhardt

"Recurrence, Self-Organization, And The Dynamics Of Turbulence" – KITP 2017

Motivation

Seuront et al., J Plankton Res (1999)

The dynamical systems view on turbulence

Exact solutions with smaller scales or multiple scales are necessary

How to get them?

Wall-normal localized ECS

System: Plane Couette flow

DNS using *Channelflow* (www.channelflow.org)

Spatially extended in x,y and z

Scaling solutions for linear shear

$$\vec{u}_{\lambda} = \lambda \vec{u}(\vec{x}/\lambda)$$

A solution u on scale 1 at Reynolds number Re

is related to

a solution u_{λ} on scale λ at Reynolds number Re/ λ^2

Exact without walls!

Wall solutions & Localized states

Attached eddy states?

Wall-normal localization

Cross-flow energy density: (measure for vortices)

Stability

Missing among ECS:

 Equilibrium states involving two or more scales

or

Proposal: study dynamics in quasilinear approximation

Then:

different scales interact with the mean flow only but not with each other

Rotating plane Couette flow (RPCF)

- Simple flow (2D, 3 components)
- Linear instability
 - Well understood transition
 - Easy access to exact solutions

Equations:

$$\partial_{t}u + (\vec{u} \cdot \nabla)u = -\partial_{x}p - Ro v + \frac{1}{Re}\Delta u$$

$$\partial_{t}v + (\vec{u} \cdot \nabla)v = -\partial_{y}p - Ro u + \frac{1}{Re}\Delta v$$

$$\partial_{t}w + (\vec{u} \cdot \nabla)w = -\partial_{z}p + \frac{1}{Re}\Delta w$$

$$\nabla \vec{u} = 0$$

Parameters:

$$Re = \frac{U_0 d}{v}$$

$$Ro = \frac{2\Omega d}{U_0}$$

Rotating plane Couette flow (RPCF)

Rotating plane Couette flow (RPCF)

Temporal dynamics:

Re=400. Ro=0.5 Re=10.000. Ro=0.5

The quasilinear approximation

- \vec{u}_1 no variation in spanwise direction ($k_z = 0$)
- \vec{u}_2 with variation in spanwise direction $(k_z \neq 0)$

$$\vec{u} = \vec{u}_1 + \vec{u}_2$$

Projectors: $P_1\vec{u} = \vec{u}_1$

$$P_2\vec{u} = \vec{u}_2$$

Nonlinear Term:

$$(\vec{u} \cdot \nabla)\vec{u} = (\vec{u}_1 \cdot \nabla)\vec{u}_1 + (\vec{u}_1 \cdot \nabla)\vec{u}_2 + (\vec{u}_2 \cdot \nabla)\vec{u}_1 + (\vec{u}_2 \cdot \nabla)\vec{u}_2)$$

$$= \mathbf{0}$$

$$= \mathbf{0}$$

$$(\vec{u}\cdot\nabla)\vec{u}\approx(\vec{u}_2\cdot\nabla)\vec{u}_1+P_1(\vec{u}_2\cdot\nabla)\vec{u}_2$$

LA → Steve Tobias Talk

Omitted: $P_2(\vec{u}_2 \cdot \nabla)\vec{u}_2$

Dynamics in the quasilinear approximation

Much simpler dynamics! Attracting state is always stationary.

Comparison of the profiles

Profiles are qualitatively similar.

 10^{1}

Velocity profiles for RPCF

Mechanism for the creation of the profiles?

Bifurcation diagram

What happens at the bifurcation points?

$$\vec{u} = \sum_{m=0}^{M_z-1} \vec{\tilde{u}}_{m_z}(y) e^{2\pi i (\frac{k_z z}{L_z})} + c.c.$$

$$a(\vec{u}_{m_z}) = \sqrt{\frac{1}{L_y L_z}} \iint \vec{u}_{m_z}^2 dV$$

Bifurcation diagram

Bifurcations add modes.

Contributions to the profile

Re=800 → Stable state has four active modes

Each mode can be knocked out → Unstable equilibrium solutions

Contributions to the profile

- Low mode numbers → Linear profile in the bulk
- Higher mode numbers → Boundary layers

Continuation to the nonlinear system

Continuation of the ECS to the ninlinear system is possible \rightarrow Homotopy parameter α

Conclusions

Nonlinear DNS:

- ECS with different scales in PCF
 - Wall-attached solutions
 - Localized solutions

Quasilinear DNS:

- Profile of Rot. PCF are qualitatively identical to the nonlinear case
- Formation of the profile can be understood by bifurcation analysis
 - →Bifurcations add smaller scales
- Continuation to the nonlinear system is possible

Supported by the DFG within FOR 1182 and SPP 1881 And by Stichting FOM within the program "Towards ultimate turbulence"