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Overview
1.Motivation:

• Turbulence “obviously” important...

• “Structures not statistics” appealing viewpoint

• But can these structures actually give insight to real problems?

2.Approach:  (HOW?) Two examples:

A.Can Koopman modes give insight into edge state/transition?

B.Can UPOs give insight into layering/mixing in stratified flows? 
(Recurrence, self-organization and the dynamics of turbulence)

3.Conclusions...time to be quantitative...



A: Seeds, edges & modes

• Turbulent and laminar state separated by an “edge” 

• Can we find the lowest energy state to get across the edge?

• Does “seed” follow special route to the “edge state” (1 unstable)? 

Highway through the edge of chaos: stable and
unstable manifolds of edge states are Koopman

modes

T. S. Eaves, C. P. Caulfield and I. Mezić

Catchy intro paragraph.

We consider the route to chaos, or transi-
tion to turbulence, of a Newtonian fluid with
dynamic viscosity n in plane Couette flow,
that is the flow between two infinite plates
separated by a distance 2H and moving at
relative speed 2DU . These parameters de-
fine a Reynolds number Re=DUH/n which
is a dimensionless measure of the strength of
forcing provided to the flow, and is the only
control parameter that may be varied in this
set-up. The Navier–Stokes equations with
no-slip boundary conditions for this flow ad-
mit a simple ‘laminar’ exact solution in which
the velocity field is a simple shear every-
where. This laminar solution is demonstra-
bly linearly stable at every Reynolds num-
ber, meaning that all infinitesimal perturba-
tions to the laminar state must eventually de-
cay. Nevertheless, chaotic turbulent dynam-
ics are observed for Reynolds numbers larger
than about 318.

Plane Coutte flow is a ‘two-state’ system
in which a linearly stable laminar solution
and an chaotic turbulence attractor co-exist
in state space for a wide range of param-
eter values. In order to investigate its be-
haviour and the stability of the laminar state,
we must therefore take into account the in-
herent nonlinearity in the system in order to

begin to map each of the two attractors’ basin
of attraction. We call the manifold in state
space that separates the two basins of attrac-
tion the ‘edge manifold’. The edge man-
ifold is itself a complex dynamical object,
and contains at least one exact solution of
the Navier–Stokes equations such as a fixed
point, periodic orbit, relative periodic orbit,
or chaotic attracting (in the edge manifold)
set. Such solutions have been termed ‘edge
states’ and the intersection of their stable man-
ifolds forms the edge manifold whilst their
unstable manifolds are directed into each of
the basins of attraction as shown in the car-
toon in Figure 2.

 

Edge
 manifold

Unstable
manifolds

Turbulence

Laminar state

Minimal seed trajectory

Edge state
Minimal

seed
Shortest
distance
(energy)

Figure 1: Cartoon of state space showing
minimal seed for turbulence and its trajec-
tory.

Much effort has been put into finding such
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A: Seeds, edges & modes 
• Linear Optimal Perturbations are “easy”: Linear Algebra available 

• Variational formulation also possible (Schmid 07)

• Using “adjoint” operators (Hill 95, Corbett & Bottaro 00)

• Linear adjoints are “nice”: completely decoupled...

• But nonlinear adjoints can be defined...and calculated

• Pringle & Kerswell 10, Cherubini et al 11, Monokrousos et al 11

• Rabin et al 2012 Duguet et al 2013 Kerswell et al 2014...

• Perturbation can feed back: what does the fluid want to do?



Formulation
• Fix ideas: consider plane Couette flow:

• Butler & Farrell geometry: 

• Hypothesis: Maximize gain of (nonlinear) perturbation 

• Across all time horizons & amplitudes E(0) (note 1/2...!)

• Define spatial and temporal averages (dagger is c.c. transpose):
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Fluid flows that are smooth at low speeds become unstable and then turbulent at higher 
speeds. This phenomenon has traditionally been investigated by linearizing the equations 
of flow and testing for unstable eigenvalues of the linearized problem, but the results of such 
investigations agree poorly in many cases with experiments. Nevertheless, linear effects 
play a central role in hydrodynamic instability. A reconciliation of these findings with the 
traditional analysis is presented based on the "pseudospectra" of the linearized problem, 
which imply that small perturbations to the smooth flow may be amplified by factors on the 
order of 105 by a linear mechanism even though all the eigenmodes decay monotonically. 
The methods suggested here apply also to other problems in the mathematical sciences 
that involve nonorthogonal eigenfunctions. 

Hydrodynamic stability theory is the study 
of how laminar fluid flows become unstable, 
the precursor to turbulence. It is well known 
that turbulence is an unsolved problem, but 
not so well known that despite the efforts of 
generations of applied mathematicians, be- 
ginning with Kelvin, Rayleigh, and Rey- 
nolds, many of the presumably simpler phe- 
nomena of hydrodynamic stability also re- 
main incompletely understood (1, 2). 

The traditional starting point of an 
investigation of hydrodynamic stability is 
eigenvalue analysis, which proceeds in 
two stages: (i) linearize about the laminar 
solution and then (ii) look for unstable 
eigenvalues of the linearized problem. An 
"unstable eigenvalue" is an eigenvalue in 
the complex upper half-plane, correspond- 
ing to an eigenmode of the linearized 
problem that grows exponentially as a 
function of time t. It is natural to expect 
that a flow will behave unstably if and only 
if there exists such a growing eigenmode, 
and over the years much has been learned 
about which flows possess such modes, a 
distinction that depends on the geometry, 
the Reynolds number, and sometimes oth- 
er parameters. 

For some flows, notably those with in- 
stabilities driven by thermal or centrifugal 
forces, the predictions of eigenvalue analy- 
sis match laboratory experiments. Examples 
are Rayleigh-Benard convection (a station- 
ary fluid heated from below) and Taylor- 
Couette flow (between a stationary outer 
and a rotating inner cylinder). For other 
flows, notably those driven by shear forces, 
the predictions of eigenvalues analysis fail to 
match most experiments. We consider the 
L. N. Trefethen is in the Department of Computer 
Science, Cornell University, Ithaca, NY 14853 
(Int@cs.cornell.edu). A. E. Trefethen is in the Cornell 
Theory Center, Cornell University, Ithaca, NY 14853. 
S. C. Reddy is in the Courant Institute of Mathematical 
Sciences, New York University, New York, NY 10012. 
T. A. Driscoll is in the Center for Applied Mathematics, 
Cornell University, Ithaca, NY 14853. 

two most studied examples of this kind: 
(plane) Couette flow, the flow with a linear 
velocity profile between two infinite flat 
plates moving parallel to one another, and 
(plane) Poiseuille flow, the flow with a 
parabolic velocity profile between two sta- 
tionary plates (Fig. 1). Other examples for 
which eigenvalue analysis fails include pipe 
Poiseuille flow (in a cylindrical pipe) and, 
to a lesser degree, Blasius boundary layer 
flow (near a flat wall). 

For Poiseuille flow, eigenvalue analysis 
predicts a critical Reynolds number R = 
5772 at which instability should first occur 
(3), but in the laboratory, transition to 
turbulence is observed at Reynolds numbers 
as low as R - 1000 (4). For Couette flow, 
eigenvalue analysis predicts stability for all 
R (5), but transition is observed for Rey- 
nolds numbers as low as R 350 (6). These 
anomalies of "subcritical transition to tur- 
bulence" have been recognized for many 
years, and the explanation has traditionally 
been attributed to step (i) above. If linear- 
ization has failed, the reasoning goes, one 
must look more closely at the nonlinear 
terms or perhaps linearize about a solution 
other than the laminar one [the theory of 
"secondary instability" (7-9)]. 

Recently it has emerged, however, that 
the failure of eigenvalue analysis may more 

Fig. 1. Velocity profiles for two laminar flows 
(independent of x and z). The geometry is an 
infinite 3D slab of viscous incompressible fluid 
bounded by parallel walls. The laminar solu- 
tions satisfy the Navier-Stokes equations for all 
Reynolds numbers, but for higher R, the flows 
are unstable and rapidly become turbulent. 

justly be attributable to step (ii). It is a fact 
of linear algebra that even if all of the 
eigenvalues of a linear system are distinct 
and lie well inside the lower half-plane, 
inputs to that system may be amplified by 
arbitrarily large factors if the eigenfunctions 
are not orthogonal to one another. A ma- 
trix or operator whose eigenfunctions are 
orthogonal is said to be "normal" (10), and 
the linear operators that arise in the Benard 
and Taylor-Couette problems are in this 
category. By contrast, Reddy et al. (11) 
discovered in 1990 that the operators that 
arise in Poiseuille and Couette flow are in a 
sense exponentially far from normal. At 
about the same time, the startling discovery 
was made by Gustavsson (12), Henningson 
et al. (13), and Butler and Farrell (14) that 
small perturbations to these flows may be 
amplified by factors of many thousands, 
even when all the eigenvalues are in the 
lower half-plane (Fig. 2). The elegant paper 
by Butler and Farrell discusses many details 
omitted here and, together with a more 
recent paper by Reddy and Henningson 
(15), forms the foundation of the present 
work (16). 

The shaded region in Fig. 2 has appeared 
in many publications (17) and corresponds 
to parameters for which unstable eigen- 
modes exist. The contours outside the shad- 
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Fig. 2. Maximal resonant amplification of 3D 
perturbations in linearized Poiseuille flow as a 
function of Reynolds number R and xz wave- 
number magnitude k = N/'T2j2 (Eq. 6). In the 
shaded region, with leftmost point R = 5772, 
unstable eigenmodes exist and unbounded 
amplification is possible. The contours outside 
that region, from outer to inner, correspond to 
finite amplification factors of 103, 104 (dashed), 
105, 2 x 105, ..., 1.3 x 106. For example, 
amplification by a factor of 1000 is possible for 
all R - 549. In the laboratory, transition to 
turbulence is observed at R = 1000. The anal- 
ogous picture for Couette flow looks qualitative- 
ly similar except that there is no shaded region. 
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Lagrangian
• Constrained variational problem:

• Final (perturbation) energy to be maximized

• Vector L-multiplier a imposes (nonlinear) Navier-Stokes for all t

• b imposes incompressibility (pressure?)

• c imposes initial energy perturbation

• a0 imposes initial perturbation (structure)
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Adjoint
• “Obviously” variations with respect to a, b,c, a0

• Recover NS/incompressibility/ICs...but what about:

• Adjoint equation inevitably coupled to q as well as a...
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Algorithm
• And now the algorithm is obvious (diffusion has opposite sign!)

• For small amplitudes: recover Quasi-Linear-Optimal Perturbations

• What happens as the amplitude increases...Re is high enough?

Set ICS for q at t=0
Integrate 0-T using NS 

+ incompressibility calculate q(T)+ E(T)

Relate a(T) to q(T) 
using E-L eqns

Integrate T-0 using 
NSadj

Calculate a(0)...does it 
satisfy E-L eqn?

If not, update q(0) 
using gradient info in 

E-L equations



Minimal seeds

• For small initial energy...agrees very closely with linear optimals in 
gain
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FIGURE 6. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, at times 0, 150, 250, 350, for (a) QLOPT

opt

with E0 = 2.2 ⇥ 10�6, where
the amplitude is decaying for the lower three panels, (b) the edge state calculated by using the
conventional bisection approach with E0 ' Ec, and (c) the Tc turbulent seed above the edge at
Ec < E0 = 2.2 ⇥ 10�6.

The next natural question to consider is whether this threshold energy E
fail

can also
be identified with the critical energy for an initial condition to lead to turbulence, i.e.
if E

fail

= Ec the initial energy of the minimal seed. In figures 5(c) and 6(c), at the same
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2.2 ⇥ 10�6 < Ec < 2.25 ⇥ 10�6, where T
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jumps markedly, is indicated by a vertical green
dashed line. In the insets, the gain (1130) and T

opt

(125.25) for the underlying linear problem
are marked with a horizontal blue solid line. Blue circles mark the properties of QLOPT

opt

(i.e. TQ = T
opt

), while the red squares mark the properties of turbulent seeds. The filled circle
corresponds to QLOPT

opt

for E0 = 2.2 ⇥ 10�6 shown in figure 4 and in figures 5(a) and 6(a),
while the filled square corresponds to the ‘critical’ Tc turbulent seed for E0 = 2.25 ⇥ 10�6

shown in figure 4 and in figures 5(c) and 6(c).

that the saturated energy for these perturbations is approximately constant, or at least
largely insensitive to the value of E0, provided E0 > E

fail

, which is consistent with a
(turbulent) attractor being reached. These results suggest that the critical energy Ec for
turbulence to be accessible satisfies Ec . E

fail

. It is also apparent that the behaviour
of the optimal time T

opt

associated with the maximum gain over all possible time
horizons is entirely consistent with the schematic picture shown in figure 2(a) and
described in detail in § 1: the QLOPT

opt

(shown by the thick black line in the figure)
‘masks’ the potential presence of the final nonlinear optimal perturbation NLOP(f )

T ,
which is conjectured to converge to the turbulent seed for all E0 < Ec. As the initial
energy amplitude E0 approaches E

fail

from below, the QLOPT
opt

remains dominant,
with gain (and optimal time) very similar to the values from the linear problem.

There is strong evidence that the algorithm converges straightforwardly to this
perturbation from a range of initial conditions for all values of E0 < Ec. Figure 4(a)
plots the normalized residual Rn against iteration n for the QLOPT

opt

at E0 = 2.2⇥10�6,
whose gain G(T) and optimal time T

opt

are marked with filled blue circles in figure 3.
For the calculation shown in figure 4, we use random noise as an initial guess, which
gives rise to the relatively large initial value of the normalized residual Rn (for n 6 5).
The observation that Rn drops so strongly (by fifteen orders of magnitude) while the
gain rapidly asymptotes to a specific value (1118) very close to the value (1130) for
the underlying linear problem, lends credibility to the assertion that our algorithm is
converging to this optimal perturbation. Rerunning the procedure for a further five
randomly chosen initial conditions reproduces the same result. We also saw similarly
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energy amplitude E0 approaches E
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from below, the QLOPT
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remains dominant,
with gain (and optimal time) very similar to the values from the linear problem.

There is strong evidence that the algorithm converges straightforwardly to this
perturbation from a range of initial conditions for all values of E0 < Ec. Figure 4(a)
plots the normalized residual Rn against iteration n for the QLOPT

opt

at E0 = 2.2⇥10�6,
whose gain G(T) and optimal time T
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are marked with filled blue circles in figure 3.
For the calculation shown in figure 4, we use random noise as an initial guess, which
gives rise to the relatively large initial value of the normalized residual Rn (for n 6 5).
The observation that Rn drops so strongly (by fifteen orders of magnitude) while the
gain rapidly asymptotes to a specific value (1118) very close to the value (1130) for
the underlying linear problem, lends credibility to the assertion that our algorithm is
converging to this optimal perturbation. Rerunning the procedure for a further five
randomly chosen initial conditions reproduces the same result. We also saw similarly
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FIGURE 6. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, at times 0, 150, 250, 350, for (a) QLOPT

opt

with E0 = 2.2 ⇥ 10�6, where
the amplitude is decaying for the lower three panels, (b) the edge state calculated by using the
conventional bisection approach with E0 ' Ec, and (c) the Tc turbulent seed above the edge at
Ec < E0 = 2.2 ⇥ 10�6.

The next natural question to consider is whether this threshold energy E
fail

can also
be identified with the critical energy for an initial condition to lead to turbulence, i.e.
if E

fail

= Ec the initial energy of the minimal seed. In figures 5(c) and 6(c), at the same
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FIGURE 6. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, at times 0, 150, 250, 350, for (a) QLOPT

opt

with E0 = 2.2 ⇥ 10�6, where
the amplitude is decaying for the lower three panels, (b) the edge state calculated by using the
conventional bisection approach with E0 ' Ec, and (c) the Tc turbulent seed above the edge at
Ec < E0 = 2.2 ⇥ 10�6.

The next natural question to consider is whether this threshold energy E
fail

can also
be identified with the critical energy for an initial condition to lead to turbulence, i.e.
if E

fail

= Ec the initial energy of the minimal seed. In figures 5(c) and 6(c), at the same
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2.2 ⇥ 10�6 < Ec < 2.25 ⇥ 10�6, where T
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jumps markedly, is indicated by a vertical green
dashed line. In the insets, the gain (1130) and T

opt

(125.25) for the underlying linear problem
are marked with a horizontal blue solid line. Blue circles mark the properties of QLOPT

opt

(i.e. TQ = T
opt

), while the red squares mark the properties of turbulent seeds. The filled circle
corresponds to QLOPT

opt

for E0 = 2.2 ⇥ 10�6 shown in figure 4 and in figures 5(a) and 6(a),
while the filled square corresponds to the ‘critical’ Tc turbulent seed for E0 = 2.25 ⇥ 10�6

shown in figure 4 and in figures 5(c) and 6(c).

that the saturated energy for these perturbations is approximately constant, or at least
largely insensitive to the value of E0, provided E0 > E

fail

, which is consistent with a
(turbulent) attractor being reached. These results suggest that the critical energy Ec for
turbulence to be accessible satisfies Ec . E

fail

. It is also apparent that the behaviour
of the optimal time T

opt

associated with the maximum gain over all possible time
horizons is entirely consistent with the schematic picture shown in figure 2(a) and
described in detail in § 1: the QLOPT

opt

(shown by the thick black line in the figure)
‘masks’ the potential presence of the final nonlinear optimal perturbation NLOP(f )

T ,
which is conjectured to converge to the turbulent seed for all E0 < Ec. As the initial
energy amplitude E0 approaches E

fail

from below, the QLOPT
opt

remains dominant,
with gain (and optimal time) very similar to the values from the linear problem.

There is strong evidence that the algorithm converges straightforwardly to this
perturbation from a range of initial conditions for all values of E0 < Ec. Figure 4(a)
plots the normalized residual Rn against iteration n for the QLOPT

opt

at E0 = 2.2⇥10�6,
whose gain G(T) and optimal time T

opt

are marked with filled blue circles in figure 3.
For the calculation shown in figure 4, we use random noise as an initial guess, which
gives rise to the relatively large initial value of the normalized residual Rn (for n 6 5).
The observation that Rn drops so strongly (by fifteen orders of magnitude) while the
gain rapidly asymptotes to a specific value (1118) very close to the value (1130) for
the underlying linear problem, lends credibility to the assertion that our algorithm is
converging to this optimal perturbation. Rerunning the procedure for a further five
randomly chosen initial conditions reproduces the same result. We also saw similarly
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FIGURE 6. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, at times 0, 150, 250, 350, for (a) QLOPT

opt

with E0 = 2.2 ⇥ 10�6, where
the amplitude is decaying for the lower three panels, (b) the edge state calculated by using the
conventional bisection approach with E0 ' Ec, and (c) the Tc turbulent seed above the edge at
Ec < E0 = 2.2 ⇥ 10�6.

The next natural question to consider is whether this threshold energy E
fail

can also
be identified with the critical energy for an initial condition to lead to turbulence, i.e.
if E

fail

= Ec the initial energy of the minimal seed. In figures 5(c) and 6(c), at the same
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that the saturated energy for these perturbations is approximately constant, or at least
largely insensitive to the value of E0, provided E0 > E

fail

, which is consistent with a
(turbulent) attractor being reached. These results suggest that the critical energy Ec for
turbulence to be accessible satisfies Ec . E

fail

. It is also apparent that the behaviour
of the optimal time T

opt

associated with the maximum gain over all possible time
horizons is entirely consistent with the schematic picture shown in figure 2(a) and
described in detail in § 1: the QLOPT

opt

(shown by the thick black line in the figure)
‘masks’ the potential presence of the final nonlinear optimal perturbation NLOP(f )

T ,
which is conjectured to converge to the turbulent seed for all E0 < Ec. As the initial
energy amplitude E0 approaches E

fail

from below, the QLOPT
opt

remains dominant,
with gain (and optimal time) very similar to the values from the linear problem.

There is strong evidence that the algorithm converges straightforwardly to this
perturbation from a range of initial conditions for all values of E0 < Ec. Figure 4(a)
plots the normalized residual Rn against iteration n for the QLOPT

opt

at E0 = 2.2⇥10�6,
whose gain G(T) and optimal time T

opt

are marked with filled blue circles in figure 3.
For the calculation shown in figure 4, we use random noise as an initial guess, which
gives rise to the relatively large initial value of the normalized residual Rn (for n 6 5).
The observation that Rn drops so strongly (by fifteen orders of magnitude) while the
gain rapidly asymptotes to a specific value (1118) very close to the value (1130) for
the underlying linear problem, lends credibility to the assertion that our algorithm is
converging to this optimal perturbation. Rerunning the procedure for a further five
randomly chosen initial conditions reproduces the same result. We also saw similarly
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Relation to edge?

• Energy stays close to constant for a long time....

• Suggestive of being a specific way to tiptoe along the edge

• Suggesting approach on stable manifold of edge state Skufca et al 06 
etc

decaying. We classify an initial condition y as either on the
high side or the low side based on whether the norm of its
trajectory ( maxtk !!y; t" k ) is above or below an appro-
priately chosen threshold value. To apply these ideas, we
start with a low side point (near the origin) and a high side
point (a chaotic transient). Any path that connects them
must intersect the edge. By repeated bisection, we reduce
the distance between the high-low pair to approximate the
edge point that lies between them. This technique is much
more efficient than trying to find the point of transition
from smooth to fractal lifetimes and has proven very robust
in numerical implementation. Figure 4 shows how bisec-
tion leads to increasingly accurate approximations of an
edge trajectory. Because of the positive Lyapunov expo-
nent associated with the unstable edge, a numerical initial
condition will not generate the long trajectory which we
require. As illustrated in Fig. 5, we apply techniques
similar to the proper-interior-maximum-triple method
[19] to generate arbitrarily long numerical approximations
to the edge trajectory by successive refinement at suitable
time intervals.

Structure from edge trajectories.—In small models such
as the two or 4 coupled ordinary differential equations of
[10,20], the boundary of the laminar basin is defined by the
stable manifold of a fixed point that appears in a saddle
node bifurcation, and the structure in phase space is rela-
tively simple. In higher dimensions, these flow models
typically have a rich bifurcation behavior, and boundary
orbits (equivalent to the entire saddle set) are less clearly
structured. However, the invariant subset of the saddle
defined by the edge provides an identifiable structure
which can be resolved by examining edge trajectories.

For Re & 402, we find that a numerical edge trajectory
converges to a periodic orbit, which we denote as p#.

Because of a symmetry of the equations of motion, peri-
odic orbits occur in pairs, and we denote the symmetry
orbit as p$. An example pair is shown in Fig. 6. These edge
periodic orbits are unstable in only one direction, creating
8-dimensional stable manifolds Ws

p# and Ws
p$ , which are

surfaces in 9-dimensional space. As the Reynolds number
increases, the edge orbit undergoes period doubling and
period halving bifurcations. At these bifurcations, the
‘‘old’’ periodic orbit becomes unstable in two directions,
and the ‘‘new’’ edge orbit emerges with an 8-dimensional
stable manifold. Simulations indicate that for each value of
Reynolds number in this range, there is a unique periodic
orbit pair with 8-dimensional stable manifold such that
numerical edge trajectories converge to one or the other
member of that pair, and therefore, the essential part of the
edge is formed by the union of Ws

p# and Ws
p$ .

Above Re % 402, edge trajectories no longer converge
to a periodic orbit. At the bifurcation, the old edge orbit
becomes unstable in two directions, but no new periodic
orbit emerges with an 8-dimensional stable manifold.
Throughout the parameter range considered, the edge set
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FIG. 4. High-side and low side pairs.—Trajectory amplitude
as a function of time plotted for three pairs of nearby initial
conditions. Trajectories labeled ‘‘$’’ are on the low side, and
those with ‘‘#’’ on the high side. The initial conditions for the
‘‘a’’ pair were separated by % 10$7. The pairs ‘‘b’’ and ‘‘c’’
result from refining the a pair (using bisection) to separations of
% 10$10 and % 10$13, respectively. The limit of the bisection
algorithm (in infinite precision) would yield a trajectory which
would remain bounded away from the origin, but would never
achieve a large amplitude typical of chaotic transients. The data
shown are for Re & 390.
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FIG. 5. Numerical edge trajectory.—At time 0, we start with
two nearby initial conditions, one on each side of the edge. As
the trajectories evolve, they are repelled from the edge, and we
begin to lose precision in our approximation. At time T, before
the error grows large, we use bisection to find a new pair of
nearby initial conditions that are closer to the edge. By control-
ling refinement precision and interval T, we ensure the approxi-
mation maintains desired accuracy throughout the trajectory.
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FIG. 6. Periodic orbit pair for Re & 390, graphed by plotting
the y7 and y8 components over one period. Edge trajectories will
asymptotically approach either the black or the gray orbit.
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decaying. We classify an initial condition y as either on the
high side or the low side based on whether the norm of its
trajectory ( maxtk !!y; t" k ) is above or below an appro-
priately chosen threshold value. To apply these ideas, we
start with a low side point (near the origin) and a high side
point (a chaotic transient). Any path that connects them
must intersect the edge. By repeated bisection, we reduce
the distance between the high-low pair to approximate the
edge point that lies between them. This technique is much
more efficient than trying to find the point of transition
from smooth to fractal lifetimes and has proven very robust
in numerical implementation. Figure 4 shows how bisec-
tion leads to increasingly accurate approximations of an
edge trajectory. Because of the positive Lyapunov expo-
nent associated with the unstable edge, a numerical initial
condition will not generate the long trajectory which we
require. As illustrated in Fig. 5, we apply techniques
similar to the proper-interior-maximum-triple method
[19] to generate arbitrarily long numerical approximations
to the edge trajectory by successive refinement at suitable
time intervals.

Structure from edge trajectories.—In small models such
as the two or 4 coupled ordinary differential equations of
[10,20], the boundary of the laminar basin is defined by the
stable manifold of a fixed point that appears in a saddle
node bifurcation, and the structure in phase space is rela-
tively simple. In higher dimensions, these flow models
typically have a rich bifurcation behavior, and boundary
orbits (equivalent to the entire saddle set) are less clearly
structured. However, the invariant subset of the saddle
defined by the edge provides an identifiable structure
which can be resolved by examining edge trajectories.

For Re & 402, we find that a numerical edge trajectory
converges to a periodic orbit, which we denote as p#.

Because of a symmetry of the equations of motion, peri-
odic orbits occur in pairs, and we denote the symmetry
orbit as p$. An example pair is shown in Fig. 6. These edge
periodic orbits are unstable in only one direction, creating
8-dimensional stable manifolds Ws

p# and Ws
p$ , which are

surfaces in 9-dimensional space. As the Reynolds number
increases, the edge orbit undergoes period doubling and
period halving bifurcations. At these bifurcations, the
‘‘old’’ periodic orbit becomes unstable in two directions,
and the ‘‘new’’ edge orbit emerges with an 8-dimensional
stable manifold. Simulations indicate that for each value of
Reynolds number in this range, there is a unique periodic
orbit pair with 8-dimensional stable manifold such that
numerical edge trajectories converge to one or the other
member of that pair, and therefore, the essential part of the
edge is formed by the union of Ws

p# and Ws
p$ .

Above Re % 402, edge trajectories no longer converge
to a periodic orbit. At the bifurcation, the old edge orbit
becomes unstable in two directions, but no new periodic
orbit emerges with an 8-dimensional stable manifold.
Throughout the parameter range considered, the edge set
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FIG. 4. High-side and low side pairs.—Trajectory amplitude
as a function of time plotted for three pairs of nearby initial
conditions. Trajectories labeled ‘‘$’’ are on the low side, and
those with ‘‘#’’ on the high side. The initial conditions for the
‘‘a’’ pair were separated by % 10$7. The pairs ‘‘b’’ and ‘‘c’’
result from refining the a pair (using bisection) to separations of
% 10$10 and % 10$13, respectively. The limit of the bisection
algorithm (in infinite precision) would yield a trajectory which
would remain bounded away from the origin, but would never
achieve a large amplitude typical of chaotic transients. The data
shown are for Re & 390.
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FIG. 5. Numerical edge trajectory.—At time 0, we start with
two nearby initial conditions, one on each side of the edge. As
the trajectories evolve, they are repelled from the edge, and we
begin to lose precision in our approximation. At time T, before
the error grows large, we use bisection to find a new pair of
nearby initial conditions that are closer to the edge. By control-
ling refinement precision and interval T, we ensure the approxi-
mation maintains desired accuracy throughout the trajectory.
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Seeding the edge

• Use DNS results as guess for Generalized Minimal Residual method

• Finds a steady edge state with very clear structure

• Is it possible to identify reduced description of approach/departure?

0 50 100 150 200 250 300

t

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

En
e

rg
y

10
-2

10
-1

10
0

G
M

R
ES

 R
e

si
d

u
al

R(t) =
|u(x, t) � uGMRES(x)|2

|u(x, t)|2



Koopman/DMD  Modes
• Dynamical information about flow: take snapshots   

• Assume (for every n...system not changing much...):  

• Use DMD (Schmid 2010) to find spectrum of   

• Decompose (amplitudes “fit” snapshots): 

• Finite-dimensional/fixed in time approximation of Koopman operator

• Mezic (2005) linear in the observable:                              : efns etc!

• On attractor

• Does this yield a low-dimensional description of the flow? 

qn = q(x, tn)

qn+1 = N0q

N0

q(x, t) =
�

anmn(x) exp(�nt)

Ktq(x, 0) = q(x, t)

q(x, t) � q(x) =
�

anmn(x) exp(�nt) +

�
e2�i�t[dE(�)q]



DMD: early and edge
• 11 snapshots: 0-10 and 154-164: 

• Spectrum: 4 (early) 3 (late) modes

•                                                

• Captures early & late evolution

• Using constant eigenvalues
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DMD: early and edge

4 mode 
DMD0
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DNS 

3 mode 
DMD154
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DMD: early and edge

4 mode 
DMD0

Full
DNS 

3 mode 
DMD154
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A: Conclusions
• Direct-Adjoint Looping method rides along edge to edge state

• DAL method gives specific route on stable manifold

• DAL method leaves edge state along unstable manifold

• Koopman modes appear to be the natural description

• Can we use this process to play pinball turbulence?

A	

B	

arcadegamessuperstore.com
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B: Layering & UPOs 
• Initially linearly stratified flows layer spontaneously

•  “anti-diffusion” Phillips(1972) Park et al (1994)

• Holford & Linden (1998) vertical rod spontaneously layers: 

• Horizontal shear can also be important: stratified T-C flow?

• Outer cylinder 24.7 cm: inner 5/10/15 cm 

• Radius ratio: 

• Re > 10000, initially linearly stratified

• Lots of horizontal shear: visualize with shadow

FFDC Turbulence primer: Mixing efficiency 

 – 228 – 

 
Figure 126: Evolution of density field behind a rake of vertical bars towed horizontally 
repeatedly. 

Holford & Linden 
(1999) Dyn. Atmos. 
Oceans 30 

2.2. EXPERIMENTAL APPARATUS CHAPTER 2.

Figure 2.1: Diagram of a typical setup of a Taylor-Couette experiment with a typical
initial density profile.

exactly the same and because the tank can move before each experiment, calibration is
an essential stage to insure the accuracy of our experimental results. The calibration
is done before each experiment using up to five samples of different salinity. A typical
calibration curve is shown in 2.2. The noise in the conductivity probe is less than 1% and
we neglect the effect of temperature variation due to the variation in ambient temperature
and consider that conductivity vary slowly with temperature. The temperature in the
tank typically changes by 1− 2◦C over an experiment, which corresponds to a change in
density of up to 0.5 kg/m3. However, since the density in each layer varies by at least
20 kg/m3 over an experiment, we neglect the effect of temperature variation due to the
variation in ambient temperature.

The density profile is only measured at a specific radial and azimuthal location dur-
ing each experiment. We also assume that the profiles are the same over the horizontal
area of the annulus. We can easily verify this assumption both by visual observation
during the experiment (the interface remains sharp during the time of the experiment)
and by moving the probe to different radial locations during some experiments. Con-
cerning data acquisition, we only use data from the downwards moving profile, since
the probe measures its own wake while it is moving upwards, and this gives one profile

9

� =
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Spontaneous layers: NOT Taylor vortices

Rich quasi-periodicity: what sets layer scale/mixing?
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FIGURE 2. Variation of density profiles over time for two ILS experiments, and their
interfaces (solid black lines): (a) R1 = 10 cm, N0 = 1.58 s�1, ⌦ = 0.73 rad s�1; (b) R1 = 10 cm,
N0 = 1.54 s�1, ⌦ = 0.95 rad s�1. Asterisks in (b) indicate layer coarsening, when interior
interfaces are overturned. (c) Early-time layer heights for ILS experiments, varying ⌦ and
N0, for R1 = 5 cm (blue), R1 = 10 cm (red), R1 = 15 cm (green), with a linear fit to the data
(solid line) and one standard deviation from the linear fit (dashed line).

frequency N0 = p
(�g/⇢)@⇢/@z. The range of Taylor numbers in our experiments,

1.8 ⇥ 104Tc 6 Ta 6 1.5 ⇥ 105Tc, where Ta = 2R2
11

3
R⌦

2/ (R2 + R1)
2 ⌫2 and Tc is the

critical Taylor number for instability (Roberts 1965), is sufficiently high that in an
unstratified flow we might expect a series of turbulent Taylor vortices with height
h ⇠ 1R (Koschmeider 1979). The layers we observe in an ILS experiment do not
appear to be associated with unstratified turbulent Taylor vortices, since they are
significantly smaller than 1R, and strongly depend on the stratification and rotation
rate.

In figure 2, N0 is similar for the two experiments, but ⌦ is higher for the
experiment in figure 2(b) than in figure 2(a). Correspondingly, the layers are larger
in figure 2(b) than in figure 2(a). The layers are eroded from the top and bottom, and
the interior layers also appear to coarsen over time, when the density difference across
an interface decays until it is low enough for the interface to overturn (marked by
the asterisks in figure 2b). The interfaces also have an overall drift downwards over
time, due to the removal of fluid from below the interfaces by the probe, as mentioned
above. As the layers coarsen, they may become of the same scale as the unstratified
Taylor vortices. We will focus only on the behaviour of the early layers, when the
interior layers remain at the height hl associated with the stratification. During this
stage, the density of the interior layers and the density jumps across the interior
interfaces remain approximately constant, consistently with the schematic presented in
figure 1.

3.1. Layer heights
We conduct a series of experiments to test how the average height of the early layers,
hl (defined as the distance between the centre of adjacent interfaces), varies with ⌦ ,
R1 and N0. Boubnov et al. (1995) suggested a possible energy argument for the height
of the early layers. In Taylor–Couette flow, when a fluid parcel moves away from the
inner cylinder, the centrifugal force, �cf ,

�cf = u2
✓

r
/ R1⌦

2 at r = R1, (3.1)
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critical Taylor number for instability (Roberts 1965), is sufficiently high that in an
unstratified flow we might expect a series of turbulent Taylor vortices with height
h ⇠ 1R (Koschmeider 1979). The layers we observe in an ILS experiment do not
appear to be associated with unstratified turbulent Taylor vortices, since they are
significantly smaller than 1R, and strongly depend on the stratification and rotation
rate.

In figure 2, N0 is similar for the two experiments, but ⌦ is higher for the
experiment in figure 2(b) than in figure 2(a). Correspondingly, the layers are larger
in figure 2(b) than in figure 2(a). The layers are eroded from the top and bottom, and
the interior layers also appear to coarsen over time, when the density difference across
an interface decays until it is low enough for the interface to overturn (marked by
the asterisks in figure 2b). The interfaces also have an overall drift downwards over
time, due to the removal of fluid from below the interfaces by the probe, as mentioned
above. As the layers coarsen, they may become of the same scale as the unstratified
Taylor vortices. We will focus only on the behaviour of the early layers, when the
interior layers remain at the height hl associated with the stratification. During this
stage, the density of the interior layers and the density jumps across the interior
interfaces remain approximately constant, consistently with the schematic presented in
figure 1.

3.1. Layer heights
We conduct a series of experiments to test how the average height of the early layers,
hl (defined as the distance between the centre of adjacent interfaces), varies with ⌦ ,
R1 and N0. Boubnov et al. (1995) suggested a possible energy argument for the height
of the early layers. In Taylor–Couette flow, when a fluid parcel moves away from the
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Layers, zig-zags & connections 
• Layer depth scales like U/N for characteristic velocity U...

•  Reminiscent of zig-zag instability of Billant & Chomaz (2000a,b)

• Experimental miracle: linear mode to structure?

Three-dimensional stability of a vertical vortex pair in a stratified fluid 83
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Figure 10. Comparison between the analytical growth rate given by the long-wavelength dispersion
relation (5.3) (solid lines) and numerical growth rates for {Re = 100 000, Sc = 1}. ⇤, Fh = 0.033;
+, Fh = 0.05;

⇧

, Fh = 0.1; ⇤, Fh = 0.15. The growth rate for Fh = 0.05 and higher Reynolds number
{Re = 100 000, Sc = 1} is also shown by a bold line with +. Note that the theoretical prediction
was expected to be valid only for infinitely small wavenumbers. Yet, the analytical growth rate is,
in practice, correct for kz 6 0.3/Fh.

quantitative long-wavelength approximation (5.3) of the dispersion relation. Figure
10 shows a comparison between the analytical growth rates given by (5.3) and the
numerically calculated growth rates of the zigzag instability for Fh 6 0.15. It is
seen that the asymptotic growth rates (5.3) (for which all the coe�cients have been
computed exactly in part 2) match the numerical growth rates for small values of kz .
As expected, the approximation of the growth rate (5.3) is no longer valid for large
Froude numbers and wavenumbers (in practice when kz > 0.3/Fh as seen in figure
10) because our asymptotic formulation is restricted to long-wavelength disturbances
and small Froude numbers and because only the first terms of the expansion have
been computed. The variations of the slopes at the origin with the Froude number is
well predicted even for finite Froude number. A slight di↵erence between the slopes
at the origin apparently exists but we believe that this is due to the finite Reynolds
number Re = 10 000 investigated. To check this, the Reynolds number has been
further increased to Re = 100 000 for Fh = 0.05 (bold line with + in figure 10) and it
is seen that the numerically calculated growth rates tend toward the theoretical ones.
The viscosity continues to have an e↵ect even at high Reynolds number presumably
because of the presence of a strong gradient at r = 1 in the eigenmode vorticity (even
discontinuity as kz ! 0 and Re ! 1 as shown in part 2).

5.2. Zigzag eigenfunction

We now compare quantitatively the spatial distribution of the numerically com-
puted eigenmodes with those obtained asymptotically in part 2 for small Froude
numbers and small vertical wavenumbers. Figure 11 shows a full comparison be-
tween the asymptotic and numerical eigenmodes for Fh = 0.033, kz = 8.25 and
{Re = 10 000, Sc = 1}. The analytical velocity, density and vertical vorticity perturba-
tion fields are given at second order in Fhkz by

uh =
@uh0

@y
+ Fhkz

p

�Dr ⇥
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Figure 1. Sketch of experimental set-up.
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Figure 2. Sketch of the ‘flap’ apparatus used to produce a columnar vertical vortex pair in a
stratified fluid.

e↵ects on the elliptic instability are described in § 4.1. In § 4.2, the threshold at which
the elliptic instability is suppressed is compared to the theoretical study of Miyazaki
& Fukumoto (1992). In § 4.3, the zigzag instability is characterized by means of flow
visualizations. The pancake structure which is produced is briefly described in § 4.4.
Wavelength and growth rate measurements are presented in § 4.5 and § 4.6, respectively.

2. Experimental set-up and procedure
The experiments are performed in a 100 cm wide, 200 cm long and 70 cm deep glass

tank (figure 1). The tank is filled with a linearly stratified salt solution with a 65 cm
working depth. The stratification is established by the well-known two tank method
by means of two computer-controlled volumetric pumps.

A 60 cm columnar vertical vortex pair is created by suddenly closing two long
vertical ‘flaps’, as one would close an open book (figure 2). The flaps are similar to
those used by Leweke & Williamson (1998). They consist of two aluminium plates
10.1 cm wide and 100 cm long with one vertical edge sharpened and the other hinged
to a vertical base 6.3 cm wide (figure 2). The flap motion is driven through a system

CC B FFF 42 3A:5  A 4 A C A B CC B 5 : A  0
F 25 5 7A CC B FFF 42 3A:5  A 4 A  44 BB 2:5 3 C 1,0 /:3A2A: B . 3 2C BD3 4C C C ,2 3A:5 , A C A B 7 DB 2 2: 23 2C



Connecting linear modes to self-organization? 

42 P. Hazel 

figurations where both the velocity and the density are antisymmetric in y. It 
cannot determine whether these curves are stability boundaries or not; this 
information can, however, be obtained by careful use of program (i). All results 
were computed to an accuracy of four significant figures. 

3. Shear layers 
3.1. The hyperbolic tangent shear layer 

The velocity profile u ( y )  = tanh (y) is important, because it is the prototype of 
smooth shear layers. We consider it in conjunction with the density profile 
p ( y )  = tanh (y). The neutral curve and stability boundary for this configuration 
is J ,  = a(1 -a)  (Holmboe 1960)) which is a parabola symmetric about a = 0.5. 
Within the unstable region, a large number of eigenvalues of c have been com- 
puted, and from this data the maximum growth rates for given J can be deduced 
by interpolation. Figure 1 shows the neutral curve and the curve of maximum 
growth. The unstable waves that one would expect to see in an experimental 
situation are those with the fastest growth rate, for given J .  

I 

0.2 

J 

0.1 

0.25 0.5 0.75 1 .o 
U 

FIGURE 1. Stability boundary and curve of maximum growth rate for 
‘tanh’ profiles, with growth rates marked. 

A convenient way of presenting eigenfunctions, which brings out their struc- 
ture more clearly, is to draw displacements of initially horizontal lines in the 
flow, after some arbitrary time, chosen so that the amplitudes are not so large as 
to completely vitiate infinitesimal theory. The dimensionless displacement at  
any point is given by 

and is easily computed from 4. Figure 2 is a picture of such displacements; the 
lines are initially equally spaced. They may be thought of as dye lines in the fluid, 
or as constant density surfaces, noting that the difference in density between 
pairs of line varies from pair to pair. The area shown covers one and a quarter 
wavelengths in the x direction, and, in the y direction, that part of the flow which 
contains the major part of the disturbance. The velocity profile is shown for 

(3.1) ) )  
exp {ia(x - ct))  

d(x, y )  = Re [ ’(’) 
N Y )  --c 
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HS Kolmogorov Flow
• Horizontal Kolmogorov flow

•  Forced back to laminar flow with three control parameters

• Reynolds number Re

• Buoyancy parameter B

• Aspect ratio 

• Horizontal shear so vertical vorticity...

U � ulam = Re sin(y)x̂, �B = �z
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Exact coherent structures in stably stratified

horizontally sheared Kolmogorov flow.

Dan Lucas

June 5, 2016

Abstract

New coherent states giving rise to layered density profiles.

A new instability giving vertical structure and inclining the shear dis-
tribution.

UPOs organising the turbulence extracted and examined for mixing,
vertical structure etc.

U(y)

1 Introduction

application of DS approach to stratified shear flows.

coherent structures (‘banding’), layerwise motions and instabilities.

mixing properites

advantages of K-flow; shear inclination, numerical e�ciency, supercritical
transition provides weak turbulence - successful recurrent flow analysis. Balm-
forth and Young vertical shear in 2D.

2 Formulation

The incompressible Navier-Stokes equations under the Boussinesq approxima-
tion with Kolmogorov forcing are given by

@u⇤

@t

⇤ + u⇤ · r⇤u⇤ +
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⇤ + u⇤ · r⇤
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r⇤ · u⇤ = 0 (3)
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Exact coherent structures and layer

formation in stratified turbulence
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We consider turbulence driven by a large scale horizontal shear by way of the Kolmogorov
flow (sinusoidal body forcing) and a background linear stable stratification imposed
in the third direction. This provides a tractable arena to investigate the formation of
coherent structures, which in this case organise the flow into horizontal layers by inclining
the background shear as the strength of the stratification is increased. By numerically
converging exact steady states and tracing these new solutions in the control parameters,
the coherent structures can be traced back to new instabilities of the base flow. We
investigate how the vertical lengthscales observed in the turbulence are related to the
instabilities and compare to the other well studied examples of instability driving layer
formation.

1. Introduction

* motivation for horizontally sheared, stratified flow. How does a vertically uniform
base flow/forcing decouple vertically? (STC, vortical forcing papers)

* layer formation, zig-zag instability, layer scalings (Paul’s grid paper)
* Transition lit. on ECS, application of methodology to study stratified flows. Make

the connection between linear instability and a nonlinear coherent structure organising
the turbulence.

* motivation for K-flow (flexibility of forcing form, numerically e�cient, tractable for
dynamical systems approach)

2. Formulation

We begin by considering the following version of the monochromatic body-forced,
incompressible, Boussinesq equations

@u⇤

@t

⇤ + u⇤ · r⇤u⇤ +
1

⇢0
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where u⇤(x, y, z, t) = u

⇤
x̂ + v

⇤
ŷ + w

⇤
ẑ is the three-dimensional velocity field, n is the

forcing wavenumber, � the forcing amplitude, ⌫ kinematic viscosity,  density di↵usivity,
p

⇤ pressure, ⇢0 is the background reference density and ⇢

⇤(x, y, z, t) the varying part of
the density away from a linear density profile ⇢̄ = �↵z, i.e. ⇢ = ⇢0 + ⇢̄(z) + ⇢

⇤(x, y, z, t).
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HS Kolmogorov Flow
• Horizontal stratified Kolmogorov flow self-organizes into layers!

Turbulence is found to organise into layers

streamwise u �B + �

• Any connection between linear stability and nonlinear dynamics?



Layer scaling
• Layer scaling consistent with U/N...and zig-zag like linear instability

• Vertical wavenumber collapses with Froude number: 

• Scaling for 

• Stratified turbulence scaling of Billant & Chomaz/Lindborg etc

• Stability properties just like zigzag/Deloncle et al 2007

• Nonlinear properties, particularly mixing?

The layers found in the DNS also follow this scaling

Take k�centroid of Fourier transformed h⇢0i
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The 3D instability recovers the well known scaling with
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Mixing: UPOs?
• Particularly in strongly stratified flow: mixing very intermittent

• Complex spatio-temporal structure of 

• t=70,88,90,100

• <Ri> drops...

• Then turbulence...then

• Ri up again: UPO??

Layer formation in horizontally forced stratified turbulence 7
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Figure 2. Snapshots in a yz mid-plane (at x = π for simulations with Re = 100, Pr = 1,
n = 1 and α = 1) of ρ (first column) and u (second column) at t = 50. The third column
shows ⟨ρ̄⟩x, while the fourth column shows ⟨ū⟩x, i.e. x−average of the time-averaged (across
the full t ∈ [0, 100] interval) perturbation density and streamwise velocity. Rows are showing
B = 1, 5, 10, 50 (simulations A1-A4 from table 1) from top to bottom. Notice the increase in
vertical structure as B increases.

0
2
4
6
8
10
12
14
16
18
20

20 30 40 50 60 70 80 90 100

E

t

B = 1
B = 5
B = 10
B = 50

0

0.02

0.04

0.06

0.08

0.1

0.12

20 30 40 50 60 70 80 90 100

D
Dlam

t

B = 1
B = 5
B = 10
B = 50

Figure 3. Time series of total kinetic energy density E = (1/2)⟨|u|2⟩V and volume-averaged
scaled dissipation rate D/Dlam = 2⟨|∇u|2⟩V /Re2, for simulations A1-A4 from table 1. Note the
widely separated and yet intense recurrent bursts for simulation A4 with B = 50, and the lag
between E and the ensuing dissipation D.

panels in figure 2. In other words the horizontal structures in figure 5 are caused by
large density gradient in the numerator of RiG and the inclined structures are caused by
minima of the shear in the denominator of RiG. This lattice structure of the two classes
of strips effectively covers the entire flow domain, and eventually manages to stabilise the
flow globally. Once the flow is accelerated again sufficiently we then observe instability
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Figure 5. Left: Time dependence of the volume average of RiG and the scaled dissipation rate
D/Dlam, showing the anti-correlation of turbulence intensity and gradient Richardson number;
Right: Four snapshots of RiG(y, z, t) at times t = 70, 88, 90, 100 simulation from A1 with
Re = 100, B = 50, Pr = 1, α = 1. Note the small values in the panels for t = 88 and t = 90
associated with the burst of turbulence near the top and bottom of the domain. By t = 100
the stabilising lattice of high values apparent in the panel for t = 70 has become re-established.
Angled strips of high RiG are associated with minimal vertical shear, and horizontal strips of
high RiG are associated with maximal density gradient.

In other words when D < D0 the energy input is increased so that the total kinetic energy
grows in time and when D > D0 the flow is decelerated by reducing E . Notice that the
connections between the terms in equation (3.3) are inherently nonlinear and linked to
the turbulent cascade: energy is input at the largest scale and is ultimately dissipated at
much smaller scales. For this reason there is an inevitable lag between the adjustment of χ
and the flow response. Furthermore, there are still undoubted computational challenges.
To maintain adequate resolution at large external Re we cannot throttle with large D0,
although for statistical stationarity larger values of B require progressively larger D0. For
these reasons we chose the parameters in table 1 to maintain at least some semblance of
a turbulent state at progressively stronger stratification.

Figure 6 shows equivalent yz−plane ρ and u snapshots and means to those shown in
figure 2 for the throttled simulations D1, B3, C2 and C3 as listed in table 1, associated
with larger values of the buoyancy parameter B. Figure 7 shows the time dependence
of the kinetic energy density E and scaled dissipation rate D/D0. The throttling simula-
tions exhibit approximately statistical stationarity near the target dissipation rate D in
contrast to the observed time-lagged bursting in both energy density and dissipation rate
shown in figure 3 for the unthrottled simulation A4 with B = 50. Curiously, the throttling
method doesn’t reach the target dissipation rate D0 as closely as reported in Chung &
Matheou (2012), with a systematic undershoot in the actually occuring dissipation rate
D. This difference is presumably due to the different nature of forcing between the two
studies. In particular, Chung &Matheou (2012) enforce a specific background mean linear
shear rather than a ‘free’ body force as in our simulations. In spite of this discrepancy,
the method serves our purpose by providing a much more stationary flow at large B and
the opportunity to investigate the trend in layer scale with B.
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Initial DNS at ↵ = 1 and Re = 100.
Streamwise velocity for B = 50
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ẑ

1 Results

1.1 5 mode system

1



Stratified UPOs
• Project trajectory onto plane:

• Looks an unholy mess....but look closer...

In any given projection turbulence looks impenetrable
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Stratified UPOs
• Closer inspection reveals nearly recurrent episodes

• If you look really closely...

Closer inspection reveals nearly recurrent episodes
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Stratified UPOs
• Closer inspection reveals nearly recurrent episodes

• Which can be used as original guesses for recurrent flow analysis...

Closer inspection reveals nearly recurrent episodes
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To obtain R = 0 precisely we construct a high dimensional
Newton solve including s and T .

F(⌦0, s,T ) := ⌦̂
s

(⌦0,T ) � ⌦0 = 0

2
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. . .
...

...
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0
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Reduced to solving linear problem A�x = b.
Hookstep constrains GMRES minimisation within trust region of
Newton linearisation (see Chandler & Kerswell 2013).

Stratified UPOs
• Which can be “polished” to find UPOs!

• See Lucas & Kerswell 2015/16 for Newton Solve/Hookstep/GMRES etc

This enables an “unstable periodic orbit” (UPO) to be
located!
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Given some turbulent simulation, how do we extract the
UPOs?

Given some turbulent DNS, how do we extract unstable
periodic orbits (UPOs)?

!(x, y, t) =

Nx/3�1X

kx=0

Ny/3�1X

ky=�Ny/3

�kxky (t)ei(�kxx+kyy)

R(t, T ) :=

min
0�s�2�/�

min
m�0,1,2..n�1

8P
kx=0

8P
ky=�8

���kxky (t)ei(kx�s�2kym�/n) � �kxky (t � T )
��2

8P
kx=0

8P
ky=�8

���kxky (t)
��2

< Rthres
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!(x, t) =
X

k

⌦
k

(t)ei(k·x)

R(t,T ) := min
s

P
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��⌦
k

(t)ei(k·s) � ⌦
k

(t � T )
��2

P
k

|⌦
k

(t)|2
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We output ⌦
k

at minimal R for processing

R = 0� A�x = b



Stratified UPOs
• Can find stratified UPOs, and they really “look” like the flow:

• But can they tell us something quantitative about the flow behaviour?

Re = 50, B = 50, � = 0.5
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Connection to instabilities
• Continuation in parameters allows us to connect to linear instabilities

• Chevron state is a secondary bifurcation from both primary instabilities!

Layer formation in horizontally forced stratified turbulence 19
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Figure 13. Bifurcation diagram showing solution state branches for flows with Re = 15 and
B = 50 identified through continuation in α (or equivalently streamwise wavenumber kx) against
scaled total dissipation D/Dlam. The spatial structures of streamwise velocity for states (A)-(C)
are shown in the upper panels. As in figure 12 the thick green curve shows the evolution of the
primary state arising from the linear instability with kz = 0, while the thick magenta curve shows
the evolution of primary state (A), arising from the kz = 2 linear instability of the laminar base
flow ulam. The thin orange line shows the evolution of the secondary state (B) and the thin
blue line shows the evolution of the secondary state (C), both generated by instabilities of the
primary state (A). State (C) also attaches back to the primary state with kz = 0. Labels are
placed adjacent to where the three-dimensional visualisations are made in parameter space.

are of interest due to their clear similarity to the previously reported zig-zag structures.
Practically, we have also demonstrated the utility of continuation in α as it appears to
demonstrate conveniently the bifurcation structure of the various solution states.
In figure 14, we show how the properties (in particular the streamwise velocity struc-

tures) of the state (C) change under continuation in the stratification parameter B for
α fixed at its original value of 0.9 and Re = 15. After some turning points, the curve
traced by the solution state closes in on itself. Although it is at least plausible that
continuation in B might lead to some smooth variation of the shear inclination as B
increases, it is actually apparent that the increasing vertical structure observed in the
numerical simulations arises due to the generation through instability of a family of new
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kz = 0
kz = 2

Re = 15, B = 50

176 P. Billant and J.-M. Chomaz

(a) (b)

Figure 8. Visualizations of the zigzag instability in two di↵erent experiments in the absence of
forcing for the same parameters Fh0 = 0.19, Re0 = 365 at t = 121 s after stopping the flap motion.
In (a) a regular zigzag pattern is observed while a defect can be seen in (b).
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Figure 9. Froude number Fh0c of disappearance of the elliptic instability as a function of the
Brunt–Väisälä frequency N. The solid line indicates the threshold deduced from the theoretical
criterion of Miyazaki & Fukumoto (1992).

and the Brunt–Väisälä frequency may be increased to N = 1.97 rad s�1 by reducing
the water depth to 45 cm. In that case, we found that the elliptic instability is inhibited
below Fh0 = 0.19, i.e. very close to the critical Froude number Fh0 obtained for lower
Brunt–Väisälä frequencies.

4.2. Froude number of inhibition of the elliptic instability by the stratification

The critical Froude number of inhibition of the elliptic instability is Fh0c = 0.2 ± 0.01
independently of the Brunt–Väisälä frequency N investigated (figure 9). In contrast,
the corresponding Reynolds number varies between Re0 = 346 and Re0 = 474.
This indicates that the inhibition of the elliptic instability is controlled by buoyancy
e↵ects and not by viscous e↵ects. This value can be accounted for from the study
of Miyazaki & Fukumoto (1992). They have shown theoretically that the elliptic
instability is suppressed by the stratification when

N > (�2
� ✏2)1/2, (4.1)

CC B FFF 42 3A:5  A 4 A C A B CC B 5 : A  0
F 25 5 7A CC B FFF 42 3A:5  A 4 A  44 BB 2:5 3 C 1,0 /:3A2A: B . 3 2C BD3 4C C C ,2 3A:5 , A C A B 7 DB 2 2: 23 2C
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Figure 14. Bifurcation diagram showing solution state branch (C) from figure 13 continued
in B against normalised total dissipation D/Dlam for flows at fixed α = 0.9 and Re = 15.
Visualisations of the streamwise velocity in the y − z mid-plane at (x = π) at various labelled
locations on the curve are shown in the upper panels. Note that at large B the solution curve
bends back upon itself to close the loop.

invariant solution states. It is somewhat surprising that given the complicated behaviour
of the solution state curve there is such little variation in the qualitative shape of the
flow state, as visualised in figure 14 by the streamwise velocity structure in a y − z
midplane at x = π. Indeed, the direct numerical simulations show that these coherent
structure states are subject to additional pattern forming instabilities, generically leading
to localisation of the shear in the z−direction and therefore turbulent motions. Typical
dynamical behaviour is shown in figure 15 where three-dimensional visualisations of
the streamwise velocity u are shown for the extremely strongly stratified and throttled
simulation D5 (with B = 2000) from table 1. How such localisation comes about is a
question for future research, but we note in passing, that although the notional value of
ReB for this simulation is quite low, still the shear instability and layered flow structures
bear more than a passing qualitative similarity to those shown in the vigorously turbulent
and anisotropic simulation D9.6 of Brethouwer et al. (2007) (see in particular their figure
5a).

6. Discussion

In this paper we have attempted to lay out the mechanisms by which the density
field is spontaneously arranged into sustained layers by stratified turbulence driven with
a horizontal shear. The key step is that we have been able to connect the coherent
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Mixing?
• In stratified turbulence, potential energy sink as well as dissipation

• Question: how much into mixing/how much into dissipation: efficiency

• Buoyancy versus momentum dissipation:

• Flow is consistent with standard models of other flows with 

• ECS has the quantitative mixing property of the full flow...higher Re?

� = B�|��|2�, � =
1
Re

�|�u|2�

ReB =
��

�N2B

Unstable periodic orbits are used as proxies to investigate
the mixing e�ciency
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B: Conclusions
• Recurrent flow analysis applicable to stratified shear turbulence

• ECS/UPOs: RECURRENCE & SELF-ORGANIZATION

• Finite amplitude bifurcations from linear instabilities

• Layering structure and mixing DYNAMICS set quantitatively

• Can they be used as “modes” for reduced models/explanations?
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