Spiral wave chaos: Tiling, local symmetries, and asymptotic freedom

Roman Grigoriev, Chris Marcotte

 Center for Nonlinear Science, School of Physics

Georgia Tech

Spiral waves in excitable systems

BZ reaction

HL-1 cell culture

Slime mold

Fenton +
GT students

Human crowd

Cardiac rhythms and arrhythmias

Fenton, Cherry
thevirtualheart.org

Normal
Rhythm

Ventricular
Tachycardia

Ventricular
Fibrillation

Spiral chaos in a simple model

Reaction-diffusion system:

$$
\begin{aligned}
& \partial_{t} u=D \nabla^{2} u+f(u, v) \\
& \partial_{t} v=g(u, v)
\end{aligned}
$$

Karma (1994)

Nonchaotic solutions and ECS

Computing ECS

$$
E(t, \tau)=\min _{g \in G}\left\|\mathbf{w}-g \mathbf{w}_{\tau}\right\| /\|\mathbf{w}\|
$$

Newton-Krylov solver

Unstable periodic solutions?

u

Weakly nonlinear waves

Complex Ginzburg-Landau Equation:

$$
\partial_{t} A=A+(1+i \alpha) \nabla^{2} A-(1+i \beta)|A|^{2} A
$$

Tile the domain using amplitude ridges:

$$
A=\rho e^{i \varphi}
$$

Bohr, Huber, Ott (1996)

Strongly nonlinear waves

Use cycle area instead of amplitude: and elapsed time from crossing a Poincare section instead of phase:

$$
I=\oint v d u=\int_{0}^{T} v \dot{u} d t
$$

$$
\theta=\int \omega d t, \quad \omega=\frac{2 \pi}{T}
$$

Tiling multispiral states

Can also describe tile boundaries analytically:

$$
\frac{d r}{d \varphi}=\frac{-\sigma r^{\prime 2}-\sigma^{\prime} r(R \cos \varphi-r)+2 \pi m r^{\prime} r \sin \varphi}{\sigma^{\prime} R^{2} \sin \varphi+m\left(r^{\prime 2}-r^{\prime}(r-R \cos \varphi)\right)}
$$

Luo, Zhang, Zhan (2009)

Boundary conditions

o Tiles are noncircular
o Neumann boundary conditions

Break-up

Drift

Collapse

Stability of spiral waves

Floquet multipliers

Absolute instability

Convective instability

Alternans instability

$$
u
$$

Break-up

Drift

Collapse

For some initial conditions...

Stroboscopic map:

o Cores are drifting \rightarrow tiles have to deform
o Can we understand this drift and deformation?

Dynamics of spirals on tiles

Period as a function of tile size

Dynamics of tiles

Motion of the boundary:

$$
\mathbf{c}=\left(\omega_{1}-\omega_{2}\right) \frac{\mathbf{k}_{1}-\mathbf{k}_{2}}{\left|\mathbf{k}_{1}-\mathbf{k}_{2}\right|^{2}}
$$

Howard, Kopell (1977)

Dynamics of tiles (continued...)

Stroboscopic map:

o Why are some cores moving (and others are not)?
o Why is their motion so slow?
o What sets the distance between cores?

Local Euclidean symmetry

Asymptotic freedom

Goldstone modes

Response functions

Interaction of cores with boundaries

$$
\begin{aligned}
& \mathbf{x}^{n+1}=\mathbf{x}^{n}+\mathbf{h}\left(\mathbf{x}^{n}\right), \\
& \mathbf{x}^{n}=\mathbf{x}(n T)
\end{aligned}
$$

Core-core interaction

Core-core separation (\& tile size)

No timeperiodic
solutions

Solutions
unstable
(alternans)

Break-up

Drift

Collapse

Core-core separation (\& tile size)

Core meander

Wave collapse

Wave collapse

The mechanism of spiral chaos

o Slow dynamics (of tiles)
\checkmark The tiles are generally of different size
\checkmark The frequencies of spirals differ
\checkmark The tiles boundaries drift (slowly)
\checkmark Small (fast) spirals grow at the expense of big (slow) ones
o Fast dynamics (of spirals)
\checkmark Large spirals ($L>L_{b}$) break up due to alternans instability
\checkmark Small spirals $\left(L<4 l_{c}\right)$ survive for less than one period and collapse (with a neighbor)
\checkmark Medium size spirals ($4 l_{\mathrm{c}}<L<L_{b}$) interact with each other in nontrivial ways

Implications for fluid turbulence

\square No global ECS on domains much larger than the relevant coherence length, no matter what the physics is
\square Need to look for localized solutions that respect local Euclidean symmetries and their interactions
\square Coherence length can be defined with the help of adjoint eigenfunctions (to-do for fluid dynamicists)
\square Spatial correlations may decay exponentially even when solutions do not
\square Does exponential decay of velocity/energy imply short spatial correlations? What about pressure?

