Spiral wave chaos: Tiling, local symmetries, and asymptotic freedom

Roman Grigoriev, Chris Marcotte *Center for Nonlinear Science, School of Physics*

Spiral waves in excitable systems

Cardiac rhythms and arrhythmias

Fenton, Cherry thevirtualheart.org

Normal Rhythm

Ventricular Tachycardia Ventricular Fibrillation

Spiral chaos in a simple model

Reaction-diffusion system:

$$\partial_t u = D\nabla^2 u + f(u, v)$$

 $\partial_t v = g(u, v)$ Karma (1994)

Nonchaotic solutions and ECS

Computing ECS

Unstable periodic solutions?

Weakly nonlinear waves

Strongly nonlinear waves

Use cycle area instead of amplitude:

and elapsed time from crossing a Poincare section instead of phase:

$$I = \oint v \, du = \int_{0}^{T} v \dot{u} \, dt$$
$$\theta = \int \omega \, dt, \quad \omega = \frac{2\pi}{T}$$

Tiling multispiral states

Luo, Zhang, Zhan (2009)

Boundary conditions

- Tiles are noncircular
- Neumann boundary conditions

Break-up

Drift Collapse

Stability of spiral waves

Convective instability

Alternans instability

Break-up

Drift

Collapse

For some initial conditions...

Stroboscopic map:

o Cores are drifting → tiles have to deform
o Can we understand this drift and deformation?

Dynamics of spirals on tiles

Period as a function of tile size

Dynamics of tiles

Motion of the boundary:

$$\mathbf{c} = (\omega_1 - \omega_2) \frac{\mathbf{k}_1 - \mathbf{k}_2}{|\mathbf{k}_1 - \mathbf{k}_2|^2}$$

Howard, Kopell (1977)

Dynamics of tiles (continued...)

Stroboscopic map:

- Why are some cores moving (and others are not)?
- Why is their motion so slow?
- What sets the distance between cores?

Local Euclidean symmetry

Goldstone modes/right eigenfunctions

Response functions/left eigenfunctions

Asymptotic freedom

Response functions

Interaction of cores with boundaries

Core-core interaction

Core-core separation (& tile size)

Break-up

Drift

Collapse

Core-core separation (& tile size)

Core meander

Wave collapse

Wave collapse

The mechanism of spiral chaos

• Slow dynamics (of tiles)

- \checkmark The tiles are generally of different size
- \checkmark The frequencies of spirals differ
- ✓ The tiles boundaries drift (slowly)
- \checkmark Small (fast) spirals grow at the expense of big (slow) ones
- Fast dynamics (of spirals)
 - ✓ Large spirals $(L > L_b)$ break up due to alternans instability
 - ✓ Small spirals ($L < 4l_c$) survive for less than one period and collapse (with a neighbor)
 - ✓ Medium size spirals $(4l_c < L < L_b)$ interact with each other in nontrivial ways

Implications for fluid turbulence

- □ No *global* ECS on domains much larger than the relevant coherence length, no matter what the physics is
- Need to look for localized solutions that respect *local* Euclidean symmetries and their interactions
- Coherence length can be defined with the help of *adjoint* eigenfunctions (to-do for fluid dynamicists)
- □ Spatial *correlations* may decay exponentially even when solutions do not
- Does exponential decay of *velocity/energy* imply short spatial correlations? What about *pressure*?