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Presentation Notes
The simplest model of atrial fibrillation is due to Karma
We modified it slightly to regularize the solutions
Dynamics is dominated by interacting spiral waves -> spiral chaos
Simplified description in terms of spiral cores (white/black denotes opposite chirality)
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Dynamics on tiles
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Presentation Notes
Solutions satisfy no-flux (Neumann) boundary conditions on tile boundaries
This true for both variables (level sets of u/v are shown on the left/right)
Tiles evolve slowly, spirals evolve quickly
Spiral properties (frequency, stability, drift, etc.) are determined by the shapes of the tiles
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Local Euclidean symmetry

Goldstone modes/right eigenfunctions

Response functions/left eigenfunctions
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Floquet multipliers
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Presentation Notes
The marginal modes (with unit Floquet multiplier) correspond to continuous symmetries: translations, rotation
Eigenfunctions – Goldstone modes
Adjoint eigenfunctions – response functions (describe sensitivity)






Local Euclidean symmetry
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Presentation Notes
The marginal modes (with unit Floquet multiplier) correspond to continuous symmetries: translations, rotation
Eigenfunctions – Goldstone modes
Adjoint eigenfunctions – response functions (describe sensitivity)



Generalized relative solutions
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The marginal modes (with unit Floquet multiplier) correspond to continuous symmetries: translations, rotation
Eigenfunctions – Goldstone modes
Adjoint eigenfunctions – response functions (describe sensitivity)



Asymptotic freedom

Goldstone modes

Response functions
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Goldstone modes
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Presentation Notes
Goldstone modes (eigenfunctions) are spatially uniform
Adjoints (response functions) are exponentially localized
Localization defines an important characteristic length scale ell_c
Rest of adjoints are similrly localized  asymptotically free spirals  wave-particle duality
Rotational response function directly describes the deviation of the frequency from asymptotic value



Interaction of cores with boundaries
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Presentation Notes
Generic solutions correspond to drifting spirals (relative periodic solution)
Repeat, after period T, up to a spatial shift h(x)
The shift function h is an exponentially decaying function with several stable roots.
Solid line - numerics, dotted line – analytic expression based on response function, dashed line – its saddle-node approximation



Core-core interaction
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Presentation Notes
Spiral-spiral interaction is equivalent to interaction of single spiral with no-flux boundary
Spirals tend to be separated by 2x zeta_n
The smallest root corresponds to strongly interacting spirals
The rest of the roots correspond to essentially non-interacting spirals






Core-core separation (& tile size)

Virtual 
pairs

Break-upCore drift/ 
meander/
collapse
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…
The spirals on intermediate-size tiles undergo meandering instability or drift



Core meander
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Presentation Notes
Meandering instability is evident by focusing on the motion of spiral cores
This instability is responsible for core mergers









Wave collapse

Presenter
Presentation Notes
Merger (mutual annihilation) of two spirals of opposite chirality
	…can be understood in terms of meander instability of a single spiral
	…and reflection about the no-flux boundary






Wave collapse



The mechanism of spiral chaos

o Slow dynamics (of tiles)
 The tiles are generally of different size
 The frequencies of spirals differ
 The tiles boundaries drift (slowly)
 Small (fast) spirals grow at the expense of big (slow) ones

o Fast dynamics (of spirals)
 Large spirals (L > Lb) break up due to alternans instability
 Small spirals (L < 4lc) survive for less than one period and

collapse (with a neighbor)
 Medium size spirals (4lc < L < Lb) interact with each other

in nontrivial ways



Implications for fluid turbulence

 No global ECS on domains much larger than the 
relevant coherence length, no matter what the physics is

 Need to look for localized solutions that respect local
Euclidean symmetries and their interactions

 Coherence length can be defined with the help of 
adjoint eigenfunctions (to-do for fluid dynamicists)

 Spatial correlations may decay exponentially even when 
solutions do not

 Does exponential decay of velocity/energy imply short 
spatial correlations? What about pressure?
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