\overline{r}

Spiral chaos in a simple model Roman Grigoriev, GaTech

Reaction-diffusion system:

$$\partial_t u = D\nabla^2 u + f(u, v)$$

 $\partial_t v = g(u, v)$ Karma (1994)

KITP TransTurb17

Dynamics on tiles

Local Euclidean symmetry

-1.00 (L

Goldstone modes/right eigenfunctions

Response functions/left eigenfunctions

(k)

Local Euclidean symmetry

 $\overline{\mathbf{r}}$

$\overline{=}$

Generalized relative solutions

(b)

(d)

(a)

(d)

Asymptotic freedom

 $\overline{=}$

Response functions

Interaction of cores with boundaries

 $\overline{=}$

Core-core interaction

Core-core separation (& tile size)

 $\overline{=}$

Core meander

Wave collapse

Wave collapse

The mechanism of spiral chaos

• Slow dynamics (of tiles)

- \checkmark The tiles are generally of different size
- \checkmark The frequencies of spirals differ
- ✓ The tiles boundaries drift (slowly)
- \checkmark Small (fast) spirals grow at the expense of big (slow) ones
- Fast dynamics (of spirals)
 - ✓ Large spirals $(L > L_b)$ break up due to alternans instability
 - ✓ Small spirals ($L < 4l_c$) survive for less than one period and collapse (with a neighbor)
 - ✓ Medium size spirals $(4l_c < L < L_b)$ interact with each other in nontrivial ways

Implications for fluid turbulence

- □ No *global* ECS on domains much larger than the relevant coherence length, no matter what the physics is
- Need to look for localized solutions that respect *local* Euclidean symmetries and their interactions
- □ Coherence length can be defined with the help of *adjoint* eigenfunctions (to-do for fluid dynamicists)
- □ Spatial *correlations* may decay exponentially even when solutions do not
- Does exponential decay of *velocity/energy* imply short spatial correlations? What about *pressure*?