El Niño as a Topological Insulator: A Surprising Connection Between Geophysical Fluid Dynamics and Quantum Physics

Brad Marston
Brown University

Antoine Venaille ENS Lyon

Pierre Delplace ENS Lyon

El Niño 2009-2010

El Niño 2009-2010

Integer Quantum Hall Effect

Integer Quantum Hall Effect

Figure 2. The integer quantum Hall effect. Plotting the Hall resistance (essentially the reciprocal of the Hall conductance) of a low-temperature two-dimensional electron gas against the strength of the imposed magnetic field normal to the gas plane, one finds a stairlike quantized sequence of Hall conductances very precisely equal to $n e^{2} / h$, where n is the integer that characterizes each plateau. The natural unit of resistance defined by this effect is about $26 \mathrm{k} \Omega$. (Adapted from M. Paalanen, D. Tsui, A. Gossard, Phys. Rev. B. 25, 5566 [1982].)

Topological Protection
(Laughlin 1981 \& Thouless 1983)

Topological Protection (Laughlin 1981 \& Thouless 1983)

Topological Insulators

Qi and Zhang (2010).

Topological Insulators

Qi and Zhang (2010).

Matsuno 1966 and Longuet-Higgins 1968.
[Geoff Vallis, Atmospheric and Oceanic Fluid Dynamics (notes for a 2nd ed.)]

2 Layer Model: Vertical Mean Temperature

Symmetric

Fig. 3.7 Power spectrum from a numerical simulation of the shallow water equations (colour shading, with red the most intense), with the analytic dispersion relation for equatorial Rossby and gravity waves overlaid (solid black lines, as in Fig. 3.6). The left panel shows the symmetric component, obtained by adding Northern and Southern Hemispheres and with only the odd values of m plotted analytically, and the the right panel plots the antisymmetric component and the even values of m.

Fig. 3.7 Power spectrum from a numerical simulation of the shallow water equations (colour shading, with red the most intense), with the analytic dispersion relation for equatorial Rossby and gravity waves overlaid (solid black lines, as in Fig. 3.6). The left panel shows the symmetric component, obtained by adding Northern and Southern Hemispheres and with only the odd values of m plotted analytically, and the the right panel plots the antisymmetric component and the even values of m.

Fig. 3.7 Power spectrum from a numerical simulation of the shallow water equations (colour shading, with red the most intense), with the analytic dispersion relation for equatorial Rossby and gravity waves overlaid (solid black lines, as in Fig. 3.6). The left panel shows the symmetric component, obtained by adding Northern and Southern Hemispheres and with only the odd values of m plotted analytically, and the the right panel plots the antisymmetric component and the even values of m.

NCEP_2001-2005_OMEGA500 LOG[Power: 15S-15N]

NCEP_2001-2005_OMEGA500 LOG[Power: 15S-15N]

Other Topologically Protected Classical Systems

Nash et al. PNAS (2015)

Khanikaev et al. Nature Communications (2015)

b

Rechtsman et al. Nature (2013)

Shallow Water Equations on Equatorial f-plane and Torus

$$
\begin{aligned}
\partial_{t} h+\nabla(h \mathbf{u}) & =0 \\
\partial_{t} u+\mathbf{u} \cdot \nabla u & =-g \partial_{x} h+f v \\
\partial_{t} v+\mathbf{u} \cdot \nabla v & =-g \partial_{y} h-f u
\end{aligned}
$$

Shallow Water Equations on Equatorial f-plane and Torus

$$
\begin{aligned}
\partial_{t} h+\nabla(h \mathbf{u}) & =0 \\
\partial_{t} u+\mathbf{u} \cdot \nabla u & =-g \partial_{x} h+f v \\
\partial_{t} v+\mathbf{u} \cdot \nabla v & =-g \partial_{y} h-f u
\end{aligned}
$$

Shallow Water Equations on Equatorial f-plane and Torus

$$
\begin{aligned}
\partial_{t} h+\nabla(h \mathbf{u}) & =0 \\
\partial_{t} u+\mathbf{u} \cdot \nabla u & =-g \partial_{x} h+f v \\
\partial_{t} v+\mathbf{u} \cdot \nabla v & =-g \partial_{y} h-f u
\end{aligned}
$$

Lieb lattice
(arXiv:1101.4500v1)

Shallow Water Equations on Equatorial f-plane and Torus

$$
\begin{aligned}
\partial_{t} h+\nabla(h \mathbf{u}) & =0 \\
\partial_{t} u+\mathbf{u} \cdot \nabla u & =-g \partial_{x} h+f v \\
\partial_{t} v+\mathbf{u} \cdot \nabla v & =-g \partial_{y} h-f u
\end{aligned}
$$

Lieb lattice
(arXiv:1101.4500v1)

Chern Number \& Bulk-Edge Correspondence

$$
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)
$$

Chern Number \& Bulk-Edge Correspondence

$$
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) \quad \Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right)
$$

Chern Number \& Bulk-Edge Correspondence

$$
\begin{aligned}
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) \quad \Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right) \\
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta
\end{aligned}
$$

Chern Number \& Bulk-Edge Correspondence

$$
\begin{aligned}
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) \\
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta
\end{aligned}
$$

Chern Number \& Bulk-Edge Correspondence

$$
\left.\begin{array}{rl}
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) \\
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta \\
& \Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{k_{y}}{k}+i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
k c^{2} k^{2}+f^{2}
\end{array}\right.
\end{array}\right)
$$

Chern Number \& Bulk-Edge Correspondence

$$
\begin{aligned}
& \omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{c}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right) \quad \Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right) \\
& k_{x}=\cos \varphi \cos \theta \\
& k_{y}=\sin \varphi \cos \theta \\
& f=\sin \theta \\
& \Psi_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\sin \theta \\
\cos \varphi-i \cos \theta \sin \varphi \\
\sin \varphi+i \cos \theta \cos \varphi
\end{array}\right) \\
& \Psi_{+}^{N}=\Psi_{+} e^{i \varphi}, \quad \Psi_{+}^{S}=\Psi_{+} e^{-i \varphi}
\end{aligned}
$$

Chern Number \& Bulk-Edge Correspondence

$$
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)
$$

$$
\begin{aligned}
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta
\end{aligned}
$$

$$
\Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right)
$$

$$
\Psi_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\sin \theta \\
\cos \varphi-i \cos \theta \sin \varphi \\
\sin \varphi+i \cos \theta \cos \varphi
\end{array}\right)
$$

$$
\Psi_{+}^{N}=\Psi_{+} e^{i \varphi}, \quad \Psi_{+}^{S}=\Psi_{+} e^{-i \varphi}
$$

$$
\mathbf{A}_{+}^{N}=\mathbf{A}_{+}^{S}+2 \nabla_{s} \varphi
$$

Chern Number \& Bulk-Edge Correspondence

$$
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)
$$

$$
\begin{aligned}
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta
\end{aligned}
$$

$$
\Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right)
$$

$$
\Psi_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\sin \theta \\
\cos \varphi-i \cos \theta \sin \varphi \\
\sin \varphi+i \cos \theta \cos \varphi
\end{array}\right)
$$

$$
\begin{gathered}
\Psi_{+}^{N}=\Psi_{+} e^{i \varphi}, \quad \Psi_{+}^{S}=\Psi_{+} e^{-i \varphi} \\
\mathbf{A}_{+}^{N}=\mathbf{A}_{+}^{S}+2 \nabla_{s} \varphi \\
\Delta \mathcal{C}_{+}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi\left(\mathbf{A}_{+}^{N}-\mathbf{A}_{+}^{S}\right) \cdot \hat{e}_{\varphi}
\end{gathered}
$$

Chern Number \& Bulk-Edge Correspondence

$$
\omega\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)=\left(\begin{array}{ccc}
0 & c k_{x} & c k_{y} \\
c k_{x} & 0 & -i f \\
c k_{y} & i f & 0
\end{array}\right)\left(\begin{array}{l}
\hat{\eta} \\
\hat{u} \\
\hat{v}
\end{array}\right)
$$

$$
\begin{aligned}
k_{x} & =\cos \varphi \cos \theta \\
k_{y} & =\sin \varphi \cos \theta \\
f & =\sin \theta
\end{aligned}
$$

$$
\Psi_{+}\left(f, k_{x}, k_{y}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\frac{c k}{\sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{x}}{k}-i \frac{f k_{y}}{k \sqrt{c^{2} k^{2}+f^{2}}} \\
\frac{k_{y}}{k}+i \frac{f k_{x}}{k \sqrt{c^{2} k^{2}+f^{2}}}
\end{array}\right)
$$

$$
\Psi_{+}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\sin \theta \\
\cos \varphi-i \cos \theta \sin \varphi \\
\sin \varphi+i \cos \theta \cos \varphi
\end{array}\right)
$$

$$
\begin{aligned}
\Psi_{+}^{N}= & \Psi_{+} e^{i \varphi}, \quad \Psi_{+}^{S}=\Psi_{+} e^{-i \varphi} \\
& \mathbf{A}_{+}^{N}=\mathbf{A}_{+}^{S}+2 \nabla_{s} \varphi \\
\Delta \mathcal{C}_{+} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi\left(\mathbf{A}_{+}^{N}-\mathbf{A}_{+}^{S}\right) \cdot \hat{e}_{\varphi} \\
& =2
\end{aligned}
$$

Protection from Obstacles

Protection from Obstacles

Protection from Obstacles

Other Topologically Protected Fluid Waves

Other Topologically Protected Fluid Waves

- Edge modes (eg. Kelvin waves at ocean basin boundaries)

Other Topologically Protected Fluid Waves

- Edge modes (eg. Kelvin waves at ocean basin boundaries)
- Magneto-Rossby waves (slow \& fast)

Other Topologically Protected Fluid Waves

- Edge modes (eg. Kelvin waves at ocean basin boundaries)
- Magneto-Rossby waves (slow \& fast)
- Fluids with mean flows (breaking time-reversal symmetry)?

Other Topologically Protected Fluid Waves

- Edge modes (eg. Kelvin waves at ocean basin boundaries)
- Magneto-Rossby waves (slow \& fast)
- Fluids with mean flows (breaking time-reversal symmetry)?
- Relationship to exact coherent states?

Protection from Interactions / Nonlinearities?

Protection from Interactions / Nonlinearities?

Protection from Interactions / Nonlinearities?

Protection from Interactions / Nonlinearities?

Protection from Interactions / Nonlinearities?

Fractional Quantum Hall Effect

FIG. 18. The FQHE as it appears today in ultrahigh-mobility modulation-doped GaAs/AlGaAs 2DESs. Many fractions are visible. The most prominent sequence, $\nu=p /(2 p \pm 1)$, converges toward $\nu=1 / 2$ and is discussed in the text.

Thank You

2 Layer Primitive Equations

$$
\vec{v}=\hat{r} \times \vec{\nabla} \psi+\vec{\nabla} \chi
$$

2 Layer Primitive Equations

$$
\begin{aligned}
& \vec{v}=\hat{r} \times \vec{\nabla} \psi+\vec{\nabla} \chi, \\
& J[A, B] \equiv \hat{r} \cdot(\vec{\nabla} A \times \vec{\nabla} B) \\
& F[A, B] \equiv \vec{\nabla} \cdot(A \vec{\nabla} B),
\end{aligned}
$$

2 Layer Primitive Equations

$$
\begin{aligned}
& \vec{v}=\hat{r} \times \vec{\nabla} \psi+\vec{\nabla} \chi, \\
& J[A, B] \equiv \hat{r} \cdot(\vec{\nabla} A \times \vec{\nabla} B) \\
& F[A, B] \equiv \vec{\nabla} \cdot(A \vec{\nabla} B),
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\bar{q}}=J[\bar{q}, \bar{\psi}]+J[\hat{q}, \hat{\psi}]-F[\hat{q}, \hat{\chi}]-J[\hat{\delta}, \hat{\chi}]-F[\hat{\delta}, \hat{\psi}], \\
& \dot{\hat{q}}=J[\hat{q}, \bar{\psi}]+J[\bar{q}, \hat{\psi}]-F[\bar{q}, \hat{\chi}], \\
& \dot{\hat{\delta}}=J[\bar{q}, \hat{\chi}]+F[\hat{q}, \bar{\psi}]+F[\bar{q}, \hat{\psi}]-\nabla^{2}\left(\hat{K}+C_{p} B \bar{\theta}\right), \\
& \dot{\bar{\theta}}=J[\bar{\theta}, \bar{\psi}]+J[\hat{\theta}, \hat{\psi}]-F(\hat{\theta}, \hat{\chi}) \text { and } \\
& \dot{\hat{\theta}}=J[\hat{\theta}, \bar{\psi}]+J[\bar{\theta}, \hat{\psi}]-F(\bar{\theta}, \hat{\chi})+\bar{\theta} \hat{\delta} .
\end{aligned}
$$

