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Integer Quantum Hall Effect

come to be called the integer quantum Hall effect, and it
deserves to be reexamined a quarter of a century later.
(Laughlin also made seminal contributions to the under-
standing of the fractional quantum Hall effect, discovered
in 1983. But that’s another story.) His argument goes much
of the way toward explaining the unexpected precision of
the integral plateaus. But by our present understanding,
it is short by one important step—namely, the inclusion of
topological quantum numbers. 

Laughlin considered a 2D electron gas cold enough so
that quantum coherence holds throughout. It is then
meaningful to speak of a wavefunction describing the sys-
tem and its Hamiltonian evolution. Laughlin looked at the
Hall effect as a quantum pump. He imagined the electron
gas confined to a looped ribbon, as shown in figure 3, with
a strong magnetic field normal to its surface. The two op-
posite edges of the ribbon are connected to separate elec-
tron reservoirs.

Laughlin then introduced a fictitious magnetic flux F
threading the loop. The change in this flux drives the
pump: Increasing the flux creates an electromotive force
(emf) around the ring, which, by the classical Hall effect,
results in the transfer of charge from one reservoir to the
other. The Aharonov–Bohm principle tells us that the
Hamiltonian describing the system is gauge invariant
under flux changes by integral multiples of F0 = hc/e, the
elementary quantum of magnetic flux (see PHYSICS TODAY,

January 1986, page 17). Therefore an adiabatic increase
of F by a single flux quantum is a cycle of the pump.

An easy calculation shows that the charge transported
between the reservoirs in one pump cycle, in units of the
electron charge e, is the Hall conductance of the system in
units of e2/h, the quantum of Hall conductance. Therefore,
if we can understand the precise quantization of the
charge transported in one cycle of Laughlin’s pump, we
will understand the integer quantum Hall effect. In
Laughlin’s words, “By gauge invariance, adding F0 maps
the system back to itself, . . . [which results in] the trans-
fer of n electrons.” The quantization of Hall conductance
is then implied.

We must ask, however, why the average transferred
charge has to be an integral multiple of e, the charge of the
electron. Classically, of course, an electron is either in reser-
voir A or B, but not in both. But why is that also true in a
quantum mechanical system? Admittedly, even in quantum
mechanics, a measurement of the number of electrons in a
reservoir must be an integer, as must the transported
charge. But in quantum mechanics, consecutive cycles of the
pump may transport different amounts of charge.

Gauge invariance does require that, after a cycle, the
pump is back in its original state. Doesn’t that guarantee
that the transported charge in different cycles must be the
same? The answer is no. Only in classical mechanics does
an exact reproduction of a prior state guarantee reproduction
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Figure 1. Edwin Hall’s 1878
experiment was the first
demonstration of the Hall 
effect. A magnetic field B nor-
mal to a gold leaf exerts a
Lorentz force on a current I
flowing longitudinally along
the leaf. That force separates
charges and builds up a trans-
verse “Hall voltage” between
the conductor’s lateral edges.
Hall detected this transverse
voltage with a voltmeter that
spanned the conductor’s two
edges.

Figure 2. The integer quantum Hall effect. Plotting the Hall
resistance (essentially the reciprocal of the Hall conduc-
tance) of a low-temperature two-dimensional electron gas
against the strength of the imposed magnetic field normal to
the gas plane, one finds a stairlike quantized sequence of
Hall conductances very precisely equal to ne2/h, where n is
the integer that characterizes each plateau. The natural unit
of resistance defined by this effect is about 26 kW. (Adapted
from M. Paalanen, D. Tsui, A. Gossard, Phys. Rev. B. 25,
5566 [1982].) 
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2 K. von Klitzing

Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to

Topological Protection 
(Laughlin 1981 & Thouless 1983) 
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25 Years of Quantum Hall Effect (QHE) 15

Figure 15: Skipping cyclotron orbits (= diamagnetic current) at the boundaries of
a device are equivalent to the edge channels in a 2DEG with finite size.

potential landscape) becomes unoccupied with electrons as sketched in Fig. 14.
The boundary of the unoccupied area is an equipotential line (with an unknown
potential) but the externally measured Hall voltage UH , which is the sum of the
Hall voltages of the upper part of the sample (current I2) and the lower part
(current I1), adds up to the ideal value expected for the filling factor 1 (grey
regions). Eddy currents around the hole with i = 0 will vary the currents I1 and
I2 but the sum is always identical with the external current I.

The quantized Hall resistance breaks down, if electronic states at the Fermi
energy are extended across the whole device. This is the case for a half-filled
Landau level if the simple percolation picture is applied. Such a singularity at
half-filled Landau levels has been observed experimentally [30].

This simple picture of extended and localized electron states indicates, that
extended states always exist at the boundary of the devices. This edge phenomenon
is extremely important for a discussion of the quantum Hall effect in real devices
and will be discussed in more detail in the next chapter. In a classical picture,
skipping orbits as a result of reflected cyclotron orbits at the edge lead to diamag-
netic currents as sketched in Fig 15. Therefore, even if the QHE is characterized
by a vanishing conductivity σxx (no current in the direction of the electric field), a
finite current between source and drain of a Hall device can be established via this
diamagnetic current. If the device is connected to source and drain reservoirs with
different electrochemical potentials (see Fig. 15), the skipping electrons establish
different electrochemical potentials at the upper and lower edge respectively. En-
ergy dissipation appears only at the points (black dots in Fig. 15) where the edge
potentials differ from the source/drain potentials.



Topological Insulators 

In the quantum world, atoms and their electrons can
form many different states of matter, such as crystalline solids,
magnets, and superconductors. Those different states can 
be classified by the symmetries they spontaneously break—
translational, rotational, and gauge symmetries, respectively,
for the examples above. Before 1980 all states of matter in 
condensed-matter systems could be classified by the principle 
of broken symmetry. The quantum Hall (QH) state, discovered
in 1980,1 provided the first example of a quantum state that has
no spontaneously broken symmetry. Its behavior depends only
on its topology and not on its specific geometry; it was topo-
logically distinct from all previously known states of matter.

Recently, a new class of topological states has emerged,
called quantum spin Hall (QSH) states or topological insula-
tors (see PHYSICS TODAY, January 2008, page 19). Topologically
distinct from all other known states of matter, including QH
states, QSH states have been theoretically predicted and ex-
perimentally observed in mercury telluride quantum wells,2,3
in bismuth antimony alloys,4,5 and in Bi2Se3 and Bi2Te3 bulk

crystals.6–8 QSH systems are insulating in the bulk—they have
an energy gap separating the valence and conduction bands—
but on the boundary they have gapless edge or surface states
that are topologically protected and immune to impurities or
geometric perturbations.9–12 Inside such a topological insula-
tor, Maxwell’s laws of electromagnetism are dramatically al-
tered by an additional topological term with a precisely quan-
tized coefficient,12 which gives rise to remarkable physical
effects. Whereas the QSH state shares many similarities with
the QH state, it differs in important ways. In particular, QH
states require an external magnetic field, which breaks time-
reversal (TR) symmetry; QSH states, in contrast, are TR invari-
ant and do not require an applied field.

From quantum Hall to quantum spin Hall 
In a one-dimensional world, there are two basic motions: for-
ward and backward. Random scattering can cause them to
mix, which leads to resistance. Just as we have learned from
basic traffic control, it would be much better if we could spa-

tially separate the counterflow directions
into two separate lanes, so that random
collisions could be easily avoided. That
simple traffic control mechanism turns
out to be the essence of the QH effect.1

The QH effect occurs when a strong
magnetic field is applied to a 2D gas of
electrons in a semiconductor. At low tem-
perature and high magnetic field, elec-
trons travel only along the edge of the
semiconductor, and the two counterflows
of electrons are spatially separated into
different “lanes” located at the sample’s
top and bottom edges. Compared with a
1D system with electrons propagating in
both directions, the top edge of a QH bar
contains only half the degrees of freedom.
That unique spatial separation is illus-
trated in  figure 1a by the symbolic equa-
tion “2 = 1 [forward mover] + 1 [backward
mover]” and is the key reason why the
QH effect is topologically robust. When
an edge-state electron encounters an im-
purity, it simply takes a detour and still
keeps going in the same direction 
(figure 1), as there is no way for it to turn
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The quantum spin
Hall effect and 
topological insulators
Xiao-Liang Qi and Shou-Cheng Zhang

In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel
state of matter predicted to have exotic physical properties.

Xiao-Liang Qi is a research associate at the Stanford Institute for Materials and Energy Science and Shou-Cheng Zhang is a professor of
physics at Stanford University in Stanford, California. 

feature

Spinless 1D chain Spinful 1D chain

2 = 1 + 1 4 = 2 + 2

Quantum Hall Quantum spin Hall

Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”

Qi and Zhang 
 (2010).



tum well, as shown in the right column,
the opposite ordering occurs due to in-
creased thickness d of the HgTe layer.
The critical thickness dc for band inver-
sion is predicted to be around 6.5 nm.

The QSH state in HgTe can be de-
scribed by a simple model for the E1
and H1 subbands2 (see the box on page
36). Explicit solution of that model
gives one pair of edge states for d > dc in
the inverted regime and no edge states
in the d < dc, as shown in  figure 3b. The
pair of edge states carry opposite spins
and disperse all the way from valence
band to conduction band. The crossing
of the dispersion curves is required 
by TR symmetry and cannot be re-
moved—it is one of the topological sig-
natures of a QSH insulator.

Less than one year after the theo-
retical prediction, a team at the Univer-
sity of Würzburg led by Laurens
Molenkamp observed the QSH effect in
HgTe quantum wells grown by molec-
ular-beam epitaxy.3 The edge states
provide a direct way to experimentally
distinguish the QSH insulator from the
trivial insulator. The two edge states of
the QSH insulator act as two conduct-
ing 1D channels, which each contribute
one quantum of conductance, e2/h. That
perfect transmission is possible be-
cause of the principle of antireflection
explained earlier. In contrast, a trivial
insulator phase is “really” insulating,
with vanishing conductance. Such a
sharp conductance difference between
thin and thick quantum wells was ob-
served experimentally, as shown in
 figure 3c.

From two to three dimensions
From figure 3b we see that the 2D topo-
logical insulator has a pair of 1D edge
states crossing at momentum k = 0.
Near the crossing point, the dispersion
of the states is linear. That’s exactly the
dispersion one gets in quantum field
theory from the Dirac equation for a
massless relativistic fermion in 1D, and
thus that equation can be used to de-
scribe the QSH edge state. Such a pic-
ture can be simply generalized to a 3D
topological insulator, for which the sur-
face state consists of a single 2D mass-
less Dirac fermion and the dispersion
forms a so-called Dirac cone, as illus-
trated in  figure 4. Similar to the 2D case, the crossing point—
the tip of the cone—is located at a TR-invariant point, such
as at k = 0, and the degeneracy is protected by TR symmetry.

Liang Fu and Kane predicted4 that the alloy Bi1−xSbx
would be a 3D topological insulator in a special range of x,
and with angle-resolved photoemission spectroscopy
(ARPES) Zahid Hasan and coworkers at Princeton University
observed the topological surface states in that system.5 How-
ever, the surface states and the underlying mechanism turn
out to be extremely complex. In collaboration with Zhong

Fang’s group at the Chinese Academy of Sciences, the two of
us predicted that Bi2Te3, Bi2Se3, and Sb2Te3, all with the lay-
ered structure in  figure 4a, are 3D topological insulators,
whereas a related material, Sb2Se3, is not.6

As in HgTe, the nontrivial topology of the Bi2Te3 family
is due to band inversion between two orbitals with opposite
parity, driven by the strong spin–orbit coupling of Bi and Te.
Due to such similarity, that family of 3D topological insula-
tors can be described by a 3D version of the HgTe model (see
the box). First-principle calculations show that the materials
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Figure 3. Mercury telluride quantum wells are two-dimensional topological 
insulators. (a) The behavior of a mercury telluride–cadmium telluride quantum
well depends on the thickness d of the HgTe layer. Here the blue curve shows the
potential-energy well experienced by electrons in the conduction band; the red
curve is the barrier for holes in the valence band. Electrons and holes are trapped
laterally by those potentials but are free in the other two dimensions. For quan-
tum wells thinner than a critical thickness dc ≃ 6.5 nm, the energy of the lowest-
energy conduction subband, labeled E1, is higher than that of the highest-
energy valence band, labeled H1. But for d > dc, those electron and hole bands
are inverted. (b) The energy spectra of the quantum wells. The thin quantum well
has an insulating energy gap, but inside the gap in the thick quantum well are
edge states, shown by red and blue lines. (c) Experimentally measured resistance
of thin and thick quantum wells, plotted against the voltage applied to a gate
electrode to change the chemical potential. The thin quantum well has a nearly
infinite resistance within the gap, whereas the thick quantum well has a quan-
tized resistance plateau at R = h/2e2, due to the perfectly conducting edge states.
Moreover, the resistance plateau is the same for samples with different widths,
from 0.5 µm (red) to 1.0 µm (blue), proof that only the edges are conducting.
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The quantum spin
Hall effect and 
topological insulators
Xiao-Liang Qi and Shou-Cheng Zhang

In topological insulators, spin–orbit coupling and time-reversal symmetry combine to form a novel
state of matter predicted to have exotic physical properties.

Xiao-Liang Qi is a research associate at the Stanford Institute for Materials and Energy Science and Shou-Cheng Zhang is a professor of
physics at Stanford University in Stanford, California. 
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Spinless 1D chain Spinful 1D chain

2 = 1 + 1 4 = 2 + 2

Quantum Hall Quantum spin Hall

Figure 1. Spatial separation is at the heart of both the quantum Hall (QH) and
the quantum spin Hall (QSH) effects. (a) A spinless one-dimensional system has
both a forward and a backward mover. Those two basic degrees of freedom are
spatially separated in a QH bar, as illustrated by the symbolic equation
“2 = 1 + 1.”  The upper edge contains only a forward mover and the lower edge
has only a backward mover. The states are robust: They will go around an impu-
rity without scattering. (b) A spinful 1D system has four basic channels, which
are spatially separated in a QSH bar: The upper edge contains a forward mover
with up spin and a backward mover with down spin, and conversely for the
lower edge. That separation is illustrated by the symbolic equation “4 = 2 + 2.”

Qi and Zhang 
 (2010).



that can give only binary values of 0 or 1: a Z2 classification
that defines trivial and nontrivial insulators. For materials
with inversion symmetry, a powerful algorithm developed
by Fu and Kane4 can be easily integrated into electronic struc-
ture calculations to numerically evaluate the topological
band invariant. However, since all insulators in nature are
necessarily interacting, it is important to have a general def-
inition of topological insulators that is valid for interacting
systems and is experimentally measurable. Both problems
were solved with the topological field theory,12 which can be
generally defined for all insulators, with or without inter -
actions. In the noninteracting case, both definitions agree.
Surprisingly, the topological field theory can be explained 
in terms of elementary concepts in undergraduate-level 
electromagnetism.

Inside an insulator, the electric field E and the magnetic
field B are both well defined. In a Lagrangian-based field the-
ory, the insulator’s electromagnetic response can be described
by the effective action S0 = 1/8π ∫d3xdt(ϵE2 − 1/µ B2), with ϵ the
electric permittivity and µ the magnetic permeability, from
which Maxwell’s equations can be derived. The integrand de-
pends on geometry, though, so it is not topological. To see that
dependence, one can write the action in terms of Fµν, the 4D
electromagnetic field tensor: S0 = 1/16π ∫d3xdtFµνFµν. The im-
plied summation over the repeated indices µ and ν depends
on the metric tensor—that is, on geometry. (Indeed, it is that
dependence that leads to the gravitational lensing of light.)

There is, however, another possible term in the action of
the electromagnetic field:

where α = e2/ħc ≈ 1/137 is the fine-structure constant, θ is a pa-
rameter, and ϵµνρτ is the fully asymmetric 4D Levi-Civita ten-
sor. Unlike the Maxwell action, Sθ is a topological term—it
depends only on the topology of the underlying space, not
on the geometry. Written using the field tensor, the term is 
independent of the metric.

Since the E field is invariant under TR, whereas the B
field changes sign, Sθ naively breaks TR symmetry. For a pe-
riodic system, however, there are two values of θ, namely
θ = 0 or θ = π, that preserve the TR symmetry.12 One can easily
understand that conclusion by an analogy. If we have a 1D
ring with a magnetic flux inside, a general value of the flux
Φ would break the TR symmetry. However, for two special
values of the flux, Φ = 0 or Φ = hc/2e, an electron’s wavefunc-
tion changes its phase by 0 or πwhen the electron circles the
ring either clockwise or counterclockwise, and TR symmetry
is maintained.

If we integrate out all the microscopic fermionic degrees
of freedom to obtain the effective action Sθ, all nonmagnetic
insulators in the universe would fall into two distinct topo-
logical classes, described by effective topological field theories
with θ = 0 or with θ = π. Unlike ϵ and µ, the physically meas-
urable θparameter is universally quantized, with the two pos-
sible values defining the topologically trivial and nontrivial
insulators, respectively—the Z2 classification again.

Such classification is valid for a periodic system. For a
real solid with a finite boundary, a topological insulator is in-
sulating only in the bulk; it has an odd number of gapless
Dirac cones on the surface that describe conducting surface
states. If we uniformly cover the surface with a thin ferro-
magnetic film, an insulating gap also opens up on the bound-
ary; the TR symmetry is preserved in the bulk but broken 
on the surface. The last identity of the equation above for 
Sθ shows that the bulk topological term is in fact a total 

Sθ =

=

d xdt3
E · B ≡

d xdt3 ∂μ(% A Aμυρτ
υ ρ τ∂ ),

d xdt % F F3
μυρτ

μυ ρτθα

θ α

θα
4π2

2π 4π

32π2∫
∫

∫

www.physicstoday.org January 2010 Physics Today 37

Bi

Te1

Te2

0

0.2

0.4 −0.2 0.20

ky

kx

E

Γ

a b

c

BI
N

D
IN

G
 E

N
ER

G
Y

 (e
V

)

WAVENUMBER (Å )k −1

K
K

SSB

K

BVB

K Γ

Figure 4. In three-dimensional topologi-
cal insulators, the linearly dispersing edge
states of figure 3b become surface states
described by a so-called Dirac cone.
(a) The crystal structure of the 3D topolog-
ical insulator Bi2Te3 consists of stacked
quasi-2D layers of Te-Bi-Te-Bi-Te. The ar-
rows indicate the lattice basis vectors. The
surface state is predicted to consist of a
single Dirac cone.6 (b) Angle-resolved 
photoemission spectroscopy maps the 
energy states in momentum space. Spin-
dependent ARPES of the related com-
pound Bi2Se3 reveals that the spins (red) of
the surface states lie in the surface plane
and are perpendicular to the momentum.7
(c) This ARPES plot of energy versus
wavenumber in Bi2Te3 shows the linearly
dispersing surface-state band (SSB) above
the bulk valence band (BVB). The dashed
white line indicates the Fermi level. The
blue lines meet at the tip of the Dirac
cone.8
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described by a so-called Dirac cone.
(a) The crystal structure of the 3D topolog-
ical insulator Bi2Te3 consists of stacked
quasi-2D layers of Te-Bi-Te-Bi-Te. The ar-
rows indicate the lattice basis vectors. The
surface state is predicted to consist of a
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photoemission spectroscopy maps the 
energy states in momentum space. Spin-
dependent ARPES of the related com-
pound Bi2Se3 reveals that the spins (red) of
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(c) This ARPES plot of energy versus
wavenumber in Bi2Te3 shows the linearly
dispersing surface-state band (SSB) above
the bulk valence band (BVB). The dashed
white line indicates the Fermi level. The
blue lines meet at the tip of the Dirac
cone.8
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Fig. �.� Dispersion relation for
equatorial waves, as given by
(�.��), for � = 0, 1, 2, 3. �e
upper group of curves are grav-
ity waves, given approximately
by (�.��). �e lower group with� < 0 are westward propagating
planetary waves, given approxi-
mately by (�.��). Also shown are
the Yanai wavewith� = 0, satisfy-
ing (�.��), and the eastward prop-
agating Kelvin wave (the ‘� = −1’
wave) satisfying � = �� for � ≥ 0.
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From (�.��) the maximum planetary wave frequency occurs when �2 = (2� + 1)�/� and gives�2pmax = ��/[4(2� + 1)]. �e ratio of these two frequencies is�gmin�pmax
= 2(2� + 1), (�.��)

giving a value of six for� = 1 and two for� = 0 (a case we considermore below). Note that this
ratio is independent of the values of the physical parameters � and �. Although the gap is distinct, it
is not as large as the corresponding gap atmidlatitudes, which may be an order ofmagnitude or
more.

Special values of �
In addition to the limiting cases at low and high frequency, there are two other cases in which we
can readily solve the dispersion relation, namely when� = 0 and the Kelvin wave case, as follows.

�. �e case with � = 0. �e resulting waves are known as Yanai waves, and these are antisym-
metric across the equator.� From (�.��a) the dispersion relation simpli�es to�� = −�� or �� = − 1�� + ��. (�.��a,b)

or dimensionally � = −�� , � = −�� + �� . (�.��a,b)

�e case � = −�/� is non-physical, for it represents a gravity wavemoving westward. Such
wave growswithout bound as |�| increases away from the equator, aswe demonstrate explicitly
in the discussion on Kelvinwaves below. �e physically realizable case, (�.��b) has the explicit
dispersion relation � = ��2 ± 12��2�2 + 4��. (�.��)

Again it is useful to consider limiting cases, as follows.

[Geoff Vallis, Atmospheric and Oceanic Fluid Dynamics  (notes for a 2nd ed.)]
Matsuno 1966 and Longuet-Higgins 1968.
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Figure 4. In three-dimensional topologi-
cal insulators, the linearly dispersing edge
states of figure 3b become surface states
described by a so-called Dirac cone.
(a) The crystal structure of the 3D topolog-
ical insulator Bi2Te3 consists of stacked
quasi-2D layers of Te-Bi-Te-Bi-Te. The ar-
rows indicate the lattice basis vectors. The
surface state is predicted to consist of a
single Dirac cone.6 (b) Angle-resolved 
photoemission spectroscopy maps the 
energy states in momentum space. Spin-
dependent ARPES of the related com-
pound Bi2Se3 reveals that the spins (red) of
the surface states lie in the surface plane
and are perpendicular to the momentum.7
(c) This ARPES plot of energy versus
wavenumber in Bi2Te3 shows the linearly
dispersing surface-state band (SSB) above
the bulk valence band (BVB). The dashed
white line indicates the Fermi level. The
blue lines meet at the tip of the Dirac
cone.8

f > 0

f < 0



2 Layer Model: Vertical Mean Temperature 

θL

θU



2 Layer Model: Vertical Mean Temperature 

θL

θU



2 Layer Model: Vertical Mean Temperature 

θL

θU



2 Layer Model: Vertical Mean Temperature 

θL

θU



2 Layer Model: Vertical Mean Temperature 

θL

θU



��� Chapter �. Linear Dynamics at Low Latitudes

Symmetric Anti-symmetric

Fig. �.� Power spectrum from a numerical simulation of the shallow water equations
(colour shading, with red the most intense), with the analytic dispersion relation for equato-
rial Rossby and gravity waves overlaid (solid black lines, as in Fig. �.�).�e left panel shows the
symmetric component, obtained by adding Northern and Southern Hemispheres and with
only the odd values of� plotted analytically, and the the right panel plots the antisymmetric
component and the even values of�.
�e solutions of these equations are�1 = �(� + ��) exp[�2/(2�2eq)], �2 = �(� − ��) exp[−�2/(2�2eq)] (�.��a,b)

where � and � are the amplitudes at � = 0. Evidently, �1 increases without bound away from
the equator, and so this solution must be eliminated. �e complete solution is thus:� = �(� − ��) exp[−�2/(2�2eq)], � = �� �, � = 0. (�.��)

with dispersion relation � = ��. (�.��)
�ese waves are equatorially trapped Kelvin waves. �ey propagate eastward only, without
dispersion, and their amplitude decays away from the equator in precisely the same way as
the other equatorial waves considered above, and in a slightly di�erent way from the Kelvin
waves on the �-plane given by (??).

�.�.� A numerical illustration
A�er themeatymathematical manipulations above, the reader, like the author,may well be skeptical
that such waves do actually exist. To assuage this doubt, Fig. �.� shows the power spectrum from a
numerical simulation of the nonlinear shallow water equations over the full sphere. �e height �eld
is initialized with small random perturbations everywhere and the system allowed to freely evolve,
with no damping. �e �gure shows the resulting power spectrum, over a region from ��° S to ��°N,
from the near-statistical equilibrium state that emerges. �e equatorial waves emerge with beautiful
clarity above the noise, with only small deviations for the highestmodes due to resolution issues
with the numerics that slow the waves. To see a simulation showing Rossby and Kelvin waves in
physical space look ahead to Fig. �.��. �e real world never has quite so much clarity, but Fig. �.��
and Fig. �.�� suggest that the waves are notmerely �gments of the imathination.
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Other Topologically Protected Classical Systems 

this disturbance—in the same direction as before—and emerge
undisturbed on the other side. Remarkably, the excitation tra-
verses the defect region without scattering backward or into the
bulk. As before, the resilience of the edge modes suggests these
edge states are topological in character.
To analyze the origin of these effects, we return to an ideal

coupled gyroscope model. For simplicity, we represent the dis-
placement of the tip of the gyroscope from equilibrium as
ψ → δx + iδy. In this form, the linearized version of Eq. 1 is
iðdψ=dtÞ= ðℓ2=IωÞF, where F→Fx + iFy is the complex repre-
sentation of the interaction force and the complex phase, i, arises
from the cross-product. Accordingly, the linearized equation of
motion for each site in the gyroscopic metamaterial is

i
dψp

dt
=Ωgψp +

1
2

X

q∈n.n.ðpÞ

h!
Ω+

ppψp +Ω+
pqψq

"

+ e2iθpq
!
Ω−

ppψp*+Ω−
pqψq*

"i
,

[2]

where p is the site label, q the neighboring sites, θpq is the spring
bond angle, and Ω±

pj =− ℓ2
Iω ð∂Fpk=∂xjk ± ∂Fp⊥=∂xj⊥Þ are determined

from gradients of the force on p, Fp, parallel and perpendicular

to the line connecting the equilibrium positions of the gyroscopes.
In the case of the interactions being provided by springs, Ω±

pq =
kℓ2=Iω=Ωk, where k is the spring constant.
Symmetries often play a fundamental role in characterizing a

system’s topological behavior; in the case of the gyroscopic ma-
terials, broken time-reversal symmetry is a natural starting point.
We note that the linearized equation of motion bears remarkable
similarity to the Schrödinger equation for the wavefunction of an
electron in a tight-binding model. Thus, by analogy, we may
analyze the breaking of temporal symmetry using the “time-
reversal” operation in quantum mechanics: t→ − t, ψ →ψp. For
gyroscopes, conjugating ψ mirrors their displacement in the y
axis; applying the complete time-reversal operation to a single
gyroscope leaves the equation of motion unchanged. Similarly,
for a network of gyroscopes Eq. 2 is invariant under this oper-
ation only if the coefficient e2iθpq is real (up to a global rotation),
and breaks the symmetry otherwise. Thus, crucially, we see that
the breaking of time-reversal symmetry depends on distribution
of bond angles in the lattice, and not simply the response of
individual gyroscopes.
The geometric origin of the time-reversal symmetry breaking

can also be seen in the case of gyroscopes connected by springs,

F

A

B C

D

E

Fig. 2. Demonstration of robustness of edge modes in experiment. (A) A picture of the experimental system as viewed from below. (B) The edge of the
experimental lattice from the side, showing the construction of the individual gyroscopes as well as the fixed magnets around the edge that provide the
lateral confinement. (C) The calculated histogram of normal mode frequencies for an array of 54 gyroscopes arranged in a honeycomb lattice (no disorder) is
shown. The frequencies range from 0.7 to 2.5 Hz. (D–F) A comparison of calculated normal modes in an ideal magnetic-gyroscope network (Left) as measured
in an experimental system (Right). For each system a mode is shown in (D) the optical band, (E) the band gap, and (F) the acoustic band. Disorder has a strong
effect on bulk mode profiles. However, the gap mode profiles correspond much more closely to the ideal modes in shape, orientation, and phase of the
gyroscope orbits.
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The concept of topological order, originally discovered in
condensed matter physics1–10, has recently inspired
scientists working in many branches of physics and

engineering to look for topologically nontrivial states in several
fields of interest. Topological states have been discovered in two-
dimensional and three-dimensional materials, at the basis of the
quantum Hall effect (QHE), quantum spin Hall effect and
topological insulators. These concepts have also inspired photonic
analogues, such as photonic crystals11–16, arrays of silicon-ring
resonators17,18, bianisotropic metamaterials19 and chiral
waveguides20,21, opening exciting new directions in optics. The
inherent robustness against local defects15 and disorder22,
provided by the topological nature of these phenomena, has
allowed overcoming common rules of wave scattering and
interference in topological insulators and their analogues. As an
example, the edge states supported by these structures can
seamlessly flow around sharp bends and defects, avoiding
backscattering15,17–20 and inspiring interesting functionalities
for topologically protected optical components.

In condensed matter, topological states of matter are inherently
related to time-reversal symmetry. In the particular case of
QHE1,10, as well as for its photonic analogue realized in
magnetically biased photonic crystals8–11,16, time-reversal
symmetry is suitably broken to realize one-way nonreciprocal
edge modal dispersion19. In this case, propagation is allowed only
in one particular propagation direction, making backscattering
impossible. In fermionic systems with time-reversal symmetry, a
form of topological protection can still arise. This is due to
Kramer’s theorem, which ensures the existence of time-reversal
partner edge states with their electron spin being locked to the
propagation direction, and therefore no backscattering can occur
in absence of spin-flip processes23,24. In bosonic and classical
systems, the latter class of protection is not available, but some
restricted protection can be still achieved based on spatial or
internal symmetries (for example, duality in electromagnetics),
provided that a conserved pseudo-spin, odd under time-reversal
symmetry, may be judiciously engineered19. Genuine topological
protection for bosons and classical waves, however, is only
possible in nonreciprocal systems with broken time-reversal
symmetry. Since acoustic waves do not significantly interact with
an external magnetic bias, topological order for sound has not
been explored to date. In this paper, on the contrary, we show
that these recent advances in quantum physics may be extended
to acoustic systems using angular-momentum bias, dramatically
expanding our ability to tailor acoustic waves.

While throughout the past centuries we have mastered the
manipulation of sound propagation and scattering, perfecting
musical instruments, music halls and whispering galleries,
it is still challenging to break the inherent symmetry with
which sound travels in space. Nonreciprocal acoustic response
in magneto-elastic materials has been explored in ref. 25,
but no experimental confirmation of large magnetic-based
nonreciprocity or isolation has been demonstrated to date, due
to the inherently weak coupling between magnetic and acoustic
effects. An alternative approach to break time-reversal symmetry
and achieve nonreciprocity has been recently suggested26. It has
been shown that the effects of a magnetostatic bias may be
replaced by the application of angular momentum, or rotational
motion, in suitably designed acoustic resonators, leading to
nonreciprocal response and giant isolation, and providing the
foundations for a new class of nonreciprocal acoustic devices—
acoustic circulators. On the basis of this discovery, here we
introduce a new approach to topological order in periodic
acoustic systems biased with angular momentum, where time-
reversal symmetry is broken by rotational motion. We apply these
concepts to demonstrate that topologically nontrivial states with
strong robustness can be obtained in acoustic lattices with broken
time-reversal symmetry.

More specifically, here we study an acoustic system mimicking
a magnetically biased graphene lattice, as schematically shown in
Fig. 1a. A graphene layer constitutes a well-established platform
to realize topological order in condensed matter systems27. Its
hexagonal lattice supports a Dirac point whose inherent time-
reversal symmetry may be broken, for example, by an applied
magnetic bias, to reveal Landau levels separated by bandgaps that
support topologically protected edge states28,29. In our acoustic
analogue geometry, the graphene-like lattice is formed by a
planar periodic array of subwavelength acoustic resonators
interconnected by hollow tubes to form a hexagonal lattice30.
The resonators are formed by two hard-walled coaxial cylinders,
with the inner space filled by air. As the air starts flowing, with
moderate velocity as discussed in the following, the imparted
angular momentum can break time-reversal symmetry, and
realize the analogue of a magnetically biased graphene layer for
sound.

Results
Infinite diatomic lattice. When disconnected from the lattice,
each acoustic resonator in Fig. 1a supports two, clockwise and
counterclockwise, lowest order modes, with no modulation in the
vertical z-direction, and with eigenfrequencies oþ /" corre-
sponding to l¼±1 angular momentum26. If the medium inside
the resonators is stationary, these modes are degenerate, that is,
oþ ¼o" ; however, as soon as an angular momentum bias in the
form of air rotation is applied to the resonators, the degeneracy is
lifted by the amount Do¼oþ "o" ¼ vair/D, where vair is the
fluid velocity and D is a parameter associated with the resonator
geometry26.

When the resonators are connected in the hexagonal lattice
of Fig. 1a, the clockwise and counterclockwise modes couple,
forming a complex acoustic band structure. We apply a first-
principle approach based on the direct solution of the equations
of sound propagation in moving media to find modes and band
structure for this system, as detailed in Methods. In parallel, we
also developed an analytical model based on coupled-mode
theory and the scattering matrix formalism31, outlined in the
Methods section, which agrees well with the full-wave modelling
performed with COMSOL Multiphysics. While all calculations
presented in this section are obtained under the assumption of a
constant air velocity inside the resonators, we have also
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Figure 1 | Diatomic lattice forming an acoustic analogue of graphene.
(a) Lattice with two rotated Y-junctions (A and B, respectively) per unit cell
(shaded region). (b) One unit cell of the lattice modelled in COMSOL
Multiphysics, with acoustic pressure distribution shown in colour for one of
the Dirac modes of interest. The grey arrows indicate the direction of
airflow in the resonators. Structure dimensions are: inner and outer radius
of the cavity are Rin¼ 5.08 cm and Rout¼9.21 cm, respectively, height of the
cavity H¼4.45 cm.
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field points in the azimuthal direction, with component
vθ ¼ −½Ωr21=ðr22 − r21Þ%rþ ½Ωr21r22=ðr22 − r21Þ%ð1=rÞ, where
r is measured from the origin at the axis of the cylinder.
This angular velocity is equal to Ω at radius r ¼ r1, and
zero at radius r ¼ r2.
The propagation of sound waves in the presence of such

a steady-state nonhomogenous velocity background is
described in Refs. [21,22]. Assuming that the viscosity

and heat flow are negligible, the waves obey a “sound
master equation”

1

ρ
∇ · ρ∇ϕ − ð∂t þ ~v0 · ∇Þ 1c2 ð∂t þ ~v0 ·∇Þϕ ¼ 0; ð1Þ

where ρ is the fluid density, c is the speed of sound, and
~v0 is the background fluid velocity (i.e., the Couette flow
distribution in the region of r1 < r < r2 and stationary
fluid in the region of r > r2, where r is measured
from the center of each unit cell). The relation between
the velocity potential ϕ and the sound pressure p is
p ¼ ρð∂t þ ~v0 · ∇Þϕ.Wemodel the surface of each cylinder
as an impenetrable hard boundary by setting ~n ·∇ϕ ¼ 0,
where ~n is the surface normal vector. We restrict our
attention to time-harmonic solutions with frequency ω
and neglect second order terms as j~v0=cj2 ≪ 1. With a
change of variables Ψ ¼ ffiffiffi

ρ
p

ϕ the master equation can be
rewritten as

½ð∇− i~AeffÞ
2 þ Vðx; yÞ%Ψ ¼ 0; ð2Þ

where the effective vector and scalar potentials are

~Aeff ¼ −ω~v0ðx; yÞ
c2

; ð3Þ

Vðx; yÞ ¼ − 1

4
j∇ ln ρj2 − 1

2
∇2 ln ρþ ω2

c2
: ð4Þ

Evidently, Eq. (2) maps onto the Schrödinger equation for a
spinless charged quantum particle in nonuniform vector and
scalar potentials. For nonzero Ω, the inner boundary of the
Couette flow contributes positive effective magnetic flux,
and the rest of the Couette flow contributes negative
effective magnetic flux; the net magnetic flux, integrated
over the entire unit cell, is zero. The acoustic system thus
behaves like a “zero field quantum Hall” system [23] and is
periodic in the unit cell.
It is worth mentioning that a similar approach to

construct an effective magnetic vector potential for classical
wave propagation has been discussed by Berry and
colleagues [24,25]. These authors showed that an irrota-
tional (“bathtub”) fluid vortex exhibits a classical wave
front dislocation effect, analogous to the Aharanov-Bohm
effect. Here, we advance this insight by applying the flow
model to a PC context, so that the effective magnetic vector
potential gives rise to a topologically nontrivial acoustic
band structure.
From Eq. (1), we can calculate the acoustic band

structures using the finite element method. For simplicity,
we assume the fluids involved are air. The results, with
Ω ¼ 0 and Ω ≠ 0, are shown in Fig. 1(b) (the lattice
constant a is set as 0.2 m). For Ω ¼ 0 [red curves in
Fig. 1(b)], the acoustic band structure exhibits a pair of
Dirac points at the corner of the hexagonal Brillouin zone,

FIG. 1 (color online). A two-dimensional acoustic topological
insulator and its band structure. (a) Triangular acoustic lattice
with lattice constant a. a ¼ 0.2 m in the following calculation.
Inset: unit cell containing a central metal rod of radius r1 ¼ 0.2a,
surrounded by an anticlockwise circulating fluid flow (flow
direction indicated by red arrows) in a cylinder region of radius
r2 ¼ 0.4a. (b) Band structures of the acoustic lattice without the
circulating fluid flow (red curves, Ω ¼ 2π × 0 rad=s) and with
fluid flow (blue curves, Ω ¼ 2π × 400 rad=s). In the gapped
band structure, the bands have Chern number '1 (blue labels).
Left inset: enlarged view of Dirac cone. Right lower inset: the
first Brillouin zone. (c) Frequency splitting as a function of the
angular velocity of the cylinder in each unit cell. The degeneracy
at the Dirac point with frequency ω0 ¼ 0.577 × 2πca=a (992 Hz)
is removed for Ω ≠ 0.
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We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R 5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx 5 2p/3a and kx 5 4p/3a, occu-
pying one-third of kx space, where a 5 15

ffiffiffi
3
p

mm is the lattice constant.
The Floquet band structure when the lattice is helical with R 5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations. However, there are no edge states whatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R 5 0, where there are multiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be 21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses

kx
ky

Bandgap
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c d

a
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Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R 5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R 5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R 5 0). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

are drawn in black. b, Dispersion curves of the edge states in the Floquet topological
insulator for helical waveguides with R 5 8mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R 5 10.3mm.
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2

inertia-gravity waves in 3D incompressible Boussi-
nesq flow, and for acoustic-gravity waves in 2D
or 3D. In addition, other properties of bands in
frequency-wavenumber space can be protected by
the presence of symmetries. for instance a point
of contact between bands will be said to be topo-
logically protected when the addition of disorder
can not open a gap at this point. We plan to clas-
sify such topological properties of waves in the hier-
archy of geophysical flow models, from 3D incom-
pressible flows to 2D quasi-geostrophic dynamics,
in order to decipher the origin and properties of
known gaps and edge states.

2. Those example may pave the way towards fruit-
ful analogy between condensed matter systems and
geophysical fluids.

I. SHALLOW WATER DYNAMICS

A. Dynamical model on an f-plane

The shallow water model is derived from incompress-
ible 3D Euler fluid with homogeneous density by assum-
ing that the flow takes place between two horizontal
boundaries: a lower solid boundary with impermeabil-
ity constraint (the velocity at the boundary is tangential
to the boundary), and an upper free interface, in the
presence of gravity g. The shallow water equations are
derived by assuming horizontal scales of motions much
larger than the fluid depth. In this limit, there is hy-
drostatic balance on the vertical, the vertical velocity is
constant along the vertical direction, and slaved on the
horizontal velocity through the divergence equation. The
whole system is then described by 3 fields in two dimen-
sions:

x = (x, y), u(x, t) = (u(x, t), v(x, t)), ⌘(x, t) (1)

ant the dynamics is given by the mass conservation and
momentum equations:

@
t

h+r (hu) = 0 (2)
@
t

u+ u ·ru = �g@
x

h+ fv (3)
@
t

v + u ·rv = �g@
y

h� fu (4)

We consider the linearized dynamics around a state of
rest (u = 0, h = H). The dynamics is conveniently
expressed in terms of the fields

⌘̃ =

h�H

H
, ˜

u =

u

c
, c =

p
gH : (5)

@
t

⌘̃ = �cr · ˜u (6)
@
t

ũ = �c@
x

⌘̃ + fṽ, (7)
@
t

ṽ = �c@
y

⌘̃ � fũ, (8)

We will drop the tilde symbol in the remaining of this
paper.

The system posses one intrinsic time scale 1/|f |, one in-
trinsic velocity c =

p
Hg. By combining those two quan-

tities one get an intrinsic horizontal length scale called
the Rossby radius of deformation R =

p
gH/|f |. We

could have chosen time unit and length unit such that
c = 1, |f | = 1, and hence R = 1, provided that f 6= 0.
However, we will on purpose keep dimensional quanti-
ties. The first reason is that f is a symmetry breaking
external parameter that will be varied adiabatically. The
second reason is that keeping dimensional quantities will
ease the discussion of the result in relation with actual
geophysical waves.

B. Case of an unbounded geometry

This dynamical system can be written formally as a
Schrodinger equation

i@
t

 = H , (9)

where  = (u, v, ⌘) and where H is an hermitian opera-
tor: H†

= H.
Because the fields (u, v, ⌘) are real, we also get H =

H⇤. Consequently, the operator H satisfies a particle-
hole symmetry

⌅H⌅�1
= �H, ⌅

2
= 1, (10)

where ⇥ is just the complex conjugation operator. Fi-
nally, we note that the transformation t0 = �t, x0

= x,
⌘0 = ⌘, u0

= �u, v0 = �v, f = �f leaves the dynamical
shallow-water system invariant. One may call this trans-
formation a classical time reversal symmetry. In the case
f = 0, this symmetry property can be written as

�H��1
= H, �

2
= 1, (11)

with

() (12)

In the language of quantum mechanics, it is a chiral sym-
metry, which is different form quantum time reversal
symmetry. A quantum time symmetry is obtained by
combining the chiral symmetry with particle-hole sym-
metry:

�H��1
= H, �

2
= 1, (13)

Those symmetry considerations actually go beyond the
shallow water case. Indeed, particle-hole symmetry will
be satisfied for any linearized flow model that describe
real fields, and classical time reversal symmetry will al-
ways amount to a chiral symmetry. This is remarkable,
as chiral (also called sublattice) symmetry is usually seen
as a byproduct of particle-hole symmetry and quantum
time-reversal symmetry.

Shallow Water Equations on Equatorial f-plane and Torus 
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@
t

ṽ = �c@
y

⌘̃ � fũ, (8)

We will drop the tilde symbol in the remaining of this
paper.

The system posses one intrinsic time scale 1/|f |, one in-
trinsic velocity c =

p
Hg. By combining those two quan-

tities one get an intrinsic horizontal length scale called
the Rossby radius of deformation R =

p
gH/|f |. We

could have chosen time unit and length unit such that
c = 1, |f | = 1, and hence R = 1, provided that f 6= 0.
However, we will on purpose keep dimensional quanti-
ties. The first reason is that f is a symmetry breaking
external parameter that will be varied adiabatically. The
second reason is that keeping dimensional quantities will
ease the discussion of the result in relation with actual
geophysical waves.

B. Case of an unbounded geometry

This dynamical system can be written formally as a
Schrodinger equation

i@
t

 = H , (9)

where  = (u, v, ⌘) and where H is an hermitian opera-
tor: H†

= H.
Because the fields (u, v, ⌘) are real, we also get H =

H⇤. Consequently, the operator H satisfies a particle-
hole symmetry

⌅H⌅�1
= �H, ⌅

2
= 1, (10)

where ⇥ is just the complex conjugation operator. Fi-
nally, we note that the transformation t0 = �t, x0

= x,
⌘0 = ⌘, u0

= �u, v0 = �v, f = �f leaves the dynamical
shallow-water system invariant. One may call this trans-
formation a classical time reversal symmetry. In the case
f = 0, this symmetry property can be written as

�H��1
= H, �

2
= 1, (11)

with

() (12)

In the language of quantum mechanics, it is a chiral sym-
metry, which is different form quantum time reversal
symmetry. A quantum time symmetry is obtained by
combining the chiral symmetry with particle-hole sym-
metry:

�H��1
= H, �

2
= 1, (13)

Those symmetry considerations actually go beyond the
shallow water case. Indeed, particle-hole symmetry will
be satisfied for any linearized flow model that describe
real fields, and classical time reversal symmetry will al-
ways amount to a chiral symmetry. This is remarkable,
as chiral (also called sublattice) symmetry is usually seen
as a byproduct of particle-hole symmetry and quantum
time-reversal symmetry.
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the flat band intersects a single Dirac point, and the low-
energy regime is described by a quasi-relativistic equation
for spin-1 fermions [33, 34].

Nowadays, various lattices can be engineered using
cold atoms trapped by electromagnetic fields [34–39].
In particular, the realization of topological states of
matter with cold fermionic atoms appears to be a
realistic and attractive goal from the experimental point
of view [20, 21, 40]. A significant advantage of these
experiments is the full control of a wide range of system
parameters as, e.g., lattice geometry, interaction and
disorder. In these experiments, engineered gauge fields
allow to mimic the e↵ects of magnetic fields [41–43] or
spin-orbit interactions (SOIs) [20, 21, 44–48]. These
gauge fields can be generated by spatially-varying laser
or magnetic fields which modify particle-hopping via
non-trivial Berry’s phases [49, 50]. Recent experiments
have implemented light-induced external gauge fields
and reproduced the physics of charges subjected to
electric or magnetic fields [41, 42, 51]. Moreover, with
such a setup one expects to observe several fundamental
phenomena including the Hofstadter butterfly [43, 52],
atomic analogues of the quantum Hall e↵ects [53, 54],
relativistic physics [55, 56], and vortex structures
[41, 57, 58]. Optical-lattice setups also allow to consider
a generalization of the ongoing experiments, namely the
implementation of non-Abelian gauge fields [46, 59–61].
In particular, non-Abelian gauge fields acting on multi-
level atomic systems could mimic SOI [44–46, 48, 62],
paving the way to study the spin Hall [63] and quantum
spin Hall e↵ects [17, 21]. Very recently, a concrete
proposal of an optical Lieb lattice for cold atoms has
been presented [37]. In the later work, Apaja et al. have
shown that a fermionic cloud expanding after the release
of the harmonic trap should show clear signatures of
the flat band’s localized states. Finally, the existence
of flat bands with non-trivial topological order has
been demonstrated [64], contradicting the belief that
non-dispersive bands were associated to vanishing Chern
numbers [31].

Motivated by the possibility to engineer an optical Lieb
lattice for cold fermionic atoms, we investigate the emer-
gence of topological properties for various configurations
of synthesized gauge fields. We first provide an original
analysis of a peculiar IQHE, in the case where a uni-
form magnetic field is present in the Lieb lattice. We
then explore the e↵ects of an intrinsic spin-orbit term [7]
and show how it leads to quantum spin Hall states. In
this framework, we extend the seminal work of Ref. [18]
and derive an e↵ective Hamiltonian describing the low-
energy regime. This Weyl-like Hamiltonian leads to a
three-component quantum equation that resembles the
relativistic equation for spin-1 particles. Besides, we ob-
tain the Landau levels in the presence of an external mag-
netic field and spin-orbit interaction. Finally, we discuss
the optical-lattice realization of this Lieb system and pro-
pose realistic methods for creating Abelian (magnetic)
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and non-Abelian (spin-orbit) gauge fields. We show that
the Lieb lattice is particularly suited to reproduce the in-
trinsic spin-orbit term introduced by Kane and Mele [7].
The later, which involves complex spin-dependent next-
nearest-neighbour hoppings, can be simply decomposed
into nearest-neighbour hopping on a square sublattice.
This elegant idea is a non-Abelian generalization of the
method proposed in Ref. [17] for generating the Abelian
Haldane-type gauge field.

II. THE LIEB LATTICE AND TOPOLOGICAL
PHASES IN EXTERNAL FIELDS

We consider the face-centered square (Lieb) lattice,
which is shown in Fig. 1. This lattice has a unit cell char-
acterized by three lattice sites, hereafter referred to as H,
A and B. Site H has four nearest-neighbors (NN), namely
two A and two B sites. On the contrary the A and B sites
have only two NN H sites. The bulk properties of the Lieb
lattice can be analyzed within a tight-binding (TB) ap-
proximation. In this limit, the Hamiltonian of the system
can be written as H0 = t

P
hi,ji↵ c

†
i↵

c

j↵

with spin inde-

pendent NN hopping amplitude t. Here, c†
j↵

(c
j↵

) is the
creation (annihilation) operator for a particle with spin
direction ↵ on the lattice site j. In absence of external
fields the problem can be diagonalized exactly and the
spectrum reads

"0(k) = 0, (1a)

"±(k) = ±t

p
4 + 2 cos(v1 · k) + 2 cos(v2 · k), (1b)

where k = (k
x

, k

y

) and v1/2 are the lattice vectors, c.f.
Fig. 1. The bulk energy spectrum is shown in Fig. 2a — it
depicts two identical, electron-hole symmetric branches
"±. Moreover, the Lieb lattice presents a unique non-
dispersive band at the charge neutrality point (CNP).
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inertia-gravity waves in 3D incompressible Boussi-
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pressible flows to 2D quasi-geostrophic dynamics,
in order to decipher the origin and properties of
known gaps and edge states.

2. Those example may pave the way towards fruit-
ful analogy between condensed matter systems and
geophysical fluids.
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We consider the linearized dynamics around a state of
rest (u = 0, h = H). The dynamics is conveniently
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We will drop the tilde symbol in the remaining of this
paper.

The system posses one intrinsic time scale 1/|f |, one in-
trinsic velocity c =

p
Hg. By combining those two quan-

tities one get an intrinsic horizontal length scale called
the Rossby radius of deformation R =

p
gH/|f |. We

could have chosen time unit and length unit such that
c = 1, |f | = 1, and hence R = 1, provided that f 6= 0.
However, we will on purpose keep dimensional quanti-
ties. The first reason is that f is a symmetry breaking
external parameter that will be varied adiabatically. The
second reason is that keeping dimensional quantities will
ease the discussion of the result in relation with actual
geophysical waves.

B. Case of an unbounded geometry

This dynamical system can be written formally as a
Schrodinger equation
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where  = (u, v, ⌘) and where H is an hermitian opera-
tor: H†
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Because the fields (u, v, ⌘) are real, we also get H =

H⇤. Consequently, the operator H satisfies a particle-
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where ⇥ is just the complex conjugation operator. Fi-
nally, we note that the transformation t0 = �t, x0
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⌘0 = ⌘, u0

= �u, v0 = �v, f = �f leaves the dynamical
shallow-water system invariant. One may call this trans-
formation a classical time reversal symmetry. In the case
f = 0, this symmetry property can be written as

�H��1
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= 1, (11)

with
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In the language of quantum mechanics, it is a chiral sym-
metry, which is different form quantum time reversal
symmetry. A quantum time symmetry is obtained by
combining the chiral symmetry with particle-hole sym-
metry:
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= H, �
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= 1, (13)

Those symmetry considerations actually go beyond the
shallow water case. Indeed, particle-hole symmetry will
be satisfied for any linearized flow model that describe
real fields, and classical time reversal symmetry will al-
ways amount to a chiral symmetry. This is remarkable,
as chiral (also called sublattice) symmetry is usually seen
as a byproduct of particle-hole symmetry and quantum
time-reversal symmetry.
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the flat band intersects a single Dirac point, and the low-
energy regime is described by a quasi-relativistic equation
for spin-1 fermions [33, 34].

Nowadays, various lattices can be engineered using
cold atoms trapped by electromagnetic fields [34–39].
In particular, the realization of topological states of
matter with cold fermionic atoms appears to be a
realistic and attractive goal from the experimental point
of view [20, 21, 40]. A significant advantage of these
experiments is the full control of a wide range of system
parameters as, e.g., lattice geometry, interaction and
disorder. In these experiments, engineered gauge fields
allow to mimic the e↵ects of magnetic fields [41–43] or
spin-orbit interactions (SOIs) [20, 21, 44–48]. These
gauge fields can be generated by spatially-varying laser
or magnetic fields which modify particle-hopping via
non-trivial Berry’s phases [49, 50]. Recent experiments
have implemented light-induced external gauge fields
and reproduced the physics of charges subjected to
electric or magnetic fields [41, 42, 51]. Moreover, with
such a setup one expects to observe several fundamental
phenomena including the Hofstadter butterfly [43, 52],
atomic analogues of the quantum Hall e↵ects [53, 54],
relativistic physics [55, 56], and vortex structures
[41, 57, 58]. Optical-lattice setups also allow to consider
a generalization of the ongoing experiments, namely the
implementation of non-Abelian gauge fields [46, 59–61].
In particular, non-Abelian gauge fields acting on multi-
level atomic systems could mimic SOI [44–46, 48, 62],
paving the way to study the spin Hall [63] and quantum
spin Hall e↵ects [17, 21]. Very recently, a concrete
proposal of an optical Lieb lattice for cold atoms has
been presented [37]. In the later work, Apaja et al. have
shown that a fermionic cloud expanding after the release
of the harmonic trap should show clear signatures of
the flat band’s localized states. Finally, the existence
of flat bands with non-trivial topological order has
been demonstrated [64], contradicting the belief that
non-dispersive bands were associated to vanishing Chern
numbers [31].

Motivated by the possibility to engineer an optical Lieb
lattice for cold fermionic atoms, we investigate the emer-
gence of topological properties for various configurations
of synthesized gauge fields. We first provide an original
analysis of a peculiar IQHE, in the case where a uni-
form magnetic field is present in the Lieb lattice. We
then explore the e↵ects of an intrinsic spin-orbit term [7]
and show how it leads to quantum spin Hall states. In
this framework, we extend the seminal work of Ref. [18]
and derive an e↵ective Hamiltonian describing the low-
energy regime. This Weyl-like Hamiltonian leads to a
three-component quantum equation that resembles the
relativistic equation for spin-1 particles. Besides, we ob-
tain the Landau levels in the presence of an external mag-
netic field and spin-orbit interaction. Finally, we discuss
the optical-lattice realization of this Lieb system and pro-
pose realistic methods for creating Abelian (magnetic)
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and non-Abelian (spin-orbit) gauge fields. We show that
the Lieb lattice is particularly suited to reproduce the in-
trinsic spin-orbit term introduced by Kane and Mele [7].
The later, which involves complex spin-dependent next-
nearest-neighbour hoppings, can be simply decomposed
into nearest-neighbour hopping on a square sublattice.
This elegant idea is a non-Abelian generalization of the
method proposed in Ref. [17] for generating the Abelian
Haldane-type gauge field.

II. THE LIEB LATTICE AND TOPOLOGICAL
PHASES IN EXTERNAL FIELDS

We consider the face-centered square (Lieb) lattice,
which is shown in Fig. 1. This lattice has a unit cell char-
acterized by three lattice sites, hereafter referred to as H,
A and B. Site H has four nearest-neighbors (NN), namely
two A and two B sites. On the contrary the A and B sites
have only two NN H sites. The bulk properties of the Lieb
lattice can be analyzed within a tight-binding (TB) ap-
proximation. In this limit, the Hamiltonian of the system
can be written as H0 = t

P
hi,ji↵ c

†
i↵
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j↵

with spin inde-

pendent NN hopping amplitude t. Here, c†
j↵

(c
j↵

) is the
creation (annihilation) operator for a particle with spin
direction ↵ on the lattice site j. In absence of external
fields the problem can be diagonalized exactly and the
spectrum reads

"0(k) = 0, (1a)

"±(k) = ±t

p
4 + 2 cos(v1 · k) + 2 cos(v2 · k), (1b)

where k = (k
x

, k

y

) and v1/2 are the lattice vectors, c.f.
Fig. 1. The bulk energy spectrum is shown in Fig. 2a — it
depicts two identical, electron-hole symmetric branches
"±. Moreover, the Lieb lattice presents a unique non-
dispersive band at the charge neutrality point (CNP).
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II. TOPOLOGICAL PROPERTIES OF
SHALLOW WATER WAVES IN UNBOUNDED

GEOMETRIES

A. Dispersion relation and eigenmodes
(polarization relation)

We assume an infinite domain. Any field �(x, y, t) can
be decomposed into propagating plane waves:

� =

Z
dtd2x ˆ�(!,k)ei!t�ik·x (14)

We will use the following notations

k = (k
x

, k
y

), k2 = k2
x

+ k2
y

, (15)

Calling ⌘̂, û, v̂ the projections of ⌘, u, v on a propagat-
ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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The dispersion relation is

!2
= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
 � the normalized eigenvectors associated with the pos-
itive frequency wave band (!+ =

p
c2k2 + f2), zero fre-

quency .wave band (! = 0), negative frequency wave
band (!) = �

p
c2k2 + f2), respectively. Importantly,

those eigenvector is defined up to a phase. Simple alge-
bra leads to
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 0(f, kx, ky) =
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are

 + =

1p
2

0

@
sin ✓

cos'� i cos ✓ sin'
sin'+ i cos ✓ cos'

1

A (21)

This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define

 

N

+ =  +e
i',  

S

+ =  +e
�i'. (22)

One can check that  N

+ is a single-valued function of
k
x

, k
y

, f whenever f � 0 and  S

+ is a single-valued func-
tion of k

x

, k
y

, f whenever f  0. The Berry connections
associated with these vectors are
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They are related through
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N
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' (24)

At any point where A+

N and A+

s are not singular, the
Berry curvature is given by
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The Chern number for the fibre bundle of eigenvetors
with positive frequencies on the unit sphere in (k

x

, k
y

, f)-
space is defined as
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d' B+ · e
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(26)

where e
k

(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r

s

⇥ A

N

+ in the
northern hemisphere (✓ < ⇡/2) and B+ = r
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⇥ A

S

+ in
the Southern Hemisphere (✓ > ⇡/2) gives
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
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We now consider f as a parameter of the problem that
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number of the fibre bundle defined by the eigenvectors
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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û
v̂

1

A
=

0

@
0 ck

x

ck
y

ck
x

0 �if
ck

y

if 0

1

A

0

@
⌘̂
û
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
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choose the phase to regularize the eigenvector at those
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x
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y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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!2
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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Calling ⌘̂, û, v̂ the projections of ⌘, u, v on a propagat-
ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r

s

⇥ A

N

+ in the
northern hemisphere (✓ < ⇡/2) and B+ = r

s

⇥ A

S

+ in
the Southern Hemisphere (✓ > ⇡/2) gives

�C+ =

1

2⇡

Z 2⇡

0
d'

�
A

N

+ �A

S

�
�
. (27)

Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
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number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0
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Each state on this sphere is described by the colatitude
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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The dispersion relation is
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We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0
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Each state on this sphere is described by the colatitude
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
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Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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II. TOPOLOGICAL PROPERTIES OF
SHALLOW WATER WAVES IN UNBOUNDED

GEOMETRIES

A. Dispersion relation and eigenmodes
(polarization relation)

We assume an infinite domain. Any field �(x, y, t) can
be decomposed into propagating plane waves:

� =

Z
dtd2x ˆ�(!,k)ei!t�ik·x (14)

We will use the following notations

k = (k
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, k
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), k2 = k2
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+ k2
y

, (15)

Calling ⌘̂, û, v̂ the projections of ⌘, u, v on a propagat-
ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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, f). This
describes the topological properties of the transition from
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
k

(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r
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northern hemisphere (✓ < ⇡/2) and B+ = r
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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û
v̂

1

A
=

0

@
0 ck

x

ck
y

ck
x

0 �if
ck

y

if 0

1

A

0

@
⌘̂
û
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x
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y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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û
v̂

1

A
=

0

@
0 ck

x

ck
y

ck
x

0 �if
ck

y

if 0

1

A

0

@
⌘̂
û
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The dispersion relation is
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We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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The dispersion relation is

!2
= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
 � the normalized eigenvectors associated with the pos-
itive frequency wave band (!+ =
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
equator circle (✓ = ⇡/2), using B+ = r

s

⇥ A

N

+ in the
northern hemisphere (✓ < ⇡/2) and B+ = r

s

⇥ A

S

+ in
the Southern Hemisphere (✓ > ⇡/2) gives

�C+ =

1

2⇡

Z 2⇡

0
d'

�
A

N

+ �A

S

�
�
. (27)

Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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A. Dispersion relation and eigenmodes
(polarization relation)

We assume an infinite domain. Any field �(x, y, t) can
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Calling ⌘̂, û, v̂ the projections of ⌘, u, v on a propagat-
ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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B. Topological properties of the connection
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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We see that there are three bands separated by two
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x
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y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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 � the normalized eigenvectors associated with the pos-
itive frequency wave band (!+ =

p
c2k2 + f2), zero fre-

quency .wave band (! = 0), negative frequency wave
band (!) = �

p
c2k2 + f2), respectively. Importantly,

those eigenvector is defined up to a phase. Simple alge-
bra leads to

 +(f, kx, ky) =
1p
2

0

BBB@

ckp
c

2
k

2+f

2

k

x

k

� i
fk

y

k

p
c

2
k

2+f

2

k

y

k

+ i fk

x

k

p
c

2
k

2+f

2

1

CCCA
(18)

 �(f, kx, ky) =  +(�f,�k
x

,�k
y

), (19)

 0(f, kx, ky) =
1p

f2
+ c2k2

0

@
1

i
k

y

k

�ikx

k

1

A (20)

B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
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describes the topological properties of the transition from
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x
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y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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û
v̂

1

A (16)

The dispersion relation is

!2
= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
 � the normalized eigenvectors associated with the pos-
itive frequency wave band (!+ =

p
c2k2 + f2), zero fre-

quency .wave band (! = 0), negative frequency wave
band (!) = �

p
c2k2 + f2), respectively. Importantly,

those eigenvector is defined up to a phase. Simple alge-
bra leads to

 +(f, kx, ky) =
1p
2

0

BBB@

ckp
c

2
k

2+f

2

k

x

k

� i
fk

y

k

p
c

2
k

2+f

2

k

y

k

+ i fk

x

k

p
c

2
k

2+f

2

1

CCCA
(18)

 �(f, kx, ky) =  +(�f,�k
x

,�k
y

), (19)

 0(f, kx, ky) =
1p

f2
+ c2k2

0

@
1

i
k

y

k

�ikx

k

1

A (20)

B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
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describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are

 + =

1p
2

0

@
sin ✓

cos'� i cos ✓ sin'
sin'+ i cos ✓ cos'

1

A (21)

This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
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choose the phase to regularize the eigenvector at those
points. In particular, we define
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where e
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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The dispersion relation is
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= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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They are related through
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on
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describes the topological properties of the transition from
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
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points. In particular, we define
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.

3

II. TOPOLOGICAL PROPERTIES OF
SHALLOW WATER WAVES IN UNBOUNDED

GEOMETRIES

A. Dispersion relation and eigenmodes
(polarization relation)

We assume an infinite domain. Any field �(x, y, t) can
be decomposed into propagating plane waves:

� =

Z
dtd2x ˆ�(!,k)ei!t�ik·x (14)

We will use the following notations

k = (k
x

, k
y

), k2 = k2
x

+ k2
y

, (15)
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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dtd2x ˆ�(!,k)ei!t�ik·x (14)

We will use the following notations

k = (k
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, k
y

), k2 = k2
x

+ k2
y

, (15)

Calling ⌘̂, û, v̂ the projections of ⌘, u, v on a propagat-
ing wave, we get the following hermitian operator, that
we may call a pseudo-Bloch hamiltonian
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The dispersion relation is

!2
= c2k2 + f2, or ! = 0 (17)

We see that there are three bands separated by two
gaps of width 1, the central band being singular, con-
taining zero-frequency modes. Let us call  +,  0 and
 � the normalized eigenvectors associated with the pos-
itive frequency wave band (!+ =
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c2k2 + f2), zero fre-
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B. Topological properties of the connection
between two hemispheres.

We now consider f as a parameter of the problem that
can be varied adiabatically, and we compute the Chern
number of the fibre bundle defined by the eigenvectors
of the positive frequency wave band parameterized on

the unit sphere in the parameter space (k
x

, k
y

, f). This
describes the topological properties of the transition from
one hemisphere to another, i.e. to one system with f > 0

to another system with f < 0.
Each state on this sphere is described by the colatitude

✓ and the longitude '. Using this change of variable, the
eigenvectors of the positive frequency wave band are
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This vector is multivalued at ✓ = 0 and ✓ = ⇡. Recalling
that the eigenmodes are defined up to a phase, one can
choose the phase to regularize the eigenvector at those
points. In particular, we define
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The Chern number for the fibre bundle of eigenvetors
with positive frequencies on the unit sphere in (k
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where e
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(✓,') is the vector normal to the sphere pointing
in the outward direction. Using Stokes theorem along the
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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Using Eq. (24), we find �C+ = 2. This can be inter-
preted as the Chern number of the transition from one
hemisphere to another for the positive frequency eigen-
modes. A similar computations shows that the Chern
numbers of the transition from one hemisphere to another
for the positive frequency eigenmodes is �C� = �2, and
�C0 = 0 for the zero-frequency eigenmodes.
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• Edge modes (eg. Kelvin waves at ocean basin boundaries)

• Magneto-Rossby waves (slow & fast)

• Fluids with mean flows (breaking time-reversal symmetry)?
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Fractional Quantum Hall Effect 

being fermions they are prevented from condensing into
the lowest energy state. Instead, they fill up successively
the sequence of lowest-lying energy states, until a maxi-
mum is reached and all CFs have been accommodated.
The process is equivalent to the filling of states by elec-
trons at B!0. Hence, from the point of view of CFs, the
!!1/2 state appears equivalent to the case for electrons
at B!0. In spite of the huge external magnetic field at
half filling of the Landau level, CFs are moving in a
similar fashion to electrons moving in zero field. This
has been directly observed in experiment. Flux quantum
attachment has transformed these earlier electrons and
they are propagating along straight trajectories in a high
magnetic field, where normal electrons would orbit on
very tight circles. The mass of a CF, usually considered
to be a property of the particle, is unrelated to the mass
of the underlying electron. Instead, the mass depends on
the magnetic field and only on the magnetic field. In
fact, it is a mass of purely many-particle origin, arising
solely from interactions, rather than being a property of
any individual particle. It is another one of these baffling
implications of e-e interactions in high magnetic fields.
The absence of condensation and the lack of an energy
gap prevents the !!1/2 state from showing a quantized
Hall resistance. Instead the Hall line is featureless, just
as it is for electrons around B!0 (see Fig. 18).

The difference between !!1/3 and !!1/2 is striking.
One is a Bose-condensed many-particle state showing a
quantized Hall effect and giving rise to fractionally
charged particles. The other is a Fermi sea, in spite of
the existence of a huge external field, and its particles
have a mass that arises from interactions. One flux quan-
tum per electron makes all the difference.

There are many fascinating open questions associated
with the !!1/2 state, such as: how does the mass vary
with energy for CFs? and what is the microscopic struc-
ture of the particles? Also, how does the electron spin
(which we were neglecting throughout this lecture) af-
fect CF formation? A beautiful picture of composite fer-
mions being tiny dipoles is emerging. While one of the
vortices is placed directly on the electron (Pauli prin-
ciple), the position of the second vortex is a bit displaced
from exact center, rendering the object an electric dipole
in the 2D plane. There is great promise for future dis-
covery and future theoretical insight.

All those other FQHE states

Bose condensation of CBs consisting of electrons and
an odd number of flux quanta rationalizes the appear-
ance of the FQHE at the primary fractions around
Landau-level filling factor !!i"1/q with quantized Hall
resistances RH!h/(v e2) and deep minima in the con-
comitant magnetoresistance R. However, a multitude of
other FQHE states have been discovered over the years.
Figure 18 shows one of the best of today’s experimental
traces on a specimen with a multimillion cm2/V sec mo-
bility. What is the origin of these other states? The com-
posite fermion model offers an extraordinarily lucid pic-
ture. We shall discuss it for the sequence of prominent
fractions 2/5, 3/7, 4/9, 5/11, . . . and 2/3, 3/5, 4/7, 5/9, . . .
(i.e., !!p/(2p"1), p!2,3,4 . . . ) around !!1/2.

At half filling the electron system has been trans-
formed into CFs consisting of electrons which carry two
magnetic flux quanta. All of the external magnetic field
has been incorporated into the particles and they reside
in an apparently field-free 2D plane. Since they are fer-
mions, the system of CFs at !!1/2 resembles a system of
electrons of the same density at B!0. What happens as
the magnetic field deviates from B!0? For electrons
their motion becomes quantized into electron-Landau
orbits. They fill up their electron-Landau levels, encoun-
ter the energy gaps, and exhibit the well-known
IQHE. CFs around !!1/2 follow the same route. As
the magnetic field deviates from exactly !!1/2, the mo-
tion of CFs becomes quantized into CF-Landau orbits.
They fill up their CF-Landau levels, encounter CF-
energy gaps, and exhibit an IQHE. However, this is not
an IQHE of electrons, but an IQHE of CFs. This IQHE
of CFs arises exactly at !!p/(2p"1), which are the
positions of the FQHE features. In fact, the oscillating
features in the magnetoresistance R of the FQHE
around !!1/2 closely resemble the oscillating features
in R around B!0 and, once they have been shifted from
B!0 to !!1/2, they coincide with their position. This is
very remarkable in several ways.

CFs ‘‘survive’’ the additional (effective) magnetic field
(away from !!1/2), and the orbits of these composite
particles mimic the orbits of electrons in the equivalent
magnetic field in the vicinity of B!0. The CFs remain
‘‘good’’ particles. In this way, a complex electron many-
particle problem at some rational fractional filling factor
has been reduced to a single-particle problem at integer

FIG. 18. The FQHE as it appears today in ultrahigh-mobility
modulation-doped GaAs/AlGaAs 2DESs. Many fractions are
visible. The most prominent sequence, !!p/(2p"1), con-
verges toward !!1/2 and is discussed in the text.

886 Horst L. Stormer: The fractional quantum Hall effect

Rev. Mod. Phys., Vol. 71, No. 4, July 1999
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but radiate in the infrared at a much lower temperature and hence act to warm the atmo-

sphere. Clouds are also problematic because cloud processes operate at length scales ranging

from nanometer-size aerosol particles to convection and turbulence at intermediate scales, to

clustering of clouds at scales of hundreds of kilometers. Indeed the largest uncertainty in

climate models comes from limits to our understanding and modeling of clouds (15). In the

highly simplified models considered below I remove this complication by considering only dry

atmospheres, which still retain much of the interesting physics of midlatitude dynamics.

Geophysical fluids are often highly stratified, moving for the most part in the horizontal

directions (16). Layered clouds, so ubiquitous outside of the tropics, make this stratification

readily apparent. This dimensional reduction is a consequence of planetary rotation and con-

vection (the latter acts to restore stratification). A commonly made approximation is to assume

that acceleration in the vertical direction is negligible compared to acceleration due to pressure

and gravity (hydrostatic equilibrium). It is furthermore convenient to resolve the horizontal

components of the velocity field into rotational and divergent parts (17, 18):

!v ¼ r̂"
!
rcþ

!
rw, 1:

where r̂ is the unit vector pointing in the radial direction, c is the scalar streamfunction and

d $
!
r % !v ¼ r2w is the scalar two-dimensional divergence. The fluid is effectively incompress-

ible because the wind speed is small compared to the speed of sound (the Mach number is much

less than one), so d 6¼ 0 implies vertical motion. The relative vorticity z is the curl of the velocity
field and points in the vertical direction:

z $ r̂ % ð
!
r " !v Þ ¼ r2c. 2:

The absolute vorticity q $ z þ f(f) is the vorticity as seen in an inertial frame where f(f) ¼ 2O
sin f is the Coriolis parameter or planetary vorticity familiar from the physics of Foucault’s

pendulum (f is the latitude and O is the angular rotation rate of the planet). The planetary

vorticity is in some ways analogous to the effect of a magnetic field on the orbital motion of

electrons in condensed matter and in plasmas. Because the dimensionless Rossby number

Ro $ jz=f j( 1 away from the tropics, the Coriolis force is dominant and wind motion is close

to geostrophic, meaning the wind blows nearly at right angles to the pressure gradient. Also, in

the extratropics jz j)jd j typically, so vorticity is the more important of the two variables

describing flows there.

2.2. Parameterizations

As it stands the equations of motion are still too difficult to solve numerically, because

they describe processes that occur on length scales that are small compared to the grid scale

of a global numerical simulation. In practice these processes are parameterized, meaning

simplified and semiphenomenological models are used to capture them instead of direct

simulation. Examples include land-surface atmosphere parameterizations, water-atmosphere

parameterizations, planetary boundary layer and turbulence parameterizations, convective

parameterizations, cloud microphysics parameterizations, radiation parameterizations, cloud

cover–radiation parameterizations, and parameterizations of drag due to topography (19).

Parameterizations can be complex or simple. In the following the simplest possible parame-

terizations are adopted that still retain the essential physics. For instance the coupling of

radiation to the atmosphere (20) is described phenomenologically by Newtonian relaxation to

a prescribed temperature profile (21); friction in the planetary boundary layer is parameterized

by a Rayleigh friction constant.

Geostrophic: a balance
between horizontal
Coriolis and pressure
forces
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but radiate in the infrared at a much lower temperature and hence act to warm the atmo-

sphere. Clouds are also problematic because cloud processes operate at length scales ranging

from nanometer-size aerosol particles to convection and turbulence at intermediate scales, to

clustering of clouds at scales of hundreds of kilometers. Indeed the largest uncertainty in

climate models comes from limits to our understanding and modeling of clouds (15). In the

highly simplified models considered below I remove this complication by considering only dry

atmospheres, which still retain much of the interesting physics of midlatitude dynamics.

Geophysical fluids are often highly stratified, moving for the most part in the horizontal

directions (16). Layered clouds, so ubiquitous outside of the tropics, make this stratification

readily apparent. This dimensional reduction is a consequence of planetary rotation and con-

vection (the latter acts to restore stratification). A commonly made approximation is to assume

that acceleration in the vertical direction is negligible compared to acceleration due to pressure

and gravity (hydrostatic equilibrium). It is furthermore convenient to resolve the horizontal

components of the velocity field into rotational and divergent parts (17, 18):

!v ¼ r̂"
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where r̂ is the unit vector pointing in the radial direction, c is the scalar streamfunction and

d $
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r % !v ¼ r2w is the scalar two-dimensional divergence. The fluid is effectively incompress-

ible because the wind speed is small compared to the speed of sound (the Mach number is much

less than one), so d 6¼ 0 implies vertical motion. The relative vorticity z is the curl of the velocity
field and points in the vertical direction:

z $ r̂ % ð
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r " !v Þ ¼ r2c. 2:

The absolute vorticity q $ z þ f(f) is the vorticity as seen in an inertial frame where f(f) ¼ 2O
sin f is the Coriolis parameter or planetary vorticity familiar from the physics of Foucault’s

pendulum (f is the latitude and O is the angular rotation rate of the planet). The planetary

vorticity is in some ways analogous to the effect of a magnetic field on the orbital motion of

electrons in condensed matter and in plasmas. Because the dimensionless Rossby number

Ro $ jz=f j( 1 away from the tropics, the Coriolis force is dominant and wind motion is close

to geostrophic, meaning the wind blows nearly at right angles to the pressure gradient. Also, in

the extratropics jz j)jd j typically, so vorticity is the more important of the two variables

describing flows there.

2.2. Parameterizations

As it stands the equations of motion are still too difficult to solve numerically, because

they describe processes that occur on length scales that are small compared to the grid scale

of a global numerical simulation. In practice these processes are parameterized, meaning

simplified and semiphenomenological models are used to capture them instead of direct

simulation. Examples include land-surface atmosphere parameterizations, water-atmosphere

parameterizations, planetary boundary layer and turbulence parameterizations, convective

parameterizations, cloud microphysics parameterizations, radiation parameterizations, cloud

cover–radiation parameterizations, and parameterizations of drag due to topography (19).

Parameterizations can be complex or simple. In the following the simplest possible parame-

terizations are adopted that still retain the essential physics. For instance the coupling of

radiation to the atmosphere (20) is described phenomenologically by Newtonian relaxation to

a prescribed temperature profile (21); friction in the planetary boundary layer is parameterized

by a Rayleigh friction constant.
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3. HIERARCHYOFATMOSPHERICMODELS OF REDUCED COMPLEXITY

The Hubbard model is a highly simplified model of condensed matter physics that highlights

the key physics of metal-insulatior transitions, antiferromagnetism, and other phenomena

while suppressing details of real materials such as extra bands or long-range interactions that

would distract from a deeper understanding of the phenomena. Likewise, models of reduced

complexity function as prototypes of the large-scale circulation of atmospheres. Two such

deterministic models are described below. The simplicity of the models makes possible a

near-complete understanding of their rich behavior. However, just as first-principles ab initio

methods such as density functional theory are needed for the quantitative modeling of mate-

rials, detailed modeling of real climate requires models of full complexity and realism.

Understanding attained from simplified models makes the intelligent use of such comprehen-

sive models possible.

The two atmospheric models of reduced complexity are studied below and in subsequent

sections by direct numerical simulation (DNS) and by statistical approaches. The traditional

way to accumulate statistics is by sampling DNS at regular time intervals. As an alternative,

it is possible to solve directly for the statistics. Such direct statistical simulation (DSS) is still

in its infancy, and the various approaches and approximations require testing against statis-

tics obtained by traditional DNS. As discussed in Section 5, DSS offers potential advantages

over DNS and may in time be applied to models of increasing complexity and realism.

3.1. Two-Layer Model

As a major simplification, the atmosphere is modeled by only two layers in the vertical direction

labeled as 0 and 1 and located respectively at heights with corresponding pressures that are 3/4

and 1/4 of the surface pressure (17, 22–24). Differential heating of the two layers drives

atmospheric motion. (Figure 2 is a visualization of actual motion in Earth’s atmosphere at three

different heights.) Also, as mentioned above, all water is removed for the sake of simplicity.

Thermodynamics in this dry atmosphere is then most simply described in terms of the potential

temperature y, which is the temperature that a parcel of air would have if it were moved

adiabatically to a reference pressure of one atmosphere.

The advection of air in the atmosphere, and the transport of heat along with it, may be nicely

expressed in a coordinate-independent way by introducing two scalar bilinear differential oper-

ators (24), the Jacobian J[, ] and flux-divergence F[, ]:

J½A,B" # r̂ $ ð
!
rA&

!
rBÞ

F½A,B" #
!
r $ ðA

!
rBÞ,

3:

where the derivatives act in the horizontal directions only. It is also convenient to decompose

fields in the two layers into symmetric or barotropic
((
A # 1

2 ðA1 þ A0Þ and antisymmetric or

baroclinic Â # 1
2 ðA1 ( A0Þ modes. Thus the barotropic and baroclinic components of the

bilinear field AB are given by

(((
AB ¼

((
A

((
Bþ ÂB̂

cAB ¼ Â
((
Bþ

((
AB̂. 4:

The barotropic divergence !d ¼ 0 in the model because any air leaving one layer enters the other.

In the absence of any forcing or damping, the equations of motion for the scalar fields in the

two layers are

Direct numerical
simulation (DNS):
numerical simulation
of equations of motion
in which statistics are
accumulated by
sampling fields during
time integration

Direct statistical simu-
lation (DSS): numeri-
cal simulation of the
equations of motion
for the statistics them-
selves

Potential temperature:
temperature that a
parcel of dry air would
have if brought adia-
batically from its ini-
tial state to a standard
pressure

Barotropic: the com-
ponent of a field that is
uniform with altitude

Baroclinic: the compo-
nent of a field that
varies with altitude
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2 Layer Primitive Equations 

θL

θU



_!q ¼ J½!q, !c# þ J½q̂, ĉ# % F½q̂, ŵ# % J½d̂, ŵ# % F½d̂, ĉ#,
_̂q ¼ J½q̂, !c# þ J½!q, ĉ# % F½!q, ŵ#,
_̂d ¼ J½!q, ŵ# þ F½q̂, !c# þ F½!q, ĉ# %r2ðK̂þ CpB!yÞ,
_!y ¼ J½!y, !c# þ J½ŷ, ĉ# % Fðŷ, ŵÞ, and
_̂y ¼ J½ŷ, !c# þ J½!y, ĉ# % Fð!y, ŵÞ þ !yd̂. 5:

The first three equations describe the atmospheric flow in the two layers, driven by differences

in temperature, and hence pressure, and deflected by the Coriolis force. The last two equations

a

1988

1993

b

Figure 2

Wind velocity fields at three different heights (black arrows at 1.5 km, gray at 5.4 km, and blue at 9.2 km)
reconstructed for 1988 (a) and 1993 (b). Evident in both figures is the midlatitude zonal jet that flows fromwest
to east. By contrast, in the tropics the trade winds flow from east to west. Vertical as well as horizontal shear is
apparent as wind speeds generally increase with altitude. High pressure over the United States in the summer of
1988, visible as geostrophic flow moving clockwise around the high plains, led to a prolonged drought. Credit:
NASA / Goddard Space Flight Center Visualization Studio and NASA Earth Observatory (October 5, 2010).

www.annualreviews.org ( Atmospheres as Condensed Matter 291

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

12
.3

:2
85

-3
10

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 B
ro

w
n 

U
ni

ve
rs

ity
 o

n 
02

/2
2/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.

but radiate in the infrared at a much lower temperature and hence act to warm the atmo-

sphere. Clouds are also problematic because cloud processes operate at length scales ranging

from nanometer-size aerosol particles to convection and turbulence at intermediate scales, to

clustering of clouds at scales of hundreds of kilometers. Indeed the largest uncertainty in

climate models comes from limits to our understanding and modeling of clouds (15). In the

highly simplified models considered below I remove this complication by considering only dry

atmospheres, which still retain much of the interesting physics of midlatitude dynamics.

Geophysical fluids are often highly stratified, moving for the most part in the horizontal

directions (16). Layered clouds, so ubiquitous outside of the tropics, make this stratification

readily apparent. This dimensional reduction is a consequence of planetary rotation and con-

vection (the latter acts to restore stratification). A commonly made approximation is to assume

that acceleration in the vertical direction is negligible compared to acceleration due to pressure

and gravity (hydrostatic equilibrium). It is furthermore convenient to resolve the horizontal

components of the velocity field into rotational and divergent parts (17, 18):

!v ¼ r̂"
!
rcþ

!
rw, 1:

where r̂ is the unit vector pointing in the radial direction, c is the scalar streamfunction and

d $
!
r % !v ¼ r2w is the scalar two-dimensional divergence. The fluid is effectively incompress-

ible because the wind speed is small compared to the speed of sound (the Mach number is much

less than one), so d 6¼ 0 implies vertical motion. The relative vorticity z is the curl of the velocity
field and points in the vertical direction:

z $ r̂ % ð
!
r " !v Þ ¼ r2c. 2:

The absolute vorticity q $ z þ f(f) is the vorticity as seen in an inertial frame where f(f) ¼ 2O
sin f is the Coriolis parameter or planetary vorticity familiar from the physics of Foucault’s

pendulum (f is the latitude and O is the angular rotation rate of the planet). The planetary

vorticity is in some ways analogous to the effect of a magnetic field on the orbital motion of

electrons in condensed matter and in plasmas. Because the dimensionless Rossby number

Ro $ jz=f j( 1 away from the tropics, the Coriolis force is dominant and wind motion is close

to geostrophic, meaning the wind blows nearly at right angles to the pressure gradient. Also, in

the extratropics jz j)jd j typically, so vorticity is the more important of the two variables

describing flows there.

2.2. Parameterizations

As it stands the equations of motion are still too difficult to solve numerically, because

they describe processes that occur on length scales that are small compared to the grid scale

of a global numerical simulation. In practice these processes are parameterized, meaning

simplified and semiphenomenological models are used to capture them instead of direct

simulation. Examples include land-surface atmosphere parameterizations, water-atmosphere

parameterizations, planetary boundary layer and turbulence parameterizations, convective

parameterizations, cloud microphysics parameterizations, radiation parameterizations, cloud

cover–radiation parameterizations, and parameterizations of drag due to topography (19).

Parameterizations can be complex or simple. In the following the simplest possible parame-

terizations are adopted that still retain the essential physics. For instance the coupling of

radiation to the atmosphere (20) is described phenomenologically by Newtonian relaxation to

a prescribed temperature profile (21); friction in the planetary boundary layer is parameterized

by a Rayleigh friction constant.

Geostrophic: a balance
between horizontal
Coriolis and pressure
forces
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3. HIERARCHYOFATMOSPHERICMODELS OF REDUCED COMPLEXITY

The Hubbard model is a highly simplified model of condensed matter physics that highlights

the key physics of metal-insulatior transitions, antiferromagnetism, and other phenomena

while suppressing details of real materials such as extra bands or long-range interactions that

would distract from a deeper understanding of the phenomena. Likewise, models of reduced

complexity function as prototypes of the large-scale circulation of atmospheres. Two such

deterministic models are described below. The simplicity of the models makes possible a

near-complete understanding of their rich behavior. However, just as first-principles ab initio

methods such as density functional theory are needed for the quantitative modeling of mate-

rials, detailed modeling of real climate requires models of full complexity and realism.

Understanding attained from simplified models makes the intelligent use of such comprehen-

sive models possible.

The two atmospheric models of reduced complexity are studied below and in subsequent

sections by direct numerical simulation (DNS) and by statistical approaches. The traditional

way to accumulate statistics is by sampling DNS at regular time intervals. As an alternative,

it is possible to solve directly for the statistics. Such direct statistical simulation (DSS) is still

in its infancy, and the various approaches and approximations require testing against statis-

tics obtained by traditional DNS. As discussed in Section 5, DSS offers potential advantages

over DNS and may in time be applied to models of increasing complexity and realism.

3.1. Two-Layer Model

As a major simplification, the atmosphere is modeled by only two layers in the vertical direction

labeled as 0 and 1 and located respectively at heights with corresponding pressures that are 3/4

and 1/4 of the surface pressure (17, 22–24). Differential heating of the two layers drives

atmospheric motion. (Figure 2 is a visualization of actual motion in Earth’s atmosphere at three

different heights.) Also, as mentioned above, all water is removed for the sake of simplicity.

Thermodynamics in this dry atmosphere is then most simply described in terms of the potential

temperature y, which is the temperature that a parcel of air would have if it were moved

adiabatically to a reference pressure of one atmosphere.

The advection of air in the atmosphere, and the transport of heat along with it, may be nicely

expressed in a coordinate-independent way by introducing two scalar bilinear differential oper-

ators (24), the Jacobian J[, ] and flux-divergence F[, ]:

J½A,B" # r̂ $ ð
!
rA&

!
rBÞ

F½A,B" #
!
r $ ðA

!
rBÞ,

3:

where the derivatives act in the horizontal directions only. It is also convenient to decompose

fields in the two layers into symmetric or barotropic
((
A # 1

2 ðA1 þ A0Þ and antisymmetric or

baroclinic Â # 1
2 ðA1 ( A0Þ modes. Thus the barotropic and baroclinic components of the

bilinear field AB are given by

(((
AB ¼

((
A

((
Bþ ÂB̂

cAB ¼ Â
((
Bþ

((
AB̂. 4:

The barotropic divergence !d ¼ 0 in the model because any air leaving one layer enters the other.

In the absence of any forcing or damping, the equations of motion for the scalar fields in the

two layers are

Direct numerical
simulation (DNS):
numerical simulation
of equations of motion
in which statistics are
accumulated by
sampling fields during
time integration

Direct statistical simu-
lation (DSS): numeri-
cal simulation of the
equations of motion
for the statistics them-
selves

Potential temperature:
temperature that a
parcel of dry air would
have if brought adia-
batically from its ini-
tial state to a standard
pressure

Barotropic: the com-
ponent of a field that is
uniform with altitude

Baroclinic: the compo-
nent of a field that
varies with altitude

290 Marston

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r P
hy

s. 
20

12
.3

:2
85

-3
10

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
by

 B
ro

w
n 

U
ni

ve
rs

ity
 o

n 
02

/2
2/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.

2 Layer Primitive Equations 

θL
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