Double-diffusive sedimentation

Peter Burns and Eckart Meiburg UC Santa Barbara

- Motivation
- Governing equations
- Results: buoyant river outflows:
 - double-diffusive sedimentation
 - -'fingering' vs. 'leaking' modes
- Scaling analysis and physical interpretation
- Summary and outlook

Coastal margin processes

Sedimentation from river plumes: Configuration

Hypopycnal river plumes:

density of the river (fresh water + sediment) < density of ocean (water + salinity)

→ river outflow propagates along the ocean surface

• focus on the downstream density stratification

Sedimentation from river plumes: Double-diffusion

Base density profile:

Sedimentation from river plumes: Double-diffusion

Base density profile:

Sedimentation from river plumes: Double-diffusion

Base density profile:

• potential for double-diffusive instability

Traditional case: Salt fingers

warm, salty water above cold, fresh water:

Huppert and Turner (1981)

- dominant process for the vertical flux of salt in the ocean
- robust against shear
- believed to be responsible for the formation of the thermohaline staircase
- → for salt/sediment system, how does double-diffusion affect sedimentation?

Sedimentation from river plumes: Experiments

• previous experimental work by Parsons et al. (2001):

convective 'fingering' mode space filling

'leaking' mode localized, structures move along interface

→ goal: understand mechanisms driving these modes, and their influence on the effective particle settling velocity

Sedimentation from river plumes

Effect of settling velocity:

• settling process creates potential for Rayleigh-Taylor instability

Framework: Dilute flows

Assumptions:

- volume fraction of particles $< O(10^{-3})$
- particle radius « particle separation
- small particles with negligible inertia

Dynamics:

- effects of particles on fluid continuity equation negligible
- coupling of fluid and particle motion primarily through momentum exchange, not through volumetric effects
- particle loading modifies effective fluid density
- particles follow fluid motion, with superimposed settling velocity

Moderately dilute flows: Two-way coupling (cont'd)

Governing dimensionless eqns:

$$\rho - 1 = \alpha S + \gamma C$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \nabla^2 \mathbf{u} - \nabla \mathcal{P} + \rho' \frac{\mathbf{g}}{g'}$$

$$\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S = \frac{1}{Sc} \nabla^2 S$$

$$\frac{\partial C}{\partial t} - V_p \frac{\partial C}{\partial z} + \mathbf{u} \cdot \nabla C = \frac{1}{\tau Sc} \nabla^2 C$$

Characteristic quantities:

$$L^{c} = (\nu^{2}/g')^{1/3} , \quad T^{c} = (L^{c2}/\nu) ,$$

$$U^{c} = (\nu g')^{1/3} , \quad g' = \frac{\Delta \rho_{c}}{\rho_{0}} g ,$$

$$V_{st} = \frac{g d_{p}^{2} (\rho_{p} - \rho_{f})}{18 \mu_{f}}$$

Dimensionless parameters:

$$\begin{array}{ll} \textit{settling velocity} & V_p = \frac{V_{st}}{(\nu g')^{1/3}} & \textit{Schmidt number} & \textit{Sc} = \frac{\nu}{\kappa_s} \\ \textit{stability ratio} & R_s = \frac{\alpha}{\gamma} & \textit{diffusivity ratio} & \tau = \frac{\kappa_s}{\kappa_c} \\ \end{array}$$

Sedimentation from river plumes: Numerical simulations

Sedimentation from river plumes: Numerical simulations

Mammatus clouds

Volcanic ash plume

- thickening of the plume-dominated region \sim time \rightarrow convectively dominated
- vigorous convective motion
- 'streaks' due to the release of buoyant plumes

fit concentration profiles with erf \rightarrow determine interface location, thickness

- both interface thicknesses grow diffusively
- sediment interface thickness grows faster, in spite of smaller molecular diffusivity!
- sediment interface moves downward, but more slowly than Stokes settling velocity
- salinity interface moves upward

Turbulent diffusivities:

• turbulent sediment diffusivity is about twice as high as turbulent salinity diffusivity, even though the molecular salinity diffusivity is 25 times larger than 'molecular' sediment diffusivity \rightarrow consistent with numerical observations

Quasisteady measures of sedimentation dynamics

ratio of turbulent diffusivities:

$$\tau_{turb} = K_c/K_s$$

ratio of interface thicknesses

ratio of salinity flux to sediment flux:

$$\gamma = -\frac{F_s}{F_c}$$

• ratio of turbulent diffusivities, ratio of interface thicknesses and ratio of turbulent fluxes all approach quasisteady values \rightarrow will be important for scaling analysis

Ratio of nose height to salinity interface thickness:

- ratio of nose height to salinity interface thickness approaches quasisteady state, and remains «1
 - → sediment interface remains embedded in the region of strong salinity gradient
 - → double diffusion remains important

Sedimentation from river plumes: Effective settling velocity

Settling velocity enhancement:

• in the region z < 0, the effective settling velocity is O(1), rather than $V_{st} = 0.04$, i.e., it scales with the buoyancy velocity of the system, not the Stokes velocity

Sedimentation from river plumes: Leaking mode (higher Sc)

Sedimentation from river plumes: Leaking mode

horizontal cross-cuts through sediment concentration field:

 \rightarrow time increases

- nonlinear evolution of initial, localized plumes results in web-like structure
- characterized by sheets, rather than plumes

Sedimentation from river plumes: Leaking mode

Phase of horizontal Fourier mode vs. wave number:

• "Phase locking" of the double-diffusive sediment fingers by Rayleigh-Taylor instability mode

Sedimentation from river plumes: Scaling

Scaling of nose height with in-/outflow ratio:

→ quasisteady ratio of nose height to salinity interface thickness scales with ratio of sediment inflow into nose region to sediment outflow from nose region

Sedimentation from river plumes: Parametric study

Physical interpretation:

• for small settling velocity, the rate of sediment inflow from above is low → this low rate of sediment inflow can be balanced by conventional double-diffusive outflow of sediment below → there is little accumulation of sediment in the nose region → height of nose region remains small

for large settling velocity, the rate of sediment inflow from above is high →
 this high rate of sediment inflow cannot be balanced by traditional double diffusive sediment outflow below → sediment accumulates in the nose region
 → height of nose region increases until it is thick enough for Rayleigh Taylor instability to form, which leads to increased sediment outflow below
 → new balance between in- and outflow into the nose region is established

Summary

- double-diffusive sedimentation in river outflows dramatically enhances the effective settling velocity
- settling velocity scales with buoyancy velocity, not with Stokes velocity
- two mechanisms drive the process:
 - double-diffusive instability of salt vs. sediment
 - settling of sediment creates 'nose region,' Rayleigh-Taylor instability
- ratio of nose height/salinity interface thickness H/l_s determines regime
- for low Schmidt numbers, low stability ratios and small Stokes settling velocities, traditional double-diffusive instability causes convective 'fingering' mode
- for high Schmidt numbers, large stability ratios and large Stokes settling velocities, settling of sediment causes 'leaking' mode, via interaction of Rayleigh-Taylor and double-diffusive instability modes through 'phase-locking'
- overall dynamics is governed by the in-/outflow of sediment into/from the nose region