Convection: from small plumes to large coherent turbulent structures

<u>Rodolfo Ostilla Mónico</u> (and many others)

Taylor-Couette flow Angular momentum convection

Rayleigh-Bénard flow Heat convection

Geometric parameters

$$\eta = \frac{r_i}{r_o} \qquad \Gamma = \frac{L}{d}$$

Driving parameters

$$Re_i = \frac{r_i \omega_i d}{\nu}$$
 $Re_o = \frac{r_o \omega_o d}{\nu}$

Shear + rotation parameters

$$Re_s = \frac{1+\eta}{2} (Re_i - \eta Re_o)$$
$$\mu = \frac{\omega_o}{\omega_i}$$

$$d = r_o - r_i$$

Rich flow structures at low Reynolds

Andereck, Liu, Swinney, J. Fluid Mech., 164 (1986): 155-183

The transition to turbulence of TC flow

Increasing Reynolds number

R. Donnelly, "Taylor-couette flow: the early days", Physics Today 1991

Do the rolls dissapear at large Re?

 $\eta = 0.714$

Increase Reynolds enough

Lathrop DP, Fineberg J, Swinney HS. 1992. Phys. Rev. A 46:6390–6405

Seen in some experiments at high Reynolds number

Huisman SG, van der Veen RCA, Sun C, Lohse D. 2014. Nat. Commun. 5:3820

Also in DNS with periodic conditions

 $\eta = 0.909$ $Re_s = 10^5$ $\Gamma = 2$ $\omega_o = 0$

Seen in some experiments at high Reynolds number

Huisman SG, van der Veen RCA, Sun C, Lohse D. 2014. Nat. Commun. 5:3820

Rolls are persistent in time

$$\eta = 0.909$$
$$Re_s = 10^5$$
$$\Gamma = 2$$
$$\omega_o = 0$$

They seem to be resistant to axial flow

Axial autocorrelations with imposed flow

Rolls cause a very clear separation of BL & bulk

Boundary layers show log-layers

How logarithmic are the profiles?

S-like behaviour in similar Re₋ channels

Lozano-Durán, Jiménez, Phys. Fluids , 26 (2014), 011702

Mean profile looks similar to other flows

Streamwise velocity profile for $Re_{T} = 2000$

Is this "log-layer" behaviour apparent in other statistics of TC flow?

Overlap layers appear for the fluctuations

Overlap layer in velocity fluctuations

Streamwise (azimuthal) velocity fluctuations

 Re_{T} is too small to see overlap in u',

Rolls show up inside the boundary layers

Look at the azimuthal velocity spectra

Premultiplied azimuthal spectra at $y^+ \approx 15$

Large-scale rolls are attached to the wall

What about the radial velocity?

Premultiplied azimuthal spectra at $y^+ \approx 15$

Ostilla-Mónico, Verzicco, Lohse, J. Fluid Mech. (2016)

Rolls are active, they transport angular velocity near the wall

There is a maxima in the cospectra for axisymmetric rolls inside the BL

Going to large computational boxes...

 $\tilde{r} = 0.5$

Fixed structures persist in larger boxes

 $Re_i = 3.4 \times 10^4$ $\eta = 0.909$

Fixed structures persist in larger boxes

Fixed structures persist in larger boxes

And even larger boxes

 $Re_i = 1.57 \cdot 10^4$ $Re_\tau \approx 240$ $\eta = 0.909$

Different roll states for same box

 \widetilde{z}

Spanwise velocity (streaks) in BL

Velocity profiles depend on roll wavelength and not number

Dependence becomes weaker at higher Re

Ostilla-Mónico, Verzicco, Lohse. Phys. Fluids (2015)

Add "riblets" to regularize streaks:

Zhu, Ostilla-Mónico, Verzicco, Lohse. J Fluid Mech (2016)

Add "riblets" to regularize streaks:

 $\eta = 0.714$ $Re_s = 3 \times 10^4$

Zhu, Ostilla-Mónico, Verzicco, Lohse. J Fluid Mech (2016)

Suddenly make cylinders free-slip: decaying turbulence

 $\eta = 0.714$ $Re_s = 3 \times 10^4$

Zhu, Ostilla-Mónico, Verzicco, Lohse. J Fluid Mech (2016)

Suddenly make cylinders free-slip: decaying turbulence

Decaying TC tubulence preserves rolls for some time

First decay regime: rolls remain active

Ostilla-Mónico & others, in preparation

Large scale rolls exist only in certain regions of parameter space

Curvature & mean rotation prevent the existence of rolls

Ostilla-Mónico, van der Poel, Verzicco, Grossmann, Lohse. J. Fluid. Mech, 2015

Local flow organization depends on curvature

 $\eta = 0$ Vanishing inner cylinder $\eta = 1$ Two plates (plane Couette)

Local flow organization depends on mean rotation

Co-rotation No large scale rolls Weak counter-rotation: Large scale rolls which fill the entire gap Strong counter-rotation: Large scale rolls pushed towards inner cylinder

Counter-rotation: mixed dynamics

$$\mu = -1$$
$$\eta = 0.909$$
$$Re_s = 10^5$$

Local flow organization depends on mean rotation

Co-rotation No large scale rolls Weak counter-rotation: Large scale rolls which fill the entire gap Strong counter-rotation: Large scale rolls pushed towards inner cylinder

Different behaviour at both cylinders

Brauckmann, Eckhardt, Phys. Rev. E (2013) Brauckmann, Salewski, Eckhardt, J. Fluid Mech (2016)

Pure outer cylinder rotation: linearly stable

$$\mu \to -\infty$$
$$\eta = 0.909$$
$$Re_o = 2 \cdot 10^5$$

Ostilla-Mónico, Verzicco, Lohse, JFM Rapids (2016)

Angular momentum profile looks very different

Ostilla-Mónico, Verzicco, Lohse, JFM Rapids (2016)

Wall profiles look different in the bulk

Transport takes a very different character

Spectra at wall become similar to other flows

Quasi-Keplerian regime

No turbulence seen up to Re~10⁵

Avila, Phys. Rev. Lett (2012) Ostilla-Mónico, Verzicco, Grossman, Lohse, J. Fluid Mech. Rapids (2014) Shi, Rampp, Höf, Avila, Comp&Flu (2015)

Summary

- Taylor-Couette parameter space is extremely rich
- Three possible scenarios: linearly stable, linearly unstable and mixed
- Linearly unstable TC flow has large-scale rolls which cause very distinct properties.
- Linearly stable lacks the large-scale rolls, but still some properties are different.
- Quasi-Keplerian regime: up to now no conclusive evidence for turbulence up to Re~10⁵

Small taste of Rayleigh-Bénard

$$Ra = \frac{\beta g \Delta L^3}{\nu \kappa}$$
$$Pr = \frac{\nu}{\kappa}$$

$$Ro = \frac{\sqrt{\beta g \Delta/L}}{2\Omega}$$

$$Nu = \frac{Q}{\kappa \Delta L^{-1}}$$

3D flow: large scale patterns

Inside the Boundary Layer at $Ra = 10^8$

2D: Control structure topology with velocity boundary conditions

FIG. 1. (Color online) Temperature field snapshots for different simulations. Red and blue indicate hot and cold fluid respectively. The colour varies between $\theta = 0.2$ and $\theta = 0.8$. Ra = 10^{11} and $\Gamma = 1/2$ for lateral periodicity, showing zonal flow (left panel), Ra = 10^{10} and $\Gamma = 0.33$ for no-slip sidewalls, showing roll structures (center panel), and Ra = 10^{10} and $\Gamma = 0.33$ for stress-free sidewalls (right panel). The plates are no-slip in all cases. Movies can be found in the supplementary material.

Bursting with periodic BC in small domains

FIG. 7. (Color online) a) Nu as a function of dimensionless time in freefall time units at $\Gamma = 1/2$, for Ra = 1×10^8 and Ra = 1×10^{11} , NS plates and PD sidewalls. At Ra = 10^8 we observe bursting behaviour while at Ra = 10^{11} we do not: The zonal flow is bursting for lower Ra and sustained for higher Ra. Note the large difference between the time scale of the bursts at Ra = 10^8 and the fluctuations at Ra = 10^{11} . b) Probability density function of the time interval between the bursts Δt for Ra = 10^7 and Ra = 10^8 .

Reduced heat transport with small **Г**

FIG. 4. (Color online) a) Nu vs Γ for periodic sidewalls and no-slip plates for Ra $\in \{10^8, 10^9, 10^{10}, 10^{11}\}$, see legend in b). Jumps in Nu can be seen around $\Gamma \approx 1.25$, $\Gamma \approx 1.25$, $\Gamma \approx 1.10$ and $\Gamma \approx 1.05$ for Ra = 10^8 , Ra = 10^9 , Ra = 10^{10} and Ra = 10^{11} , respectively. The Nusselt number statistics at lower Γ than the jump are more difficult to converge than the other data points due to the bursting nature of Nu(t) and have a larger error. They are included to indicate the change of flow state. In b) Nu is compensated with Nu($\Gamma = 3$).

Certain BCs cause onset of "zonal" flow

FIG. 6. (Color online) Temperature field snapshots with velocity vectors superimposed for stress-free plates and periodic sidewalls for Pr = 1 and at $Ra = 10^6$ (left panel) and $Ra = 10^8$ (right panel) in a $\Gamma = 2$ cell. The temperature ranges from $0 \le \theta \le 1$. The size of the arrows is proportional to the absolute velocity. The flow is roll-like in a) and zonal in b). Corresponding movies can be found in the supplemental material.

Heat transport significantly reduced at high Ra

van der Poel, Ostilla-Mónico, Verzicco, Lohse, Phys. Rev. E (2014)

Mixed temperature BCs have little effect

Ripesi, Biferale, Sbragaglia, Wirth, J. Fluid Mech (2014)

Mixed temperature BC in 3D: little effect

Bakhuis, Ostilla-Mónico, van der Poel, Verzicco, Lohse, in preparation

Rapid rotation causes different organization

FIG. 1 (color online). Volume rendering of vertical vorticity ζ in geostrophic turbulence showing the development of a large scale dipole and the organization of small-scale convective eddies for Ra $E^{4/3} = 100$ and $\sigma = 1$ at t = 100.

FIG. 2 (color online). Barotropic vertical vorticity at t = 1, 10, 37.5, and 100, respectively, showing the organization of the flow into structures at progressively larger scales. The black lines indicate one-half wavelength of the dynamically-evolving baroclinic forcing scale $1/k_f$ defined in the text.

Depends on No-slip or Free-slip BCs

FIGURE 6. Snapshot at midheight (z = 0.5) of the vertical vorticity from runs at $Ra = 5 \times 10^{10}$ and $Ek = 1.34 \times 10^{-7}$. (a) SF plates. (b) NS plates. Red is positive (cyclonic) vorticity, while blue is negative (anticyclonic) vorticity. Both plots have the same colour scale.

Rayleigh-Bénard asymptotics:

Numerical simulation of an asymptotically reduced system for rotationally constrained convection

By MICHAEL SPRAGUE^{1,2}, KEITH JULIEN¹, EDGAR KNOBLOCH³ and JOSEPH WERNE⁴

FIGURE 3. As figure 2 but for $\widetilde{Ra} = 40$ and different Prandtl numbers Pr.(a) Pr = 1; (b) 3; (c) 7; (d) $\rightarrow \infty$.

Rayleigh-Bénard asymptotics:

On upper bounds for infinite Prandtl number convection with or without rotation

Charles R. Doering Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Peter Constantin^{a)} Department of Mathematics, University of Chicago, Chicago, Illinois 60637

$$\frac{1}{\Pr} \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) + \sqrt{\operatorname{Ta}} \, \mathbf{k} \times \mathbf{u} + \nabla p = \Delta \mathbf{u} + \operatorname{Ra} \, \mathbf{k}T,$$

 $\nabla \cdot \mathbf{u} = 0$,

$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \Delta T,$$

Zero-Prandtl-number convection

By OLIVIER THUAL[†]

National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA

$$\begin{aligned} \boldsymbol{v}_t + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} &= -\boldsymbol{\nabla} p + \boldsymbol{\nabla}^2 \boldsymbol{v} + R\theta \, \boldsymbol{e}_3, \\ \boldsymbol{\nabla} \cdot \boldsymbol{v} &= 0, \\ 0 &= w + \boldsymbol{\nabla}^2 \theta. \end{aligned}$$

Pr >> 1

Rayleigh-Bénard vs Internal Heating

$$Nu = \frac{Q}{\kappa \Delta L^{-1}}$$

$$Re = \frac{U_w L}{\nu}$$

Everywhere unstable

$$\langle T \rangle$$

$$\mathcal{F}_B = \frac{Q_b}{Q}$$

Stable/unstable

Little exploration of this problem

Goluskin, van der Poel, J. Fluid Mech Rapids (2016)

Different physics in 2D and 3D

2D vs 3D phenomena

Goluskin, van der Poel, J. Fluid Mech Rapids (2016)

Internal Heating

Goluskin, van der Poel, J. Fluid Mech Rapids (2016)