Data-driven approximation of the Koopman operator

Clancy Rowley

6 January 2017

Goals

- Determine approximations of Koopman eigenvalues/eigenfunctions/modes directly from data.
- Use these to try to learn features of dynamical systems
- Interested in high-dimensional systems (e.g., fluids)

Acknowledgments:

- Matt Williams (UTRC)
- Maziar Hemati (Minnesota)
- Yannis Kevrekidis (Princeton)

Outline

Dynamic Mode Decomposition and the Koopman operator

Definitions and a brief history
When does DMD approximate Koopman?
Example: two-dimensional map

Extended DMD

Collocation method to approximate Koopman
Example: basins of attraction in the Duffing equation

Dynamic Mode Decomposition: original definition

Dynamic Mode Decomposition (DMD) was originally defined by an algorithm ${ }^{1}$:

- Collect snapshots of data $\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$, equally spaced in time.
- Assume the data are linearly related:

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}
$$

- Use an Arnoldi-like algorithm to approximate eigenvalues and eigenvectors of A (without ever determining A explicitly).
Hitch: Typically the dynamics are nonlinear, and the linear assumption does not hold.

[^0]
Dynamic Mode Decomposition: an alternative definition

Collect snapshots of data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ and corresponding snapshots
$\mathbf{x}_{1}^{\#}, \ldots, \mathbf{x}_{m}^{\#}$ one "timestep" later. (For a sequential time series, one takes $\mathbf{x}_{k}^{\#}=\mathbf{x}_{k+1}$.)

Definition (DMD)

Assemble the data into two matrices

$$
X=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{m}
\end{array}\right] \quad X^{\#}=\left[\begin{array}{llll}
\mathbf{x}_{1}^{\#} & \mathbf{x}_{2}^{\#} & \cdots & \mathbf{x}_{m}^{\#}
\end{array}\right] .
$$

The DMD modes are eigenvectors of

$$
A=X^{\#} X^{+},
$$

where + denotes the Moore-Penrose pseudoinverse.

- Under mild assumptions on the data (e.g., the measurements \mathbf{x}_{j} are linearly independent), the data satisfy $\mathbf{x}_{j}^{\#}=A \mathbf{x}_{j}$.
- Thus, there still seems to be the assumption that the dynamics are linear. Yet it seems to give useful results for nonlinear problems. . . J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, and J.N. Kutz, J.

Computational Dynamics, Dec 2014.

Koopman operator

Definition (Koopman, 1931)

Consider a discrete-time dynamical system on a measure space (Z, μ) :

$$
z \mapsto T(z) .
$$

The Koopman operator U acts on scalar functions f (e.g., $f \in L^{2}(Z)$), as

$$
U f(z) \triangleq f(T(z)) .
$$

- If T is measure preserving $\left(\mu(A)=\mu\left(T^{-1} A\right)\right.$), then U is an isometry $(\|U f\|=\|f\|)$; if, in addition, T is invertible, then U is unitary.
- Suppose U has an eigenfunction φ, with $U \varphi=\lambda \varphi$, and let $y(k)=\varphi(z(k))$. Then

$$
y(k+1)=\varphi(z(k+1))=U \varphi(z(k))=\lambda \varphi(z(k))=\lambda y(k),
$$

so y evolves according to linear dynamics.

- If U has enough eigenfunctions so that we can reconstruct the state z from the values of the eigenfunctions, then there is a coordinate change in which the system is linear.

Koopman and DMD

How is Koopman related to DMD?

- Consider a set of observables $\psi_{j} \in L^{2}(Z), j=1, \ldots, n$, and let ψ denote the vector of observables.
- Consider a set of initial states $\left\{z_{1}, \ldots, z_{m}\right\} \subset Z$, and let

$$
\mathbf{x}_{k}=\boldsymbol{\psi}\left(z_{k}\right), \quad \mathbf{x}_{k}^{\#}=\boldsymbol{\psi}\left(T\left(z_{k}\right)\right)
$$

Define matrices X and $X^{\#}$ as before, and $A=X^{\#} X^{+}$.

Theorem (Koopman and DMD3 ${ }^{3}$)

Let φ be an eigenfunction of U with eigenvalue λ, and suppose $\varphi \in \operatorname{span}\left\{\psi_{j}\right\}$, so that $\varphi(z)=\mathbf{w}^{*} \boldsymbol{\psi}(z)$ for some $\mathbf{w} \in \mathbb{C}^{n}$. If $\mathbf{w} \in \mathcal{R}(X)$, then \mathbf{w} is a left eigenvector of A with eigenvalue $\lambda: \mathbf{w}^{*} A=\lambda \mathbf{w}^{*}$.

So Koopman eigenvalues are DMD eigenvalues, provided:

1. the set of observables is sufficiently large $\left(\varphi \in \operatorname{span}\left\{\psi_{j}\right\}\right)$
2. the data are sufficiently rich $(\mathbf{w} \in \mathcal{R}(X))$.

Furthermore, we can calculate the Koopman eigenfunctions from the left eigenvectors of the DMD matrix A, as $\varphi(z)=\mathbf{w}^{*} \psi(z)$.
${ }^{3}$ Tu, Rowley, Luchtenburg, Brunton, and Kutz, J. Comput. Dyn., 2014

Example: two-dimensional map

Caution

DMD with the "full-state observable" $\boldsymbol{\psi}(\mathbf{z})=\mathbf{z}$ typically does not work for a nonlinear system.

Consider the map

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \mapsto\left[\begin{array}{c}
\lambda z_{1} \\
\mu z_{2}+\left(\lambda^{2}-\mu\right) c z_{1}^{2}
\end{array}\right] .
$$

This system has an equilibrium at the origin, and invariant manifolds given by $z_{1}=0$ and $z_{2}=c z_{1}^{2}$:

Koopman eigenvalues are λ, μ with eigenfunctions

$$
\begin{aligned}
& \varphi_{\lambda}(\mathbf{z})=z_{1} \\
& \varphi_{\mu}(\mathbf{z})=z_{2}-c z_{1}^{2}
\end{aligned}
$$

In addition, φ_{λ}^{k} is an eigenfunction with eigenvalue λ^{k}, the product $\varphi_{\lambda} \varphi_{\mu}$ is an eigenfunction with eigenvalue $\lambda \mu$, etc.

DMD for two-dimensional map

Apply DMD to this example, with initial states \mathbf{z} given by $(1,1),(5,5),(-1,1),(-5,5)$, with $\lambda=0.9, \mu=0.5$.

- Case 1: observable $\boldsymbol{\psi}(\mathbf{z})=\left(z_{1}, z_{2}\right)$. If $c=0$, so that the problem is linear, then DMD eigenvalues are 0.9 and 0.5: good! If $c=1$, however, then the DMD eigenvalues are 0.9 and 2.002. These do not correspond to Koopman eigenvalues, and one might even presume the equilibrium is unstable!
- Case 2: observable $\boldsymbol{\psi}(\mathbf{z})=\left(z_{1}, z_{2}, z_{1}^{2}\right)$. Now, the DMD eigenvalues are $0.9,0.5$, and $0.81=0.9^{2}$, which agree with Koopman eigenvalues.
- Case 3: observable $\boldsymbol{\psi}(\mathbf{z})=\left(z_{1}, z_{2}, z_{2}^{2}\right)$. Now, the DMD eigenvalues are $0.9,0.822$, and 4.767 . There is still a linear relationship between the snapshots ($\mathbf{x}_{j}^{\#}=A \mathbf{x}_{j}$), but the eigenvalues do not correspond to Koopman eigenvalues because the Koopman eigenfunction φ_{μ} is not in the span of the observables.

Outline

Dynamic Mode Decomposition and the Koopman operator
 Definitions and a brief history
 When does DMD approximate Koopman?
 Example: two-dimensional map

Extended DMD

Collocation method to approximate Koopman
Example: basins of attraction in the Duffing equation

Approximating the Koopman operator

We can use spectral methods to approximate the Koopman operator. Consider the discrete-time dynamical system $z \mapsto T(z)$,

$$
(U f)(z)=f(T(z))=(f \circ T)(z) .
$$

We expand a function $f($ and $U f)$ in terms of basis functions ψ_{j} :

$$
f(z)=\sum_{j=1}^{N} a_{j} \psi_{j}(z), \quad U f(z)=\sum_{j=1}^{N} b_{j} \psi_{j}(z)
$$

This approximation takes the form of a matrix that maps from \mathbf{a} to \mathbf{b}.
Using a weighted residual method, $\mathbf{b}=\Psi^{+} \Psi^{\#} \mathbf{a}$, with
$\Psi=\left[\begin{array}{ccc}\left\langle W_{1}, \psi_{1}\right\rangle & \cdots & \left\langle W_{1}, \psi_{N}\right\rangle \\ \vdots & & \vdots \\ \left\langle W_{M}, \psi_{1}\right\rangle & \cdots & \left\langle W_{M}, \psi_{N}\right\rangle\end{array}\right], \quad \Psi^{\#}=\left[\begin{array}{ccc}\left\langle W_{1}, \psi_{1} \circ T\right\rangle & \cdots & \left\langle W_{1}, \psi_{N} \circ T\right\rangle \\ \vdots & & \vdots \\ \left\langle W_{M}, \psi_{1} \circ T\right\rangle & \cdots & \left\langle W_{M}, \psi_{N} \circ T\right\rangle\end{array}\right]$
where $\left\langle W_{i}, \cdot\right\rangle$ denotes the inner product with the ith weight function.

A collocation method

Data rather than equations

All we have access to is a data set $\left\{\mathbf{x}_{j}, \mathbf{x}_{j}^{\#}\right\}_{j=1}^{M}$, with $\mathbf{x}_{j}=\psi\left(z_{j}\right)$,
$\mathbf{x}_{j}^{\#}=\boldsymbol{\psi}\left(T z_{j}\right)$. The map T is unknown, and we cannot ask for more data.

- Choose $W_{i}(z)=\delta\left(z-z_{i}\right)$. Then
$\Psi=\left[\begin{array}{ccc}\psi_{1}\left(z_{1}\right) & \cdots & \psi_{N}\left(z_{1}\right) \\ \vdots & & \vdots \\ \psi_{1}\left(z_{M}\right) & \cdots & \psi_{N}\left(z_{M}\right)\end{array}\right], \quad \psi^{\#}=\left[\begin{array}{ccc}\psi_{1}\left(T z_{1}\right) & \cdots & \psi_{N}\left(T z_{1}\right) \\ \vdots & & \vdots \\ \psi_{1}\left(T z_{M}\right) & \cdots & \psi_{N}\left(T z_{M}\right)\end{array}\right]$
- The finite-dimensional approximation of U is

$$
K \triangleq \Psi^{+} \Psi^{\#}
$$

- The eigenvalues of K approximate the eigenvalues of U
- The eigenvectors approximate the eigenfunctions of U

Example: basins of attraction in the Duffing equation

- Consider the Duffing equation

$$
\ddot{x}+\delta \dot{x}+x\left(x^{2}-1\right)=0
$$

- Compute EDMD (with $\delta=0.5$):
- Data: 10^{3} trajectories with 11 samples each, sampling interval $\Delta t=0.25$
- Basis functions: 1000 radial basis functions (thin plate splines)
- $\lambda_{0}=-10^{-14}$: corresponding eigenfunction is the constant function
- $\lambda_{1}=-10^{-3}$: eigenfunction reveals basins of attraction

Dynamics in each basin

- $\lambda_{2}=-0.237+1.387 i$ (analytically $\left.-0.250+1.392 i\right)$

[^0]: ${ }^{1}$ P.J. Schmid, APS 2008, JFM 2010

