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Goals

» Determine approximations of Koopman
eigenvalues/eigenfunctions/modes directly from data.

» Use these to try to learn features of dynamical systems

» Interested in high-dimensional systems (e.g., fluids)
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Collocation method to approximate Koopman
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Dynamic Mode Decomposition: original definition
Dynamic Mode Decomposition (DMD) was originally defined by an
algorithm?:

» Collect snapshots of data xg, X1, X2, . .., Xm, equally spaced in time.

» Assume the data are linearly related:
X1 = Axk

> Use an Arnoldi-like algorithm to approximate eigenvalues and
eigenvectors of A (without ever determining A explicitly).

Hitch: Typically the dynamics are nonlinear, and the linear assumption
does not hold.

1P.J. Schmid, APS 2008, JFM 2010
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Dynamic Mode Decomposition: an alternative definition

Collect snapshots of data x1,...,x,, and corresponding snapshots
x’f, ..., X7 one “timestep” later. (For a sequential time series, one takes
Xk# = Xk41-)

Definition (DMD)

Assemble the data into two matrices
X:[xl X e Xm] X#z[x# x’; x#].
The DMD modes are eigenvectors of
A= X"XT,

where + denotes the Moore-Penrose pseudoinverse.

» Under mild assumptions on the data (e.g., the measurements x; are

linearly independent), the data satisfy x# = Ax;.
> Thus there still seems to be the assumpt|on that the dynamics are

eful results for nonlinear problems. .
J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S.L. Brunton, and J.N. Kutz, J.
Computational Dynamics, Dec 2014.
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Koopman operator

Definition (Koopman, 1931)

Consider a discrete-time dynamical system on a measure space (Z, u):
z— T(2).
The Koopman operator U acts on scalar functions f (e.g., f € L?(Z)), as
Uf(z) & f(T(2)).

» If T is measure preserving (u(A) = u(TLA)), then U is an isometry
([JUF]l = |IfID; if, in addition, T is invertible, then U is unitary.

» Suppose U has an eigenfunction ¢, with Up = Ay, and let
y(k) = p(z(K)). Then

y(k +1) = @(z(k + 1)) = Up(z(k)) = Ap(z(k)) = Ay(k),

so y evolves according to linear dynamics.

» If U has enough eigenfunctions so that we can reconstruct the state
z from the values of the eigenfunctions, then there is a coordinate
change in which the system is linear.
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Koopman and DMD

How is Koopman related to DMD?

» Consider a set of observables 1; € L>(Z), j=1,...,n, and let
denote the vector of observables.

» Consider a set of initial states {z1,...,z,} C Z, and let

xie=(z),  xp =p(T(z).
Define matrices X and X# as before, and A = X#XT.

Theorem (Koopman and DMD?3)

Let ¢ be an eigenfunction of U with eigenvalue \, and suppose
@ € span{1;}, so that p(z) = w*p(z) for some w € C". Ifw € R(X),
then w is a left eigenvector of A with eigenvalue \: w*A = \w*.

So Koopman eigenvalues are DMD eigenvalues, provided:
1. the set of observables is sufficiently large (¢ € span{v);})
2. the data are sufficiently rich (w € R(X)).
Furthermore, we can calculate the Koopman eigenfunctions from the left

, as ¢(z) = wry(z2).
3Tu, Rowley, Luchtenburg, Brunton, and Kutz, J. Comput. Dyn., 2014
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Example: two-dimensional map

Caution

DMD with the “full-state observable” 1(z) = z typically does not work
for a nonlinear system.

Consider the map

Z1 s AZl

2 pz + (N — p)ezg
This system has an equilibrium at the origin, and invariant manifolds
given by z; = 0 and z, = cz?:

ou(2) =20 — cz.

122 o, Koopman eigenvalues are \, u with
H 2= cn eigenfunctions
S 2
AN = Z) = Z
T‘r > Z1 ©X 1
|
|

In addition, ¢X is an eigenfunction with eigenvalue \¥, the product @y,
is an eigenfunction with eigenvalue Ay, etc.
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DMD for two-dimensional map

Apply DMD to this example, with initial states z given by
(1,1),(5,5),(-1,1),(-5,5), with A = 0.9, 1 = 0.5.

» Case 1: observable 1(z) = (z1,22). If ¢ =0, so that the problem is
linear, then DMD eigenvalues are 0.9 and 0.5: good!
If ¢ =1, however, then the DMD eigenvalues are 0.9 and 2.002.
These do not correspond to Koopman eigenvalues, and one might
even presume the equilibrium is unstable!

» Case 2: observable )(z) = (z1, 22, z2). Now, the DMD eigenvalues
are 0.9, 0.5, and 0.81 = 0.97, which agree with Koopman
eigenvalues.

» Case 3: observable (z) = (z1, z2,z3). Now, the DMD eigenvalues
are 0.9, 0.822, and 4.767. There is still a linear relationship between
the snapshots (xj# = AXx;), but the eigenvalues do not correspond to
Koopman eigenvalues because the Koopman eigenfunction ¢,, is not
in the span of the observables.
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Outline

Extended DMD
Collocation method to approximate Koopman
Example: basins of attraction in the Duffing equation
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Approximating the Koopman operator

We can use spectral methods to approximate the Koopman operator.
Consider the discrete-time dynamical system z — T(z),

(Uf)(2) = £(T(2)) = (fo T)(2).

We expand a function f (and Uf) in terms of basis functions ;:
N N
f(z)=>_ a(2), Uf(z) = bjy(2)
j=1 j=1

This approximation takes the form of a matrix that maps from a to b.
Using a weighted residual method, b = W W#a, with

(Wi, ) oo (Wa, o) Wa,p10T) oo (Wi,9noT)

V= , v =

(W, 1) -+ (Wi, ¥w) (Wi, pr0T) - (Wm,pwo T)
where (W;,-) denotes the inner product with the ith weight function.
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A collocation method

Data rather than equations

All we have access to is a data set {xj,xj#}j’\il, with xj = 9(z;),

xj# = 1(Tz). The map T is unknown, and we cannot ask for more data.

» Choose W(z) = d(z — z). Then
Yi(z) - Yn(z) Vi(Tz) - Yn(Tz)
V=1 Lo v 5
Yi(zm) - Yn(zm) Y1i(Tzm) -+ Un(Tzm)
» The finite-dimensional approximation of U is
K & uty#,

» The eigenvalues of K approximate the eigenvalues of U

» The eigenvectors approximate the eigenfunctions of U
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Example: basins of attraction in the Duffing equation

» Consider the Duffing equation
X+ox+x(x*-1)=0

» Compute EDMD (with 6 = 0.5):

» Data: 10° trajectories with 11 samples each, sampling interval
At =0.25
» Basis functions: 1000 radial basis functions (thin plate splines)

» Ao = —10~!: corresponding eigenfunction is the constant function
» A1 = —1073: eigenfunction reveals basins of attraction
2 I 0.050
19 0.025
> 0=
0.000
14
—0.025
—2 T T T
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Dynamics in each basin

» Ay = —0.237 + 1.387/ (analytically —0.250 + 1.392/)

192 2o

IP3

l 0.020
0.015
0.010

I 0.005
0.000
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