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Atmospheric COzq is rising rapidly
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Temperatures are rising along with CO»
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Temperature change (°C) from 1850s through 2010s

Schneider & Held, J. Climate, 2001; update http://climate-dynamics.org/videos



http://climate-dynamics.org/videos

As CO2 continues to rise, how warm will it get”
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quiliorium climate sensitivity was uncertain 1979
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... and still Is uncertain in 2016
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Allowable CO» concentration before 2°C threshold is
crossed depends strongly on ECS (CMIP5 models)
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Climate sensitivities scatter because of low clouds

Stratocumulus: colder Cumulus: warmer



Majority of ECS variance across models is
accounted for by low-cloud reflectance feedback

ECS (K)
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Can observations reduce the uncertainties
in cloud feedbacks?



—CS correlates with natural reflectance variations
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This allows us to constrain ECS (somewhat)
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Observations point to robustly positive shortwave
feedback of low clouds, but models differ widely
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Why are low clouds difficult for climate
models, and how can we make progress?



Latitude

Low clouds are important because they cover large
areas

Unique low-cloud fraction
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Sut there Is very little water in them

Latitude

Cloud water path
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Cloud condensate (um)
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Global-mean 0.7 mm

Based on CloudSAT-CALIPSO data for 2006-2011 from Kay & Gettelmann 2009



Most atmospheric water Is vapor

Water vapor
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Clouds form where small residual of water
condenses in coherent turbulent updrafts

[ arge-eddy simulation of tropical cumulus
Simulation with PyCLES (Pressel et al. 2015)




Climate models are too coarse to resolve updrafts

Global model:

~100 km resolution Cloud scales: ~10m

NASA MODIS



When will faster computers resolve clouds globally?
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Global cloud resolving models not before 2060

Clouds: 2060s?

»
T 1070 - -10”? 2
£ Gray zone =
= S
o :
S 107
= ®©
E :
@ -10° 9
— o
® 102 - -
= ® AGCM 5
Q ® AOGCM 5
o ® o ESM =
T 10° _Oo/‘:; AR1 AR2 AR3 AR4 AR5 o Flops [ 107 ©

I I I I I I
1980 2000 2020 2040

Year

Climate model resolution
Schneider et al. Nature Climate Change, 2017



“
"
o(D:.oo<
3 SN
1\ L r
T\e?\‘;f
rA
|8

@
O
1

I
ra 8

' f.’[ ’

D
A Lo f

> 2
KAY, NO
W)
T™E

SC
|EN
CE OF GLOR
Al

W,

A

CONRCMWG
LVsi vg

P
- uT
oo TDTE‘!O -
A?D
Q -



What we can do now

Global model

Limited-area model

Use global and limited-area models in hierarchical framework



t’s also the golden age of observations from space
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Develop new representations of clouds and

turbulence with model hierarchy and new data

Large-scale dynamics

Representation

of clouds/turbulence
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Develop new representations of clouds and
turbulence with model hierarchy and new data

Large-scale dynamics

Representation

_

of clouds/turbulence

" NASA CloudSat



What’s difficult about driving limited-area models”
Why not simply prescribing surface temperatures?

 Need to respect energy balance to get surface fluxes
right

- E.g., with fixed SST, evaporation
Ecxes—e:es(1 'RH)

increases exponentially with SST (Clausius-Clapeyron).
This distorts buoyancy flux.

Impossible in reality!



We can probe the cloud response with L

=S

- Python Cloud Large Eddy Simulation (PyCLES, Pressel et al. 2015)

- Closed budgets of specific entropy (s) and total water (qy)

- Discontinuity-capturing (WENQO) advection schemes

- Include radiative transfer in LES, couple it to slab ocean, and drive

it with
- horizontal fluxes of heat and water
- mean vertical velocities

- relaxation to moist adiabat in free troposphere



Perform LES of low clouds at subtropical sites
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Turbulence weakens, cumulus clouds thin under
warming (bout may form anvils)

CO2, temperature increase —
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Inversion shallows, turbulence weakens

Tan et al. JAMES, in press



Contrast: Cu response with prescribed
temperature

CQO2, temperature increase —
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Inversion stays same, turbulence strengthens

Tan et al. JAMES, in press



Cloud reflectance decreases under warming
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SW CRE decrease in LES is broadly consistent
with higher-sensitivity climate models

SWCRE change (W m2 K1)
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Develop new representations of clouds and

turbulence with model hierarchy and new data

Large-scale dynamics

Representation

of clouds/turbulence
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Cloud/boundary layer turbulence schemes in
current GCMs have unphysical discontinuities

Deep convection (coherent): Often mass flux schemes
(e.g., Arakawa & Schubert1974, Tiedtke 1989; Arakawa & Wu 2013)

- Shallow convection (coherent): Often also mass flux
schemes, but with discontinuously different parameters
(e.g., entrainment rates)

Boundary layer turbulence (more isotropic): Often

diffusive; difficult to match with cloud layer ¢.g.,Troen & Manrt
1086)

Parametric and structural discontinuities for processes with
common (e.q., dry) imits



We use drafts/environment decomposition to
develop unified representation of all SGS turbulence

Use adiabatically conserved variables ¢ = {8;, ¢; }; partition
fluxes into updraft, environment, and (later) downdraft
Components (Siebesma & Cuijpers 1995).

w'e = a,w' ¢’ A (1—a,)w'e +a,(1—ay,)(wy—we ) (Py— @)

If updraft area fraction a, is small and w, ~ 0 :

’LU/¢/ — UJ’¢/6 =+ auwu(¢u — ¢)

1st term focus in BL schemes, 2nd (mass flux) in
convection. Keep both!



environment decomposition (
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http://climate-dynamics.org

—ddy diffusion/mass flux scheme

Turbulent flux of conserved variables

0¢

w'¢' = —K(2)5-+ M(2)(¢u — @)

0z

ED term
(environment)

MF term
(updraft)

ED MF
transport transport




DMF scheme

Structure of new

Draft equations (continuous form, index ‘i’ represents the ith draft):
ow'  10(w)?

Vertical velocity w': o +5 5 = aBE + be;w' (w™ — w') & =8, 0rq,
Area fractiona; 9(pa)  O(paiw') paw (€ — 67) B.u: draft buoyancy
Ot Oz e: entrainment rate
D¢t Yy o | . O0:detrainment rate

i
Tracer ¢ pai~g s T PAW 5 = paiw' e (" — ¢') + paiSy G source terms

Grid-mean equations (continuous form, index ‘n’ represents environment):

dg”

Tendency due to MF: b _ oL -7 0

y Xﬂ M(wl v ) 0 e~ Z (Mg — ™)

Tendency due to ED: W‘ gD pOz ((PGnK )E) K: eddy diffusivity
_ dqu B dng dng dng dng o7 ; .

Total: “ | = e len i s e |s = 56 = 2(Sh) + anS

Treats updraft/downdraft/environment decomposition consistently, at second order
(e.qg., TKE), and allows variable draft fractions (requires prognostic equations)



This works quite well for cumulus clouds (BOMEX)
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Currently working on machine-learning
approaches to estimate closure
parameters in hierarchical EDMF scheme



Summary

- Models produce widely varying low-cloud feedbacks, driving
climate sensitivity spread

+ Observations point to robustly positive low-cloud feedback,
making climate sensitivity < 2.3 K very unlikely

- LES with closed energy budget show that Cu-layer generally
shallows, cloud feedback is robustly positive

- Stratocumulus may hold surprises as climate warms beyond
2xCOo

- Unified parameterization based on EDMF framework holds
promise, needs to be fleshed out further



