

Computing Clouds: Why Turbulent Coherent Structures are Crucial for Predicting Climate Change Tapio Schneider Zhihong Tan Florent Brient Kyle Pressel

Atmospheric CO₂ is rising rapidly

Data sources: Etheridge et al. 1998; Keeling et al. 2008

Temperature change (°C) from 1850s through 2010s

As CO₂ continues to rise, how warm will it get?

Equilibrium climate sensitivity was uncertain 1979

... and still is uncertain in 2016

Caltech GPS supercomputer

Allowable CO₂ concentration before 2°C threshold is crossed depends strongly on ECS (CMIP5 models)

Climate sensitivities scatter because of low clouds

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder

Cumulus: warmer

Majority of ECS variance across models is accounted for by low-cloud reflectance feedback

Can observations reduce the uncertainties in cloud feedbacks?

ECS correlates with *natural* reflectance variations

This allows us to constrain ECS (somewhat)

Brient and Schneider 2016

Observations point to robustly positive shortwave feedback of low clouds, but models differ widely

Brient and Schneider 2016

Why are low clouds difficult for climate models, and how can we make progress?

Most atmospheric water is vapor

Global-mean 25 mm

Clouds form where small residual of water condenses in coherent turbulent updrafts

Large-eddy simulation of tropical cumulus

Simulation with PyCLES (Pressel et al. 2015)

Climate models are too coarse to resolve updrafts

Cloud scales: ~10 m

When will faster computers resolve clouds globally?

Peak performance of fastest computer

Schneider et al. Nature Climate Change, 2017

Global cloud resolving models not before 2060

6-6.02

What we can do now

Use global and limited-area models in hierarchical framework

It's also the golden age of observations from space

Develop new representations of clouds and turbulence with model hierarchy and new data

Develop new representations of clouds and turbulence with model hierarchy and new data

What's difficult about driving limited-area models? Why not simply prescribing surface temperatures?

- Need to respect energy balance to get surface fluxes right
- E.g., with fixed SST, evaporation

 $E \sim e_s - e = e_s(1 - RH)$

increases exponentially with SST (Clausius-Clapeyron). This distorts buoyancy flux.

Impossible in reality!

We can probe the cloud response with LES

- Python Cloud Large Eddy Simulation (*PyCLES*, Pressel et al. 2015)
 - Closed budgets of specific entropy (s) and total water (q_t)
 - Discontinuity-capturing (WENO) advection schemes
- Include radiative transfer in LES, couple it to slab ocean, and drive it with
 - horizontal fluxes of heat and water
 - mean vertical velocities
 - relaxation to moist adiabat in free troposphere

Turbulence weakens, cumulus clouds thin under warming (but may form anvils)

Inversion shallows, turbulence weakens

Contrast: Cu response with prescribed temperature

Inversion stays same, turbulence strengthens

Cloud reflectance decreases under warming

SW CRE decrease in LES is broadly consistent with higher-sensitivity climate models

Brient and Schneider 2016

Develop new representations of clouds and turbulence with model hierarchy and new data

Cloud/boundary layer turbulence schemes in current GCMs have unphysical discontinuities

- Deep convection (coherent): Often mass flux schemes (e.g., Arakawa & Schubert1974, Tiedtke 1989; Arakawa & Wu 2013)
- Shallow convection (coherent): Often also mass flux schemes, but with discontinuously different parameters (e.g., entrainment rates)
- Boundary layer turbulence (more isotropic): Often diffusive; difficult to match with cloud layer (e.g., Troen & Mahrt 1986)

Parametric and structural discontinuities for processes with common (e.g., dry) limits

We use drafts/environment decomposition to develop unified representation of all SGS turbulence

Use adiabatically conserved variables $\phi = \{\theta_l, q_t\}$; partition fluxes into updraft, environment, and (later) downdraft components (Siebesma & Cuijpers 1995):

$$\overline{w'\phi'} = a_u \overline{w'\phi'}_u + (1-a_u) \overline{w'\phi'}_e + a_u (1-a_u) (w_u - w_e) (\phi_u - \phi_e)$$

If updraft area fraction a_u is small and $w_e \approx 0$:

$$\overline{w'\phi'} = \overline{w'\phi'}_e + a_u w_u (\phi_u - \bar{\phi})$$

1st term focus in BL schemes, 2nd (mass flux) in convection. Keep both!

Phenomenology of turbulence motivates drafts/ environment decomposition (BOMEX, shallow Cu)

(Kyle Pressel, code available at climate-dynamics.org)

Eddy diffusion/mass flux scheme

Turbulent flux of conserved variables (Siebesma & Teixeira 2000)

The optimit fraction a^{i} : (abosures approximation of $a_{j,surf}$ are required persented persents represents update, n or events environment, T represents grid-mean $+b\epsilon_i w^i (w^n - w^i)$ of contribute to the equations to $solve a_{j,surf}$ and $a_{j,surf}$ are required persented persents represents update, n of contribute to the equations to $solve a_{j,surf}$ and $a_{j,surf}$ are required persented persents of the equations of $a_{j,surf}$ and $a_{j,surf}$ are required persented persents update, n of contribute to the equations to $solve a_{j,surf}$ and $a_{j,surf}$ are required by $w^i (w^n - w^i)$ of contribute to the equations of $a_{j,surf}$ and $a_{j,surf}$ are required by $w^i (e^i - \delta^i)$ of contribute to the equations of $a_{j,surf}$ and $a_{j,surf}$ are required by $a_$ The set of continuous form equations to solve are subscript/superscript *i* represents updraft, *n* Userate environment, *formediated and the solution of the* att tDraft equations (continuous form; index if represents the ith draft): $\begin{array}{c} \text{Vertical velocity } w^{i} & \partial w^{i} & 1 \\ \text{Grid-mean tendency } \partial \phi^{i} & \phi^{i} \\ \text{Here} & \phi^{i} \\ \partial \phi^{i$ fr Updraft tracer ∂t^{i} , d^{i} $\rho a_{i}w^{i}$, $d^{i} \rho a_$ Tracer ϕ^{i} : $\partial \phi^{i}$ $\partial \phi^{i}$ $\partial \phi^{i} + \rho a_{i}w^{i}\frac{\partial \phi^{i}}{\partial \phi} = \rho a_{i}w^{i}\epsilon^{i}\epsilon^{i}\phi^{n}-\phi^{i}$ Grid-mean Mendency due to $MF_{i}(d\phi^{T}/dt)E^{F}_{E}$: $Grid-mean tendency due to <math>MF_{i}(d\phi^{T}/dt)P^{F}_{E}$: $i \neq n$ $i \neq n$ tendency due to ED (q_1) (q_2) (q_3) (q_4) (Tendency due to MF: $\partial \phi^{i} i^{i} = \rho a_{i} \partial \phi^{i} i^{T} \psi^{T} \partial \phi^{i} MF = \rho \partial z \partial \phi^{i} \partial$ required). id-mean tendency due to $F_{i} = \frac{1}{2} \left(\frac{1}{4} - \frac{1}{4}$ id-mean tence mer ane and the second red) Total: $\frac{dat}{dt} = E_{DM}$ The and aft, equations are assumed as post equations if or which the is an tendency due to the order of the second of the T<u>RE</u> prograduate and the second frequence of the second frequence of the second of th E prognosital equilibrium and the second of grid-mean, tendencieg: andition, Practically it Can I

This works quite well for cumulus clouds (BOMEX)

Currently working on machine-learning approaches to estimate closure parameters in hierarchical EDMF scheme

Summary

- Models produce widely varying low-cloud feedbacks, driving climate sensitivity spread
- Observations point to robustly positive low-cloud feedback, making climate sensitivity < 2.3 K very unlikely
- LES with closed energy budget show that Cu-layer generally shallows, cloud feedback is robustly positive
- Stratocumulus may hold surprises as climate warms beyond $2 \times CO_2$
- Unified parameterization based on EDMF framework holds promise, needs to be fleshed out further