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Linear instability

Buckling threshold (NASA)

Observation: Failure of linear theory!
Nominally identical shells buckle at different load (‘stochastic’)
Thinner shells tend to buckle for lower load
Captured by empirical design rules (‘knockdown factors’)

Transitional turbulence in shear flows The (seemingly simple) question
How much load can a cylinder shell carry?

Axially loaded cylinder shell
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Explanation: Extreme sensitivity to imperfections 
(von Karman & Tsien 1939, Koiter 1945, …)



Transitional turbulence in shear flows Thin shell stuctures
Structural regidity at minimal weight

Karam-Gibson 1994

Exceptional load carrying capacity

Challenging to predict buckling conditions

Reason: Imperfection sensitivity

Properties of curved shells



Transitional turbulence in shear flows Thin shell stuctures
The two canonical examples
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Axially loaded cylinder

Sphere under uniform pressure



Transitional turbulence in shear flows How to predict buckling loads?
The classical approach and its limitations

Problem: Imperfections typically unknown a priori 

Classical approach: Imperfections modify the critical load

Scenario: Linear instability of the imperfect system

Given imperfections -> predict buckling load

Idea: Fully nonlinear dynamical systems approach?

Example: Lee et al. 2016, Hutchinson 2016

designed geometric imperfections, of different amplitude and
width. First, 60 shells were fabricated following the protocol
detailed in Sec. 2.1, using the three elastic molds with tmold¼{585,
975, 1170} lm (to change the width of the defect), and systemati-
cally varied the mold indentation depth (to obtain defect ampli-
tudes in the range 0" d (lm)" 542). Throughout, the radius and
thickness of the shell were kept fixed at R¼ 24.85 mm and
t¼ 230 lm, such that g ¼ R=t ¼ 108. For each shell, three identi-
cal experimental runs were conducted; each experimental data
point represents the average of these measurements and its error
bars represent the standard deviation, although these are typically
smaller than the symbols size (e.g., as in Fig. 4).

3 Finite Element Simulations

The FEM simulations were performed using the commercial
package ABAQUS/STANDARD. The model was simplified to be two-
dimensional by assuming rotational symmetry. This reduced the
computational cost by a factor of #20, compared to an equivalent
model using a three-dimensional description of the structure using
shell elements. The shells were treated as incompressible neo-
Hookean solids, and reduced hybrid axisymmetric elements
CAX4RH were employed. A convergence study was performed,
which led to the selection of a regular mesh with 1000 elements in
the zenith direction and an equivalent mesh size in the radial
direction (between 6 and 30 elements, depending on the shell
thickness). All analyses considered a nonlinear geometry.

Two different sets of FEM simulations were performed for the
following purposes: (i) to characterize the shape of the shells

obtained through the fabrication process and (ii) to calculate the
buckling load and postbuckling response of the shells under exter-
nal pressure, for shells with a variety of defect geometries.

3.1 FEM of the Profile of the Imperfect Shells. The goal of
this first set of FEM simulations was to model the fabrication pro-
cedure and determine the shape of the engineered defect, for dif-
ferent levels of indentation of the flexible molds. Each mold was
modeled as a flexible shell (thicknesses tmold¼{585, 975, 1170}
lm), and the indentation plate was modeled as a rigid surface
using RAX2 elements. A frictionless general contact was defined
between all free surfaces. The indentation loading was modeled
by imposing the vertical displacement of the plate, which resulted
in the deformation of the mold. At the end of the simulation, the
position of the inner surface of the mold was extracted and
assumed to be equal to the outer surface of the fabricated shell.
The defect is defined as the radial displacement wI as a function of
the zenith angle, b. The amplitude of the defect, d, is equal to the
deflection at the pole, wIð0Þ.

Our simulations show that the width of the defect, defined as
the zenith angle at which the deflection wI becomes negligible,
increases with both the thickness of the mold and the amplitude,
d. Figure 3(a) shows the profiles of shells with tmold¼ 585 lm and
30" d (lm)" 300. The defect is highly localized near the pole
(b¼ 0), and the small variation of the profile of the shell for
increased values of d can be seen in the zoomed inset of Fig. 3(a).

The shape of different defects can be more easily compared
when wIðbÞ is normalized by d. In Fig. 3(b), we compare the
defect profiles obtained from FEM and experiments (see Sec. 2.2),
finding excellent agreement. The results used in this comparison
correspond to shells with the same amplitude, d¼ 207 lm, fabri-
cated using two molds of thickness, tmold ¼ 585 and 1170 lm. The
clear difference between the profiles obtained with both molds
demonstrates that the overall shape of the defect (e.g., its width)
can be controlled by varying the thickness of the mold.

Given the good agreement between FEM and experiments, for
the remainder of this paper, the reported defect amplitudes and the
corresponding profiles will be computed from FEM from the cor-
responding experimental parameters, given the laborious proce-
dure that would be required to systematically extract the same
quantities from the experiments.

Fig. 4 Knockdown factor, jd 5 pmax=pc , versus the normalized
defect amplitude, !d 5 d=t . In experiments (closed symbols), the
shell specimens were fabricated in the ranges of parameters,
tmold 5 {585, 975, 1170} lm and 0 £ !d £ 2:36. The lines represent
FEM data in which the defect profiles obtained by simulations
with tmold 5 {585, 975, 1170} lm were introduced to vary the
angular width of the defect.

Fig. 3 (a) Profiles of the indented mold calculated by FEM with
tmold 5 585 lm and 30 £ d ðlmÞ£ 300 (in steps of 30 lm) are plot-
ted in (x, y)-coordinates. Inset: Magnified profiles at the vicinity
of the pole. (b) Angular profile of the defect versus zenith angle
for shells with d 5 207 lm: experiments with tmold5{585, 1170}
lm (solid lines) and FEM with tmold 5 {585, 975, 1170} lm
(dashed, dashed-dotted-dotted, and dashed-dotted lines,
respectively).
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Zhermack, Italy), a silicone-based elastomer. VPS was mixed
with a ratio of base to curing agent 1:1 in weight, for 10 s at
2000 rpm (clockwise), and then 10 s at 2200 rpm (counterclock-
wise) using a centrifugal mixer (ARE-310, Thinky USA Inc.,
Laguna Hills, CA). The VPS solution was poured onto the hemi-
sphere and cured in approximately 20 min at room temperature
(20 !C). Upon curing and peeling from the rigid hemisphere, a
VPS shell of thickness t¼ 195 lm was produced. Repeating the
process multiple times enabled us to systematically increase the
thickness of the shell, which once thick enough, itself became the
flexible mold employed to fabricate the thin shells used in the
experiments. Three different molds were fabricated with thick-
nesses, tmold¼{585, 975, 1170} lm, by repeating the coating
three, five, and six times, respectively. The Young’s modulus of
cured VPS was measured to be E¼ 1.255 MPa, and its Poisson’s
ratio was assumed to be !¼ 0.5.

The actual thin spherical specimens used in the experiments
were fabricated following the same protocol described above, but
using the thick elastic shells, themselves employed as molds. The
VPS solution was poured onto the concave underside of the mold
and turned upside down to drain the excess polymer and produce
a thin lubrication film. The curing of this liquid film yielded a thin
shell with t¼ 230 lm. Note that this value of t was slightly higher
than that reported above for a single coating step of the mold due
to a slightly longer waiting time between the mixing of the poly-
mer and pouring onto the mold [22], to allow sufficient time to
prepare the apparatus and indent the pole (more below). The thin
shells obtained this way had uncontrollable imperfections that
were intrinsic to the fabrication process, for example, systematic
variations of the shell thickness (6.6% standard deviation from
pole to equator [22]), air bubbles, homogeneity of the polymer
mixture, and surface roughness of the mold. Still, these imperfec-
tions were overshadowed by the single dimplelike defect that was
precisely introduced in the shell fabrication protocol, as is
described next.

In Fig. 2, we present a series of photographs, along with corre-
sponding schematic diagrams, that illustrate the fabrication proto-
col of our imperfect thin hemispherical shells, containing a
precisely engineered defect. After filling the mold with VPS and
draining the excess liquid, the pole of the mold was indented by a
flat plate attached to an universal testing machine (5943, Instron,
Norwood, MA). We assume that the mold indentation results in
the same displacement of the shell pole from its perfect spherical
geometry, such that it defines the amplitude, d, of the defect (this
is validated in Sec. 3.1 through FEM simulations). To set d, we
programed the Instron to move the indentation tip at a constant
velocity (0.3 mm/min) until a specific load was detected by a 10 N
load cell, corresponding to the targeted amplitude (based on the
linear load–displacement relation), and then fixed this position.
The defect amplitude d was therefore defined as the distance
between the position where the onset of a nonzero load was first
detected and the position at which the target load was reached.
While holding the indentation constant, the VPS solution cured

inside of the deformed mold. Upon curing and peeling from the
mold, the final shells had thickness, t¼ 230 6 11 lm (uncertainty
is standard deviation of ten fabricated shells), resulting in a radius-
to-thickness ratio of g¼ 108. Moreover, this procedure of deform-
ing the mold through indentation allowed us to produce shells with
a single “dimplelike” defect at its pole, whose amplitude could be
varied in the range 0< d (lm)< 542. A localized thicker band
(2 mm thickness) at the equator due to the accumulation of excess
polymer ensured that the boundary conditions there were clamped.

2.2 Experimental Profile of the Dimplelike Defect.
Whereas the fabrication technique presented above enables us to
control the amplitude of the defect, d (through the depth of the
indentation), the precise shape of the dimple is self-selected by
the elastic properties, and hence the deformation, of the mold. In
particular, we are interested in characterizing the defect by the
radial deviation from a spherical shape, wI, as a function of the
zenith angle, b. Experimentally, we have measured this wIðbÞ pro-
file through digital imaging (Nikon D3200 camera, with a Micro-
NIKKOR 60 mm lens) and then extracted the shell contour by an
edge detection algorithm (image processing toolbox, MATLAB). A
circle was fit to the region away from the pole, where the effect of
the indentation is negligible, corresponding to the profile of the
defect-free spherical shell. The difference between this circle and
the digitized profile defines wIðbÞ. Two representative examples
of experimental imperfection profiles are provided in Fig. 3(b),
for two shells fabricated using molds with tmold ¼ 585 and
1170 lm, both at the same defect amplitude d¼ 207 lm. This pro-
files exhibit an inward, axisymmetric, and dimplelike deflection at
the vicinity of the pole (for b ! 20 deg), beyond which the shell
remains spherical [ wIðb " 20 degÞ % 0 ]. We have also done
FEM simulations to corroborate these findings, the details of
which will be presented in Sec. 3.1.

2.3 Measuring the Critical Buckling Pressure. The experi-
mental critical buckling pressure, pmax, was measured for each
shell using the following procedure. The shell was mounted onto
an acrylic plate with a hole at its center and connected to both a
syringe pump (NE-1000, New Era Pump Systems, Inc., Farming-
dale, NY) and a pressure sensor (MPXV7002, NXP Semiconduc-
tors, The Netherlands). The air inside the shell was extracted at the
imposed constant flow rate of 0.1 ml/min, while monitoring its
internal pressure at an acquisition rate of 1 Hz using the pressure
sensor. The internal pressure decreased gradually with time, until a
minimum value was reached, at which the shell buckled. The maxi-
mum pressure differential between the outside (atmospheric pres-
sure) and the inside of the shell was defined as the critical buckling
pressure, pmax.

2.4 Experimental Procedure and Range of Parameters.
We proceed by describing the experimental procedure used to
measure pmax for a collection of shells containing precisely

Fig. 2 Fabrication of the thin shell specimens. (a) Photographs and (b) schematic diagrams
of the fabrication protocol used to produce thin spherical shells with a dimplelike defect. (1) A
thick VPS mold shell is filled with liquid VPS and (2) turned upside down. (3) A dimplelike
defect is introduced by indenting the pole of the mold shell with an Instron machine, immedi-
ately after pouring of VPS. ((4) and (5)) Upon curing, a thin elastic shell containing a geometric
defect is peeled off from the mold.

Journal of Applied Mechanics NOVEMBER 2016, Vol. 83 / 111005-3

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/935655/ on 01/21/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Spherical cap

Development • Methodology review • Axisymmetric (1)

• Features

• Provide conservative results

• Requires knowledge of the characteristic 
imperfection amplitude for a realistic 
implementation

• Requires a expensive study to study the 
combination of the number of axisymmetric 
imperfections and location that provides the 
lower bound

> Research results from the first semester 11-2015/4-2016> E. Lozano > 19.14.2016DLR.de  •  Chart 15

Credit: E. Lozano

Development • Methodology review • Dimple (1)

• Features

• Provide conservative results

• Requires knowledge of the characteristic 
imperfection amplitude for a realistic 
implementation

• Requires a expensive study to study the 
combination of the number of dimples and 
location that provides the lower bound

> Research results from the first semester 11-2015/4-2016> E. Lozano > 19.14.2016DLR.de  •  Chart 12

Credit: E. Lozano

Credit: E. Lozano



0 500 1000 1500 2000

R/t

0.0

0.2

0.4

0.6

0.8

1.0

↵
=

�
/�

c

Nasa design rule

Linear instability
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Characterize basin of attraction as a function of load 

: trivial (unbuckled) state
: unstable equilibria
: edge state

Transitional turbulence in shear flows From turbulence transition to shell buckling
A new approach inspired by turbulence studies

Linearly stable!

Cylinder buckling

Linear instability of the imperfect system
Nonlinear finite amplitude instability of the perfect system

T. Mullin



Transitional turbulence in shear flows Geometric nonlinearity
Why is the problem intrinsically nonlinear?

Schneider Part B2 TURBUCK

by Tom Mullin, Björn Hof and others [12, 13, 36]. Instead of studying the ’natural’ transition triggered
by background noise and imperfections, they reduced uncontrolled background noise and instead
perturbed the flow by injecting well-controlled jets though the pipe wall. Thereby, they measured the
critical perturbation amplitude required for triggering turbulence as a function of Reynolds number
and probed the laminar flow’s stability boundary in the direction defined by their chosen perturbation.
Numerically, we found the geometry of the edge in pipe flow to be folded [20]. Together with Tom
Mullin’s group we confirmed that geometry together in experiment [37] where unprecedented precision
in controlling perturbations revealed non-monotonic variations of the probability to induce turbulence
as a function of perturbation amplitude.

Transferring dynamical systems concepts to elastic shells

We will transfer dynamical systems concepts and numerical tools from turbulence studies to elasticity
to characterize the prebuckled state’s basin of attraction as a function of load conditions. Specifically,
we will compute dynamically unstable equilibria located on the basin boundary that are indicative of
perturbation amplitudes required to trigger the nonlinear buckling transition.

Geometric nonlinearity

In both fluid mechanics and elasticity nonlinearity is not a result of extreme conditions but generically
emerges from simple classical physics. In a flow, the momentum ⇢~v is advected by the flow field ~v

creating the characteristic nonlinearity ~v · r~v in the Navier-Stokes equations. Likewise, in elasticity,
geometry creates nonlinearity even for mechanically linear materials. Deforming an elastic solid
displaces a material point at initial position ~

X to the new point ~x( ~

X, t). The displacement field
~u( ~

X, t) = ~x � ~

X written as a function of the Lagrangian coordinate fixed in the material leads to
an elastic response opposing the deformation, if distances between material points are changed. This
change in distance of two points initially separated by �
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X is given by
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where the strain tensor ✏

ij

is a nonlinear function of the displacement gradients. Consequently, even
for a linear material where the elastic stress is a linear function of strain, restoring stresses will be
nonlinear functions of the displacement field owing to the geometrically nonlinear strain-displacement
relation.

Balancing elastic stresses, inertia and damping terms yields the dynamical equations for the
displacement field ⇢@

tt

~u + �@

t

~u = ⇢~g + r · ⌧ with ⇢ the density, ⇢~g volume forces such as gravity
and ⌧ the Piola-Kirchhoff stress tensor which allows writing the force balance in terms of Lagrangian
coordinates. The ’viscosity’ � characterizes dissipation both within the elastic material and viscous
damping in a fluid surrounding an elastic shell. Instead of describing the full dynamics we only aim
at characterizing the stability of force equilibrate and the onset of buckling. We may thus neglect
inertial terms and consider the overdamped dynamics only. Consequently, we have the dynamical
system

~̇u = NL(~u)

with the nonlinear right hand side relating the displacement field to unbalanced forces. Above, the
Navier-Stokes equations were expressed in the same form and in the same manner as above spectra
of the linearized operator encode stability features.

Proof of concept: A localized fixed point on the basin boundary

Physically, we expect fully localized dimple solutions to form the relevant unstable equilibrium con-
figurations on the basin boundary of the unbuckled cylinder shell. This expectation is based on the
“worst imperfections” studied in [38] as well as the common experience that the easiest method to
actively destabilize a cylinder shell – say a coke can – is pushing locally to form a dimple. In a pre-
liminary study based on DMV shell equations (see methods) we indeed identified such an equilibrium
solution. The single dimple solution shown in Fig. 6 can be continued down to axial loads well below
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nonlinear functions of the displacement field owing to the geometrically nonlinear strain-displacement
relation.

Balancing elastic stresses, inertia and damping terms yields the dynamical equations for the
displacement field ⇢@

tt

~u + �@

t

~u = ⇢~g + r · ⌧ with ⇢ the density, ⇢~g volume forces such as gravity
and ⌧ the Piola-Kirchhoff stress tensor which allows writing the force balance in terms of Lagrangian
coordinates. The ’viscosity’ � characterizes dissipation both within the elastic material and viscous
damping in a fluid surrounding an elastic shell. Instead of describing the full dynamics we only aim
at characterizing the stability of force equilibrate and the onset of buckling. We may thus neglect
inertial terms and consider the overdamped dynamics only. Consequently, we have the dynamical
system

~̇u = NL(~u)

with the nonlinear right hand side relating the displacement field to unbalanced forces. Above, the
Navier-Stokes equations were expressed in the same form and in the same manner as above spectra
of the linearized operator encode stability features.

Proof of concept: A localized fixed point on the basin boundary

Physically, we expect fully localized dimple solutions to form the relevant unstable equilibrium con-
figurations on the basin boundary of the unbuckled cylinder shell. This expectation is based on the
“worst imperfections” studied in [38] as well as the common experience that the easiest method to
actively destabilize a cylinder shell – say a coke can – is pushing locally to form a dimple. In a pre-
liminary study based on DMV shell equations (see methods) we indeed identified such an equilibrium
solution. The single dimple solution shown in Fig. 6 can be continued down to axial loads well below
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by Tom Mullin, Björn Hof and others [12, 13, 36]. Instead of studying the ’natural’ transition triggered
by background noise and imperfections, they reduced uncontrolled background noise and instead
perturbed the flow by injecting well-controlled jets though the pipe wall. Thereby, they measured the
critical perturbation amplitude required for triggering turbulence as a function of Reynolds number
and probed the laminar flow’s stability boundary in the direction defined by their chosen perturbation.
Numerically, we found the geometry of the edge in pipe flow to be folded [20]. Together with Tom
Mullin’s group we confirmed that geometry together in experiment [37] where unprecedented precision
in controlling perturbations revealed non-monotonic variations of the probability to induce turbulence
as a function of perturbation amplitude.

Transferring dynamical systems concepts to elastic shells

We will transfer dynamical systems concepts and numerical tools from turbulence studies to elasticity
to characterize the prebuckled state’s basin of attraction as a function of load conditions. Specifically,
we will compute dynamically unstable equilibria located on the basin boundary that are indicative of
perturbation amplitudes required to trigger the nonlinear buckling transition.

Geometric nonlinearity

In both fluid mechanics and elasticity nonlinearity is not a result of extreme conditions but generically
emerges from simple classical physics. In a flow, the momentum ⇢~v is advected by the flow field ~v

creating the characteristic nonlinearity ~v · r~v in the Navier-Stokes equations. Likewise, in elasticity,
geometry creates nonlinearity even for mechanically linear materials. Deforming an elastic solid
displaces a material point at initial position ~
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is a nonlinear function of the displacement gradients. Consequently, even
for a linear material where the elastic stress is a linear function of strain, restoring stresses will be
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and ⌧ the Piola-Kirchhoff stress tensor which allows writing the force balance in terms of Lagrangian
coordinates. The ’viscosity’ � characterizes dissipation both within the elastic material and viscous
damping in a fluid surrounding an elastic shell. Instead of describing the full dynamics we only aim
at characterizing the stability of force equilibrate and the onset of buckling. We may thus neglect
inertial terms and consider the overdamped dynamics only. Consequently, we have the dynamical
system
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with the nonlinear right hand side relating the displacement field to unbalanced forces. Above, the
Navier-Stokes equations were expressed in the same form and in the same manner as above spectra
of the linearized operator encode stability features.

Proof of concept: A localized fixed point on the basin boundary

Physically, we expect fully localized dimple solutions to form the relevant unstable equilibrium con-
figurations on the basin boundary of the unbuckled cylinder shell. This expectation is based on the
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by background noise and imperfections, they reduced uncontrolled background noise and instead
perturbed the flow by injecting well-controlled jets though the pipe wall. Thereby, they measured the
critical perturbation amplitude required for triggering turbulence as a function of Reynolds number
and probed the laminar flow’s stability boundary in the direction defined by their chosen perturbation.
Numerically, we found the geometry of the edge in pipe flow to be folded [20]. Together with Tom
Mullin’s group we confirmed that geometry together in experiment [37] where unprecedented precision
in controlling perturbations revealed non-monotonic variations of the probability to induce turbulence
as a function of perturbation amplitude.

Transferring dynamical systems concepts to elastic shells

We will transfer dynamical systems concepts and numerical tools from turbulence studies to elasticity
to characterize the prebuckled state’s basin of attraction as a function of load conditions. Specifically,
we will compute dynamically unstable equilibria located on the basin boundary that are indicative of
perturbation amplitudes required to trigger the nonlinear buckling transition.

Geometric nonlinearity

In both fluid mechanics and elasticity nonlinearity is not a result of extreme conditions but generically
emerges from simple classical physics. In a flow, the momentum ⇢~v is advected by the flow field ~v

creating the characteristic nonlinearity ~v · r~v in the Navier-Stokes equations. Likewise, in elasticity,
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is a nonlinear function of the displacement gradients. Consequently, even
for a linear material where the elastic stress is a linear function of strain, restoring stresses will be
nonlinear functions of the displacement field owing to the geometrically nonlinear strain-displacement
relation.

Balancing elastic stresses, inertia and damping terms yields the dynamical equations for the
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~u = ⇢~g + r · ⌧ with ⇢ the density, ⇢~g volume forces such as gravity
and ⌧ the Piola-Kirchhoff stress tensor which allows writing the force balance in terms of Lagrangian
coordinates. The ’viscosity’ � characterizes dissipation both within the elastic material and viscous
damping in a fluid surrounding an elastic shell. Instead of describing the full dynamics we only aim
at characterizing the stability of force equilibrate and the onset of buckling. We may thus neglect
inertial terms and consider the overdamped dynamics only. Consequently, we have the dynamical
system

~̇u = NL(~u)

with the nonlinear right hand side relating the displacement field to unbalanced forces. Above, the
Navier-Stokes equations were expressed in the same form and in the same manner as above spectra
of the linearized operator encode stability features.

Proof of concept: A localized fixed point on the basin boundary

Physically, we expect fully localized dimple solutions to form the relevant unstable equilibrium con-
figurations on the basin boundary of the unbuckled cylinder shell. This expectation is based on the
“worst imperfections” studied in [38] as well as the common experience that the easiest method to
actively destabilize a cylinder shell – say a coke can – is pushing locally to form a dimple. In a pre-
liminary study based on DMV shell equations (see methods) we indeed identified such an equilibrium
solution. The single dimple solution shown in Fig. 6 can be continued down to axial loads well below
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OB 3: Relate intrinsic imperfections to imposed finite-amplitude perturbations. Based
on experiments and simulation, we will quantitatively relate perturbations of the perfect shell to
large and therefore well characterized imperfections of the base state. Specifically we will consider
imperfections in geometry, pre-stress and local material properties.

OB 4: Generalize to complex shell geometries – from fundamental physics to appli-
cations. The methods for computing critical perturbations will be generalized to pressure loaded
sphere (caps) and cones. Eventually we will consider complex shells structures where the methods
for predicting realistic buckling loads may serve as a design tool in engineering applications.

Section B: Methodology

The research will be carried out in three interlinked projects. Two theoretical/numerical projects are
complemented by an experimental investigation of critical buckling loads. The two theoretical projects
differ by how shells are represented numerically. Project A employs shell theories for describing sym-
metric cylinders in terms of PDEs on a 2D manifold while project B is based on FEM representations.
The former approach simplifies theoretical analysis and direct transfer of discretization methods from
fluids while the latter offers the flexibility to treat complex geometries and imperfections.

Project A – shell equations for the axially loaded cylindrical shell

Background and approach

Shell theories or shell equations are asymptotic reductions of 3D elasticity in the limit of vanishing
shell thickness t. A shell is represented as a 2D manifold embedded in 3D that stretches and bends
under the action of external forces and moments. Following Hutchinson [41] we will use the nonlinear
Donell-Mushtari-Vlassov (DMV) theory – a generalization of the Föppl-von Kármán (F.-vK.) plate
equation – but consider more accurate theories if nonlinear solutions are found to lie outside the DMV
validity range.

Deforming the mid surface of a shell, locally written as a graph according to (x1, x2, h(x1, x2)) !
(x1 + u1, x2 + u2, h(x1, x2) + w) with u

↵

the inplane (↵ = 1, 2) and w the transverse displacement
generates membrane and bending strains. Approximating the nonlinear displacement-strain relation
analog to the F.-vK. theory assuming a shallow shell h
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Integrating the generated stress ⌧ yields equilibrium conditions in terms of resultant inplane
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2)) the bending stiffness, E Young’s modulus
and ⌫ Poisson’s ratio. With a distributed normal load p and no distributed inplane forces the DMV
equilibrium equations in terms of the primitive variables u1, u2, w read
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Introducing an Airy stress potential with N11 = �F

,22, N12 = F

,12, N22 = �F

,11 and eliminating
in-plane displacements u

↵

via stress compatibility conditions yields a more compact form solely in
terms of the transverse displacement w and the stress potential F . However, boundary and inte-
grability conditions for F can be difficult to obtain so that we will work with both the Airy stress
function and the primitive variable formulation.

For a cylinder of length L and radius R with x and y the axial and the azimuthal coordinate
the only nonzero curvature component is b
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= �h

,yy

= R

�1. For suitable boundary conditions at
x = 0, L and applied axial force 2⇡RN the cylinder DMV equations allow the stressed prebuckled

7

Schneider Part B2 TURBUCK
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on experiments and simulation, we will quantitatively relate perturbations of the perfect shell to
large and therefore well characterized imperfections of the base state. Specifically we will consider
imperfections in geometry, pre-stress and local material properties.

OB 4: Generalize to complex shell geometries – from fundamental physics to appli-
cations. The methods for computing critical perturbations will be generalized to pressure loaded
sphere (caps) and cones. Eventually we will consider complex shells structures where the methods
for predicting realistic buckling loads may serve as a design tool in engineering applications.

Section B: Methodology

The research will be carried out in three interlinked projects. Two theoretical/numerical projects are
complemented by an experimental investigation of critical buckling loads. The two theoretical projects
differ by how shells are represented numerically. Project A employs shell theories for describing sym-
metric cylinders in terms of PDEs on a 2D manifold while project B is based on FEM representations.
The former approach simplifies theoretical analysis and direct transfer of discretization methods from
fluids while the latter offers the flexibility to treat complex geometries and imperfections.

Project A – shell equations for the axially loaded cylindrical shell

Background and approach

Shell theories or shell equations are asymptotic reductions of 3D elasticity in the limit of vanishing
shell thickness t. A shell is represented as a 2D manifold embedded in 3D that stretches and bends
under the action of external forces and moments. Following Hutchinson [41] we will use the nonlinear
Donell-Mushtari-Vlassov (DMV) theory – a generalization of the Föppl-von Kármán (F.-vK.) plate
equation – but consider more accurate theories if nonlinear solutions are found to lie outside the DMV
validity range.
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OB 3: Relate intrinsic imperfections to imposed finite-amplitude perturbations. Based
on experiments and simulation, we will quantitatively relate perturbations of the perfect shell to
large and therefore well characterized imperfections of the base state. Specifically we will consider
imperfections in geometry, pre-stress and local material properties.

OB 4: Generalize to complex shell geometries – from fundamental physics to appli-
cations. The methods for computing critical perturbations will be generalized to pressure loaded
sphere (caps) and cones. Eventually we will consider complex shells structures where the methods
for predicting realistic buckling loads may serve as a design tool in engineering applications.

Section B: Methodology

The research will be carried out in three interlinked projects. Two theoretical/numerical projects are
complemented by an experimental investigation of critical buckling loads. The two theoretical projects
differ by how shells are represented numerically. Project A employs shell theories for describing sym-
metric cylinders in terms of PDEs on a 2D manifold while project B is based on FEM representations.
The former approach simplifies theoretical analysis and direct transfer of discretization methods from
fluids while the latter offers the flexibility to treat complex geometries and imperfections.

Project A – shell equations for the axially loaded cylindrical shell

Background and approach

Shell theories or shell equations are asymptotic reductions of 3D elasticity in the limit of vanishing
shell thickness t. A shell is represented as a 2D manifold embedded in 3D that stretches and bends
under the action of external forces and moments. Following Hutchinson [41] we will use the nonlinear
Donell-Mushtari-Vlassov (DMV) theory – a generalization of the Föppl-von Kármán (F.-vK.) plate
equation – but consider more accurate theories if nonlinear solutions are found to lie outside the DMV
validity range.
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OB 3: Relate intrinsic imperfections to imposed finite-amplitude perturbations. Based
on experiments and simulation, we will quantitatively relate perturbations of the perfect shell to
large and therefore well characterized imperfections of the base state. Specifically we will consider
imperfections in geometry, pre-stress and local material properties.

OB 4: Generalize to complex shell geometries – from fundamental physics to appli-
cations. The methods for computing critical perturbations will be generalized to pressure loaded
sphere (caps) and cones. Eventually we will consider complex shells structures where the methods
for predicting realistic buckling loads may serve as a design tool in engineering applications.

Section B: Methodology

The research will be carried out in three interlinked projects. Two theoretical/numerical projects are
complemented by an experimental investigation of critical buckling loads. The two theoretical projects
differ by how shells are represented numerically. Project A employs shell theories for describing sym-
metric cylinders in terms of PDEs on a 2D manifold while project B is based on FEM representations.
The former approach simplifies theoretical analysis and direct transfer of discretization methods from
fluids while the latter offers the flexibility to treat complex geometries and imperfections.

Project A – shell equations for the axially loaded cylindrical shell

Background and approach

Shell theories or shell equations are asymptotic reductions of 3D elasticity in the limit of vanishing
shell thickness t. A shell is represented as a 2D manifold embedded in 3D that stretches and bends
under the action of external forces and moments. Following Hutchinson [41] we will use the nonlinear
Donell-Mushtari-Vlassov (DMV) theory – a generalization of the Föppl-von Kármán (F.-vK.) plate
equation – but consider more accurate theories if nonlinear solutions are found to lie outside the DMV
validity range.

Deforming the mid surface of a shell, locally written as a graph according to (x1, x2, h(x1, x2)) !
(x1 + u1, x2 + u2, h(x1, x2) + w) with u

↵

the inplane (↵ = 1, 2) and w the transverse displacement
generates membrane and bending strains. Approximating the nonlinear displacement-strain relation
analog to the F.-vK. theory assuming a shallow shell h

2
,↵

<< 1 yields (A
,↵

= @A/@x

↵

)

E

↵�

=
1

2
(u

↵,�

+ u

�,↵

) +
1

2
(h

,↵

w

,�

+ h

,�

w

,↵

) +
1

2
w

,↵

w

,�

, K

↵�

= �w

,↵�

such that the inplane 3D strain is given by ✏

↵�

= E

↵�

+ zK

↵�

with the transverse coordinate z

measured from the mid surface.
Integrating the generated stress ⌧ yields equilibrium conditions in terms of resultant inplane

(membrane) stresses N

↵�

=
R

t/2
�t/2 ⌧

↵�

dz and bending moments M

↵�

=
R

t/2
�t/2 ⌧

↵�

zdz which for an
isotropic linear elastic material are given by N

↵�

= Et/(1 � ⌫

2) [(1 � ⌫)E
↵�

+ ⌫E

��

�

↵�

] and M

↵�

=
D [(1 � ⌫)K

↵�

+ ⌫K

��

�

↵�

], with D = Et

3
/(12(1 � ⌫

2)) the bending stiffness, E Young’s modulus
and ⌫ Poisson’s ratio. With a distributed normal load p and no distributed inplane forces the DMV
equilibrium equations in terms of the primitive variables u1, u2, w read

N

↵�,�

= 0; Dr4
w + N

↵�

(h
,↵�

+ w

,↵�

) = �p.

Introducing an Airy stress potential with N11 = �F

,22, N12 = F

,12, N22 = �F

,11 and eliminating
in-plane displacements u

↵

via stress compatibility conditions yields a more compact form solely in
terms of the transverse displacement w and the stress potential F . However, boundary and inte-
grability conditions for F can be difficult to obtain so that we will work with both the Airy stress
function and the primitive variable formulation.

For a cylinder of length L and radius R with x and y the axial and the azimuthal coordinate
the only nonzero curvature component is b

yy

= �h

,yy

= R

�1. For suitable boundary conditions at
x = 0, L and applied axial force 2⇡RN the cylinder DMV equations allow the stressed prebuckled

7

Schneider Part B2 TURBUCK

OB 3: Relate intrinsic imperfections to imposed finite-amplitude perturbations. Based
on experiments and simulation, we will quantitatively relate perturbations of the perfect shell to
large and therefore well characterized imperfections of the base state. Specifically we will consider
imperfections in geometry, pre-stress and local material properties.

OB 4: Generalize to complex shell geometries – from fundamental physics to appli-
cations. The methods for computing critical perturbations will be generalized to pressure loaded
sphere (caps) and cones. Eventually we will consider complex shells structures where the methods
for predicting realistic buckling loads may serve as a design tool in engineering applications.

Section B: Methodology

The research will be carried out in three interlinked projects. Two theoretical/numerical projects are
complemented by an experimental investigation of critical buckling loads. The two theoretical projects
differ by how shells are represented numerically. Project A employs shell theories for describing sym-
metric cylinders in terms of PDEs on a 2D manifold while project B is based on FEM representations.
The former approach simplifies theoretical analysis and direct transfer of discretization methods from
fluids while the latter offers the flexibility to treat complex geometries and imperfections.

Project A – shell equations for the axially loaded cylindrical shell

Background and approach

Shell theories or shell equations are asymptotic reductions of 3D elasticity in the limit of vanishing
shell thickness t. A shell is represented as a 2D manifold embedded in 3D that stretches and bends
under the action of external forces and moments. Following Hutchinson [41] we will use the nonlinear
Donell-Mushtari-Vlassov (DMV) theory – a generalization of the Föppl-von Kármán (F.-vK.) plate
equation – but consider more accurate theories if nonlinear solutions are found to lie outside the DMV
validity range.
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terms of the transverse displacement w and the stress potential F . However, boundary and inte-
grability conditions for F can be difficult to obtain so that we will work with both the Airy stress
function and the primitive variable formulation.

For a cylinder of length L and radius R with x and y the axial and the azimuthal coordinate
the only nonzero curvature component is b
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consider an axially loaded cylinder shell of finite length subject to clamped boundary conditions.
Assuming overdamped dynamics we construct attracting equilibrium solutions on the basin
boundary of the unbuckled state’s basin of attraction. These so-called ’edge states’ are dominated
by a fully localized single dimple solution related to the mountain pass state constructed by
Horák et al. Continuing the solution branch for varying load, we observe homoclinic snaking
in the azimuthal direction: the single dimple undergoes a sequence of saddle-node bifurcations
leading to an increasing number of dimples localized in circumferential direction. If the whole
circumference is filled by a periodic ring of dimples, the onset of axial snaking as reported by
Hunt, Lord, Peletier and Champneys [5, 6, 7, 8, 9, 10] is observed.

The paper is organized as follows: Section 2 introduces the equations describing the
compressed shell as well as the numerical representation of the equations and the algorithm used
to find the edge state. The results are presented in section 3, starting in (a) with a description of
the edge state – a single localized dimple – and its properties. The e�ect of load variations on the
single dimple state is discussed in part (b). Finally in part (c) we restrict the domain to a periodic
section of the cylinder and document homoclinic snaking of the state in the axial direction. The
significance of the results is discussed in section 4. In appendix 5 we provide a verification of
our numerical scheme by recomputing the mountain pass solution from refs. [11, 12].

2. Equations and numerical implementation

(a) Equations and boundary conditions

We consider a thin cylindrical shell of thickness t, radius R and length L subject to uniform
axial load ⁄. Let x and y denote the axial and the azimuthal coordinate on the domain œ =
(≠L/2, L/2) ◊ (≠fiR, fiR). The elastic response of the shell is faithfully captured by the Donnell-
Mushtari-Vlasov (DMV) equations, also known as the von Kármán-Donnell equations. These
small strain and moderate rotation asymptotic reductions of 3D elasticity are approximations for
thin shells in the nonlinear regime up to rotations of 15 ≠ 20 degrees. [13] Under load the shell
responds with a uniform axial compression of the material. Deviations from this precompressed
unbuckled base state are characterized in terms of the outward displacement normal to the
surface w(x, y) and the Airy stress function „(x, y). The latter is a potential of the stresses in
the shell and related to them by „,xx = Nyy, „,yy = Nxx and „,xy = ≠Nxy (subscript comma
denotes di�erentiation), where N is the in-plane stress integrated over the shell thickness.

The DMV equilibrium equations written in terms of w and „ take the form [13]

D∆

2
w + 1

R

„,xx ≠ [w, „] + ⁄w,xx = 0 (2.1)

1
Et

∆

2
„ = 1

R

w,xx ≠ 1
2 [w, w]. (2.2)

with the bracket operator

[A, B] = A,xxB,yy + A,yyB,xx ≠ 2A,xyB,xy (2.3)

such that 1
2 [w, w] is the Gaussian curvature. Here the material parameters bending sti�ness

D = Et3

12(1≠‹2) , Young modulus E, and Poisson ratio ‹ characterize the elastic shell. ⁄ is the axial
compressive load per unit length. For small values of ⁄ the unbuckled configuration w(x, y) = 0
is linearly stable. A linear stability analysis of the perfect, unbuckled, infinitely long cylindrical
shell predicts a critical load of (see e.g. [1])

⁄C = E

3(1 ≠ ‹

2)
t

2

R

. (2.4)

The unstable modes which occur at that load lie on the Koiter circle [2].
The equations (2.1) and (2.2) are nonlinear di�erential equations of fourth order and thus

need to be supplied with two boundary conditions for each field on each side of the domain.

• Deviation from prebuckled base state (w,�) = (w,�)
tot

� (w0,�0)

depends on axial load

Transitional turbulence in shear flows Equations for a thin elastic shell
The Donnell-Mushtari-Vlassov theory
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To most faithfully reflect experimental conditions where a cylinder shell is placed between two
compressing plates we use clamped boundary for the normal displacement

w = w,x = 0, (2.5)

In ref. [14] these are suggested as “the most accurate approximation for the loaded ends” in an
experimental setup. Following [14] for the stress function at the loaded ends we enforce

„,x = (∆„),x = 0, (2.6)

which implies that the compressing plates remain parallel and compress the shell everywhere by
the same amount. Moreover, the shell is free to slide in the tangential direction. In the azimuthal
direction, periodic boundary conditions are the natural choice.

Equations (2.1) and (2.2) together with the boundary conditions are invariant with respect
to reflections x æ ≠x and y æ ≠y. We can therefore consider only one fourth of the full cylinder,
œ1/4 = (0, L/2) ◊ (0, fiR) and enforce the symmetry conditions at the planes x = 0 and y = 0.
The symmetry conditions are equivalent to demanding odd derivatives of the solutions to vanish
at the symmetry planes. Exploiting these discrete symmetries reduces the numerical cost of
the simulations and improves convergence properties of root-finding algorithms. The full set of
boundary conditions in the symmetric subspace is:

At x = 0 : w,x = w,xxx = 0 and „,x = „,xxx = 0 (2.7)

At x = L : w = w,x = 0 and „,x = „,xxx = 0 (2.8)

At y = 0 : w,y = w,yyy = 0 and „,y = „,yyy = 0 (2.9)

At y = fiR : w,y = w,yyy = 0 and „,y = „,yyy = 0. (2.10)

Since neither „ nor ∆„ are fixed in their absolute value by these boundary conditions, additional
integral conditions need to be imposed

R
œ1/4

„d2
x =

R
œ1/4

∆„d2
x = 0. The first condition fixes

the free gauge of the stress potential while the latter condition sets integrated forces and torques
to zero and thereby prohibits solid body translations and rotations of the cylinder shell.

(b) Numerical implementation

To compute equilibrium solutions of equation (2.1), perform linear stability analyses of the
solutions and follow solutions as a function of load, we consider a first order dynamical system
resulting from the overdamped evolution of the shell.

The r.h.s. of equation (2.1) indicates unbalanced forces in the shell. If the forces vanish
identically, an equilibrium solution is found. To characterize the stability of an equilibrium we
consider the temporal evolution of an infinitesimal perturbation. A nonzero r.h.s. will cause
the shell to move. In general elastic forces are balanced by both acceleration w,·· in the
normal displacement and an additional damping term ≠”w,· capturing dissipation. Since any
acceleration from rest causes a velocity in the same direction, the stability of an equilibrium
with respect to infinitesimal perturbations is not altered by inertia. Thus, for characterizing the
stability of an equilibrium we may neglect the acceleration term and consider an overdamped
dynamics, where ≠”w,· ∫ w,·· . The normal displacement evolves according to the nonlinear
dynamical system

w,· = f(w) © ≠1
”

1
D∆

2
w + 1

R

„,xx ≠ [w, „] + ⁄w,xx

2
. (2.11)

Here the Airy stress function is a dependent variable of w, obtained by solving the boundary
value problem (2.2) for a known w.

Computing solutions to the equilibrium equations equation (2.1) is equivalent to finding fixed
points f(wú) = w

ú
,· = 0 of the dynamical system. The stability of such fixed points is controlled

by the spectrum of the linearized evolution operator. If all eigenvalues of f linearized around
a fixed point w

ú have non-positive real part, the fixed point is stable and small deviations will
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consider an axially loaded cylinder shell of finite length subject to clamped boundary conditions.
Assuming overdamped dynamics we construct attracting equilibrium solutions on the basin
boundary of the unbuckled state’s basin of attraction. These so-called ’edge states’ are dominated
by a fully localized single dimple solution related to the mountain pass state constructed by
Horák et al. Continuing the solution branch for varying load, we observe homoclinic snaking
in the azimuthal direction: the single dimple undergoes a sequence of saddle-node bifurcations
leading to an increasing number of dimples localized in circumferential direction. If the whole
circumference is filled by a periodic ring of dimples, the onset of axial snaking as reported by
Hunt, Lord, Peletier and Champneys [5, 6, 7, 8, 9, 10] is observed.

The paper is organized as follows: Section 2 introduces the equations describing the
compressed shell as well as the numerical representation of the equations and the algorithm used
to find the edge state. The results are presented in section 3, starting in (a) with a description of
the edge state – a single localized dimple – and its properties. The e�ect of load variations on the
single dimple state is discussed in part (b). Finally in part (c) we restrict the domain to a periodic
section of the cylinder and document homoclinic snaking of the state in the axial direction. The
significance of the results is discussed in section 4. In appendix 5 we provide a verification of
our numerical scheme by recomputing the mountain pass solution from refs. [11, 12].

2. Equations and numerical implementation

(a) Equations and boundary conditions

We consider a thin cylindrical shell of thickness t, radius R and length L subject to uniform
axial load ⁄. Let x and y denote the axial and the azimuthal coordinate on the domain œ =
(≠L/2, L/2) ◊ (≠fiR, fiR). The elastic response of the shell is faithfully captured by the Donnell-
Mushtari-Vlasov (DMV) equations, also known as the von Kármán-Donnell equations. These
small strain and moderate rotation asymptotic reductions of 3D elasticity are approximations for
thin shells in the nonlinear regime up to rotations of 15 ≠ 20 degrees. [13] Under load the shell
responds with a uniform axial compression of the material. Deviations from this precompressed
unbuckled base state are characterized in terms of the outward displacement normal to the
surface w(x, y) and the Airy stress function „(x, y). The latter is a potential of the stresses in
the shell and related to them by „,xx = Nyy, „,yy = Nxx and „,xy = ≠Nxy (subscript comma
denotes di�erentiation), where N is the in-plane stress integrated over the shell thickness.

The DMV equilibrium equations written in terms of w and „ take the form [13]
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„,xx ≠ [w, „] + ⁄w,xx = 0 (2.1)
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Et
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„ = 1

R

w,xx ≠ 1
2 [w, w]. (2.2)

with the bracket operator

[A, B] = A,xxB,yy + A,yyB,xx ≠ 2A,xyB,xy (2.3)

such that 1
2 [w, w] is the Gaussian curvature. Here the material parameters bending sti�ness

D = Et3

12(1≠‹2) , Young modulus E, and Poisson ratio ‹ characterize the elastic shell. ⁄ is the axial
compressive load per unit length. For small values of ⁄ the unbuckled configuration w(x, y) = 0
is linearly stable. A linear stability analysis of the perfect, unbuckled, infinitely long cylindrical
shell predicts a critical load of (see e.g. [1])

⁄C = E

3(1 ≠ ‹

2)
t

2

R

. (2.4)

The unstable modes which occur at that load lie on the Koiter circle [2].
The equations (2.1) and (2.2) are nonlinear di�erential equations of fourth order and thus

need to be supplied with two boundary conditions for each field on each side of the domain.
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consider an axially loaded cylinder shell of finite length subject to clamped boundary conditions.
Assuming overdamped dynamics we construct attracting equilibrium solutions on the basin
boundary of the unbuckled state’s basin of attraction. These so-called ’edge states’ are dominated
by a fully localized single dimple solution related to the mountain pass state constructed by
Horák et al. Continuing the solution branch for varying load, we observe homoclinic snaking
in the azimuthal direction: the single dimple undergoes a sequence of saddle-node bifurcations
leading to an increasing number of dimples localized in circumferential direction. If the whole
circumference is filled by a periodic ring of dimples, the onset of axial snaking as reported by
Hunt, Lord, Peletier and Champneys [5, 6, 7, 8, 9, 10] is observed.

The paper is organized as follows: Section 2 introduces the equations describing the
compressed shell as well as the numerical representation of the equations and the algorithm used
to find the edge state. The results are presented in section 3, starting in (a) with a description of
the edge state – a single localized dimple – and its properties. The e�ect of load variations on the
single dimple state is discussed in part (b). Finally in part (c) we restrict the domain to a periodic
section of the cylinder and document homoclinic snaking of the state in the axial direction. The
significance of the results is discussed in section 4. In appendix 5 we provide a verification of
our numerical scheme by recomputing the mountain pass solution from refs. [11, 12].

2. Equations and numerical implementation

(a) Equations and boundary conditions

We consider a thin cylindrical shell of thickness t, radius R and length L subject to uniform
axial load ⁄. Let x and y denote the axial and the azimuthal coordinate on the domain œ =
(≠L/2, L/2) ◊ (≠fiR, fiR). The elastic response of the shell is faithfully captured by the Donnell-
Mushtari-Vlasov (DMV) equations, also known as the von Kármán-Donnell equations. These
small strain and moderate rotation asymptotic reductions of 3D elasticity are approximations for
thin shells in the nonlinear regime up to rotations of 15 ≠ 20 degrees. [13] Under load the shell
responds with a uniform axial compression of the material. Deviations from this precompressed
unbuckled base state are characterized in terms of the outward displacement normal to the
surface w(x, y) and the Airy stress function „(x, y). The latter is a potential of the stresses in
the shell and related to them by „,xx = Nyy, „,yy = Nxx and „,xy = ≠Nxy (subscript comma
denotes di�erentiation), where N is the in-plane stress integrated over the shell thickness.

The DMV equilibrium equations written in terms of w and „ take the form [13]
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such that 1
2 [w, w] is the Gaussian curvature. Here the material parameters bending sti�ness

D = Et3

12(1≠‹2) , Young modulus E, and Poisson ratio ‹ characterize the elastic shell. ⁄ is the axial
compressive load per unit length. For small values of ⁄ the unbuckled configuration w(x, y) = 0
is linearly stable. A linear stability analysis of the perfect, unbuckled, infinitely long cylindrical
shell predicts a critical load of (see e.g. [1])
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The unstable modes which occur at that load lie on the Koiter circle [2].
The equations (2.1) and (2.2) are nonlinear di�erential equations of fourth order and thus

need to be supplied with two boundary conditions for each field on each side of the domain.
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To most faithfully reflect experimental conditions where a cylinder shell is placed between two
compressing plates we use clamped boundary for the normal displacement

w = w,x = 0, (2.5)

In ref. [14] these are suggested as “the most accurate approximation for the loaded ends” in an
experimental setup. Following [14] for the stress function at the loaded ends we enforce

„,x = (∆„),x = 0, (2.6)

which implies that the compressing plates remain parallel and compress the shell everywhere by
the same amount. Moreover, the shell is free to slide in the tangential direction. In the azimuthal
direction, periodic boundary conditions are the natural choice.

Equations (2.1) and (2.2) together with the boundary conditions are invariant with respect
to reflections x æ ≠x and y æ ≠y. We can therefore consider only one fourth of the full cylinder,
œ1/4 = (0, L/2) ◊ (0, fiR) and enforce the symmetry conditions at the planes x = 0 and y = 0.
The symmetry conditions are equivalent to demanding odd derivatives of the solutions to vanish
at the symmetry planes. Exploiting these discrete symmetries reduces the numerical cost of
the simulations and improves convergence properties of root-finding algorithms. The full set of
boundary conditions in the symmetric subspace is:

At x = 0 : w,x = w,xxx = 0 and „,x = „,xxx = 0 (2.7)

At x = L : w = w,x = 0 and „,x = „,xxx = 0 (2.8)

At y = 0 : w,y = w,yyy = 0 and „,y = „,yyy = 0 (2.9)

At y = fiR : w,y = w,yyy = 0 and „,y = „,yyy = 0. (2.10)

Since neither „ nor ∆„ are fixed in their absolute value by these boundary conditions, additional
integral conditions need to be imposed

R
œ1/4
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∆„d2
x = 0. The first condition fixes

the free gauge of the stress potential while the latter condition sets integrated forces and torques
to zero and thereby prohibits solid body translations and rotations of the cylinder shell.

(b) Numerical implementation

To compute equilibrium solutions of equation (2.1), perform linear stability analyses of the
solutions and follow solutions as a function of load, we consider a first order dynamical system
resulting from the overdamped evolution of the shell.

The r.h.s. of equation (2.1) indicates unbalanced forces in the shell. If the forces vanish
identically, an equilibrium solution is found. To characterize the stability of an equilibrium we
consider the temporal evolution of an infinitesimal perturbation. A nonzero r.h.s. will cause
the shell to move. In general elastic forces are balanced by both acceleration w,·· in the
normal displacement and an additional damping term ≠”w,· capturing dissipation. Since any
acceleration from rest causes a velocity in the same direction, the stability of an equilibrium
with respect to infinitesimal perturbations is not altered by inertia. Thus, for characterizing the
stability of an equilibrium we may neglect the acceleration term and consider an overdamped
dynamics, where ≠”w,· ∫ w,·· . The normal displacement evolves according to the nonlinear
dynamical system

w,· = f(w) © ≠1
”

1
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2
. (2.11)

Here the Airy stress function is a dependent variable of w, obtained by solving the boundary
value problem (2.2) for a known w.

Computing solutions to the equilibrium equations equation (2.1) is equivalent to finding fixed
points f(wú) = w

ú
,· = 0 of the dynamical system. The stability of such fixed points is controlled

by the spectrum of the linearized evolution operator. If all eigenvalues of f linearized around
a fixed point w

ú have non-positive real part, the fixed point is stable and small deviations will
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To most faithfully reflect experimental conditions where a cylinder shell is placed between two
compressing plates we use clamped boundary for the normal displacement

w = w,x = 0, (2.5)

In ref. [14] these are suggested as “the most accurate approximation for the loaded ends” in an
experimental setup. Following [14] for the stress function at the loaded ends we enforce

„,x = (∆„),x = 0, (2.6)

which implies that the compressing plates remain parallel and compress the shell everywhere by
the same amount. Moreover, the shell is free to slide in the tangential direction. In the azimuthal
direction, periodic boundary conditions are the natural choice.

Equations (2.1) and (2.2) together with the boundary conditions are invariant with respect
to reflections x æ ≠x and y æ ≠y. We can therefore consider only one fourth of the full cylinder,
œ1/4 = (0, L/2) ◊ (0, fiR) and enforce the symmetry conditions at the planes x = 0 and y = 0.
The symmetry conditions are equivalent to demanding odd derivatives of the solutions to vanish
at the symmetry planes. Exploiting these discrete symmetries reduces the numerical cost of
the simulations and improves convergence properties of root-finding algorithms. The full set of
boundary conditions in the symmetric subspace is:

At x = 0 : w,x = w,xxx = 0 and „,x = „,xxx = 0 (2.7)

At x = L : w = w,x = 0 and „,x = „,xxx = 0 (2.8)

At y = 0 : w,y = w,yyy = 0 and „,y = „,yyy = 0 (2.9)

At y = fiR : w,y = w,yyy = 0 and „,y = „,yyy = 0. (2.10)

Since neither „ nor ∆„ are fixed in their absolute value by these boundary conditions, additional
integral conditions need to be imposed

R
œ1/4

„d2
x =

R
œ1/4

∆„d2
x = 0. The first condition fixes

the free gauge of the stress potential while the latter condition sets integrated forces and torques
to zero and thereby prohibits solid body translations and rotations of the cylinder shell.

(b) Numerical implementation

To compute equilibrium solutions of equation (2.1), perform linear stability analyses of the
solutions and follow solutions as a function of load, we consider a first order dynamical system
resulting from the overdamped evolution of the shell.

The r.h.s. of equation (2.1) indicates unbalanced forces in the shell. If the forces vanish
identically, an equilibrium solution is found. To characterize the stability of an equilibrium we
consider the temporal evolution of an infinitesimal perturbation. A nonzero r.h.s. will cause
the shell to move. In general elastic forces are balanced by both acceleration w,·· in the
normal displacement and an additional damping term ≠”w,· capturing dissipation. Since any
acceleration from rest causes a velocity in the same direction, the stability of an equilibrium
with respect to infinitesimal perturbations is not altered by inertia. Thus, for characterizing the
stability of an equilibrium we may neglect the acceleration term and consider an overdamped
dynamics, where ≠”w,· ∫ w,·· . The normal displacement evolves according to the nonlinear
dynamical system

w,· = f(w) © ≠1
”

1
D∆

2
w + 1

R

„,xx ≠ [w, „] + ⁄w,xx

2
. (2.11)

Here the Airy stress function is a dependent variable of w, obtained by solving the boundary
value problem (2.2) for a known w.

Computing solutions to the equilibrium equations equation (2.1) is equivalent to finding fixed
points f(wú) = w

ú
,· = 0 of the dynamical system. The stability of such fixed points is controlled

by the spectrum of the linearized evolution operator. If all eigenvalues of f linearized around
a fixed point w

ú have non-positive real part, the fixed point is stable and small deviations will
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consider an axially loaded cylinder shell of finite length subject to clamped boundary conditions.
Assuming overdamped dynamics we construct attracting equilibrium solutions on the basin
boundary of the unbuckled state’s basin of attraction. These so-called ’edge states’ are dominated
by a fully localized single dimple solution related to the mountain pass state constructed by
Horák et al. Continuing the solution branch for varying load, we observe homoclinic snaking
in the azimuthal direction: the single dimple undergoes a sequence of saddle-node bifurcations
leading to an increasing number of dimples localized in circumferential direction. If the whole
circumference is filled by a periodic ring of dimples, the onset of axial snaking as reported by
Hunt, Lord, Peletier and Champneys [5, 6, 7, 8, 9, 10] is observed.

The paper is organized as follows: Section 2 introduces the equations describing the
compressed shell as well as the numerical representation of the equations and the algorithm used
to find the edge state. The results are presented in section 3, starting in (a) with a description of
the edge state – a single localized dimple – and its properties. The e�ect of load variations on the
single dimple state is discussed in part (b). Finally in part (c) we restrict the domain to a periodic
section of the cylinder and document homoclinic snaking of the state in the axial direction. The
significance of the results is discussed in section 4. In appendix 5 we provide a verification of
our numerical scheme by recomputing the mountain pass solution from refs. [11, 12].

2. Equations and numerical implementation

(a) Equations and boundary conditions

We consider a thin cylindrical shell of thickness t, radius R and length L subject to uniform
axial load ⁄. Let x and y denote the axial and the azimuthal coordinate on the domain œ =
(≠L/2, L/2) ◊ (≠fiR, fiR). The elastic response of the shell is faithfully captured by the Donnell-
Mushtari-Vlasov (DMV) equations, also known as the von Kármán-Donnell equations. These
small strain and moderate rotation asymptotic reductions of 3D elasticity are approximations for
thin shells in the nonlinear regime up to rotations of 15 ≠ 20 degrees. [13] Under load the shell
responds with a uniform axial compression of the material. Deviations from this precompressed
unbuckled base state are characterized in terms of the outward displacement normal to the
surface w(x, y) and the Airy stress function „(x, y). The latter is a potential of the stresses in
the shell and related to them by „,xx = Nyy, „,yy = Nxx and „,xy = ≠Nxy (subscript comma
denotes di�erentiation), where N is the in-plane stress integrated over the shell thickness.

The DMV equilibrium equations written in terms of w and „ take the form [13]

D∆

2
w + 1

R

„,xx ≠ [w, „] + ⁄w,xx = 0 (2.1)

1
Et

∆

2
„ = 1

R

w,xx ≠ 1
2 [w, w]. (2.2)

with the bracket operator

[A, B] = A,xxB,yy + A,yyB,xx ≠ 2A,xyB,xy (2.3)

such that 1
2 [w, w] is the Gaussian curvature. Here the material parameters bending sti�ness

D = Et3

12(1≠‹2) , Young modulus E, and Poisson ratio ‹ characterize the elastic shell. ⁄ is the axial
compressive load per unit length. For small values of ⁄ the unbuckled configuration w(x, y) = 0
is linearly stable. A linear stability analysis of the perfect, unbuckled, infinitely long cylindrical
shell predicts a critical load of (see e.g. [1])

⁄C = E

3(1 ≠ ‹

2)
t

2

R

. (2.4)

The unstable modes which occur at that load lie on the Koiter circle [2].
The equations (2.1) and (2.2) are nonlinear di�erential equations of fourth order and thus

need to be supplied with two boundary conditions for each field on each side of the domain.

: normal displacement
X : axial coordinate
Y : azimuthal

Bending stiffness

Clamped boundaries

Numerical solution:  Compact finite differences

Transitional turbulence in shear flows Equations for a thin elastic shell
The Donnell-Mushtari-Vlassov theory
w(x, y)

Cylinder radius Axial load

Airy potential

Characteristics: Nonlinear & Nonlocal

DMV equations

�c =
E

3(1� ⌫2)

t2

R
= t�c

Critical load

Aim: Construct nonlinear equilibria on the basin boundary of the unbuckled state
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Figure 1. The edge tracking algorithm for a cylindrical shell. Starting with an initial condition at time

· = 0, two states are computed which bracket the edge. The energy as a function of time is shown for

the two states with a blue and red line, respectively, starting at · = 0. The two lines diverge visibly for

· & 250 and the bisection is repeated at · = 170, where two new blue and red lines originate; times where a

bisection is carried out are marked with black crosses. For · & 500 the energy has converged to a constant

value – the edge state has been reached.
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Figure 2. The edge state for the compressed cylinder at a load of 0.7⁄C . (a) The normal deflection w(x, y)
on the unrolled cylinder shows a single, localized dimple with a depth of about 1.5 in units of the shell

thickness. (b) A cut through the dimple in the axial direction at y = 0. (c) A cut through the dimple in the

azimuthal direction at x = 0. The single dimple solutions is clearly localized in both axial and azimuthal

direction.
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Continuation in axial load
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Transitional turbulence in shear flows Finite amplitude perturbations of a shell
Experiments with Shmuel Rubinstein, Harvard

Concept: Apply controlled perturbation to ‘perfect’ shell  

Transition to turbulence in constant-mass-flux pipe flow 
* 

Flow direction 
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FIGURE 1 .  Schematic diagram of flow rig. 

Piston 

A forward-scatter laser Doppler velocimetry (LDV) system is used to make velocity 
time series measurements of the axial velocity component at a single point within the 
flow. The water is seeded with 1 pm latex beads which act as scatterers for the incident 
HeNe beams. The measuring region is 0.35 mm long so that the axial flow component 
is averaged over 2 %  of the tube diameter. The Doppler signal is processed using a 
commercial burst counting system which provides a continuous velocity versus time 
record. This was then sampled and stored on a Masscomp computer where further 
processing could be carried out. The flow was also studied using the flow visualization 
techniques of injecting dye and adding suspensions of anisotropic light-reflecting flakes 
to the fluid. In each case these were used to identify flow structures, and both still 
photographs and video recordings were made. 

The stability of the basic laminar flow was investigated by injecting disturbances into 
the flow at a position along the length of the pipe where the flow was considered to be 
fully developed. Since the pipe is 1900, long the injection point was placed 700, 
downstream of the pipe inlet in order that the evolution of any transitional flow 
structures produced could be followed. This distance is less than one might calculate 
to get 95 Yo development of Poiseuille flow at Re z 2000, but the fluting of the inlet 
reduces the entrance length. The use of the term ‘fully developed flow’ implies that 
Uaxis z 2Umea,, and a percentage qualification means that Uaxis = n YO of 2Umea,. LDV 
measurements on the central axis of the pipe showed that the flow was at least 94% 
developed at 70 pipe diameters downstream of the inlet for Re = 2200 which is in the 
middle of the range of most of our experiments. A velocity profile was measured at 
700, and is shown in figure 2(b) along with a profile calculated from the known 
imposed flow rate. It can be seen that the profile is developed over most of the cross- 
sectional area of the pipe, but that the flow in the axial region of the pipe is slightly 
retarded. This is in agreement with work by Smith (1960) on the development of the 
parabolic profile. 

In addition, we also checked our estimates by taking measurements at several points 
downstream beyond the distance where fully developed flow is assured (see for example 
Fargie & Martin 1971). The disturbance point was also moved further downstream but 
it was found to have no measurable effect on the observations other than limiting the 
time available for the development of disordered flow. Clearly, when Re is increased 
to a value well above the range 2000-2500 then the flow is not fully developed but, as 
we shall show, our results suggest that the details of the flow field in the centre of the 
tube do not appear to have a significant effect on the transition process. 

The disturbances are derived from the motor and piston arrangement shown in 
figure 3 (a). The generator consists of a disk onto which is fixed another disk of smaller 
diameter; the large disk is rotated by the motor through a gearbox at a fixed frequency 

5 5 56 9 5 C ,  75 6D 8 9 BD 7BD9 9D  C , 8B  BD  3
0B A B5898 :DB C ,  75 6D 8 9 BD 7BD9 779 C5 8 6J 9 4/3. 2 6D5D 9 BA 15A 5 , , 6 97 B 9 /5 6D 8 9 /BD9 9D B: 9

Dabyshire & Mullin 1994

Pipe flow transition (Mullin, Hof) Same for a shell

Needed:  1. Near ‘perfect’ shells
2. Biaxial testing machine – ‘shell poker’



Transitional turbulence in shear flows Perturbing (almost) perfect shells
Polymer shells

Spin coater (first iteration) Spin coater (second iteration)

Advantage: No plastic deformation after buckling
Challenge: Making very thin shells



How are aluminum cans made?

Transitional turbulence in shear flows Perturbing (almost) perfect shells
Aluminum cans



Basin boundary at fixed load

Deformation 
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Expectation:
- reach edge state
- induce buckling

Transitional turbulence in shear flows Perturbing (almost) perfect shells
Significance of unstable (edge) states

Control poker displacement and measure force
Custom made with ADMET company



Transitional turbulence in shear flows Poking experiment
First data (preliminary!!) 

1: increase axial load to target value
2. Advance lateral poker 

Constant speed 10mm/min

Load: 300 N



Transitional turbulence in shear flows Poking experiment
First data (preliminary!!) 

1: increase axial load to target value
2. Advance lateral poker 

Constant speed 10mm/min

Load: 900 N

5 sec corresponds to 0.8 mm

Observation: buckling when edge state is reached 
Interpretation: Confirms nonlinear finite amplitude instability triggers buckling



Transitional turbulence in shear flows Poking experiment



Transitional turbulence in shear flows Poking experiment
Quantifying critical perturbations

Poker force Axial force



Transitional turbulence in shear flows Poking experiment
Quantifying critical perturbations

Example: dimple depth when buckling is induced
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Interpretation: - basin of attraction shrinks with load
- basin vanishes at critical load



Similarity of turbulence transition and shell buckling

Suggests paradigm shift 

Approach appears supported by preliminary results
Theory: exact invariant states Experiment: Critical perturbations

Plan / Dream: Predictive theory for buckling thresholds of thin shell structures

Transitional turbulence in shear flows Summary and Outlook: Shell buckling

Nonlinear instability of 
the perfect shell

Linear instability of 
the imperfect shell
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