

From Turbulence Transition to Shell Buckling

Tobias Kreilos EPFL Emmanuel Virot EPFL / Harvard

Shmuel Rubinstein Harvard

Tobias M. Schneider

Emergent Complexity in Physical Systems

EPFL Lausanne, Switzerland

Supported by SNSF grant 200021-165530

The (seemingly simple) question How much load can a cylinder shell carry?

Observation: Failure of linear theory! Nominally identical shells buckle at different load ('stochastic') Thinner shells tend to buckle for lower load Captured by empirical design rules ('knockdown factors')

Explanation: Extreme sensitivity to imperfections (von Karman & Tsien 1939, Koiter 1945, ...)

Thin shell stuctures Structural regidity at minimal weight

Properties of curved shells

Exceptional load carrying capacity Challenging to predict buckling conditions Reason: Imperfection sensitivity

Thin shell stuctures The two canonical examples

Axially loaded cylinder

Shellbuckling.com

How to predict buckling loads? The classical approach and its limitations

Classical approach: Imperfections modify the critical load

Scenario: Linear instability of the imperfect system

Given imperfections -> predict buckling load

Example: Lee et al. 2016, Hutchinson 2016

Problem: Imperfections typically unknown a priori

 σ_C

Load

 σ_0

Shortenin

Idea: Fully nonlinear dynamical systems approach?

From turbulence transition to shell buckling A new approach inspired by turbulence studies

Pipe flow transition triggered by jet injection

Similarity suggests paradigm shift:

Linear instability of the imperfect system

Nonlinear finite amplitude instability of the perfect system

Characterize basin of attraction as a function of load

- : trivial (unbuckled) state
- : unstable equilibria
- : edge state

Equations for a thin elastic shell The Donnell-Mushtari-Vlassov theory

Deformation of the mid-surface $(x_1, x_2, h(x_1, x_2)) \rightarrow (x_1 + u_1, x_2 + u_2, h(x_1, x_2) + w)$ Transverse displacement

Asymptotic reduction from 3D: $\varepsilon = \frac{t}{L} << 1$

$$w = \mathcal{O}(\varepsilon), u_{\alpha} = \mathcal{O}(\varepsilon^{2}) \qquad \text{In-plane strain:} \qquad \epsilon_{\alpha\beta} = E_{\alpha\beta} + zK_{\alpha\beta}$$
$$E_{\alpha\beta} = \frac{1}{2}(u_{\alpha,\beta} + u_{\beta,\alpha}) + \frac{1}{2}(h_{,\alpha}w_{,\beta} + h_{,\beta}w_{,\alpha}) + \frac{1}{2}w_{,\alpha}w_{,\beta},$$
$$K_{\alpha\beta} = -w_{,\alpha\beta}$$

- Use linear stress-strain relation
- Integrate stress over thickness: $N_{\alpha\beta} = \int_{-t/2}^{t/2} \tau_{\alpha\beta} dz$
- Introduce Airy stress potential $\phi_{,xx} = N_{yy}, \phi_{,yy} = N_{xx}$ and $\phi_{,xy} = -N_{xy}$
- Deviation from prebuckled base state $(w, \phi) = (w, \phi)_{tot} (w^0, \phi^0)$

depends on axial load

Equations for a thin elastic shell The Donnell-Mushtari-Vlassov theory

- w(x,y) : normal displacement
 - X : axial coordinate
 - Y : azimuthal

Cylinder radiusAxial load
$$w_{,\tau} = f(w) \equiv -\frac{1}{\delta} \left(D\Delta^2 w + \frac{1}{R} \phi_{,xx} - [w, \phi] + \frac{\lambda}{w} w_{,xx} \right)$$
DMV equations $\frac{1}{Et} \Delta^2 \phi = \frac{1}{R} w_{,xx} - \frac{1}{2} [w, w]$ DMV equationsAiry potentialDMV equations

$$\begin{split} [A,B] = A_{,xx}B_{,yy} + A_{,yy}B_{,xx} - 2A_{,xy}B_{,xy} \\ D = \frac{Et^3}{12(1-\nu^2)} & \text{Bending stiffness} \end{split}$$

Clamped boundaries $w = w_{,x} = 0$ $\phi_{,x} = (\Delta \phi)_{,x} = 0$

Characteristics: Nonlinear & Nonlocal

Numerical solution: Compact finite differences

Aim: Construct nonlinear equilibria on the basin boundary of the unbuckled state

Critical load

 $\lambda_c = \frac{E}{3(1-\nu^2)} \frac{t^2}{R} = t\sigma_c$

Dynamical systems methods for shells Unstable equilibria on the basin boundary

Edge tracking

yields edge state equilibrium

Yamaki parameters: R/t=405, L/R=1.6

T. Kreilos & TMS, in prep.

Dynamical systems methods for shells Unstable equilibria on the basin boundary

Compare: Plane Couette flow

Result: localized dimple patterns low-dimensional unstable manifold located on the stability boundary Finite amplitude perturbations of a shell Experiments with Shmuel Rubinstein, Harvard

Concept: Apply controlled perturbation to 'perfect' shell

Pipe flow transition (Mullin, Hof)

Dabyshire & Mullin 1994

Same for a shell

Needed:

- 1. Near 'perfect' shells
- 2. Biaxial testing machine 'shell poker'

Perturbing (almost) perfect shells Polymer shells

Spin coater (first iteration)

Spin coater (second iteration)

Advantage: Challenge: No plastic deformation after buckling Making very thin shells

Perturbing (almost) perfect shells Aluminum cans

Perturbing (almost) perfect shells Significance of unstable (edge) states

Custom made with ADMET company

Basin boundary at fixed load

Control poker displacement and measure force

ere ere ere ere ere ere Deformation

Expectation:

- reach edge state
- induce buckling

Poking experiment First data (preliminary!!)

- 1: increase axial load to target value
- 2. Advance lateral poker

Constant speed 10mm/min

Poking experiment First data (preliminary!!)

Load: 900 N

increase axial load to target valu
Advance lateral poker

Constant speed 10mm/min

5 sec corresponds to 0.8 mm

Observation:buckling when edge state is reachedInterpretation:Confirms nonlinear finite amplitude instability triggers buckling

Poking experiment

Poking experiment Quantifying critical perturbations

Poker force

Axial force

Poking experiment Quantifying critical perturbations

Example: dimple depth when buckling is induced

Interpretation:

- basin of attraction shrinks with load
- basin vanishes at critical load

Summary and Outlook: Shell buckling

Similarity of turbulence transition and shell buckling

Suggests paradigm shift

Disturbance amplitude

2.0

1.5

1.0

Linear instability of the *imperfect* shell

Nonlinear instability of the *perfect* shell

but very exciting!!!!

Approach appears supported by preliminary results

Theory: exact invariant states

Experiment: Critical perturbations

0.8

1.0

Plan / Dream: Predictive theory for buckling thresholds of thin shell structures