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Why do DMD modes look like resolvent modes?

Gomez et al PoF 2014

“Paco’s pipe projection puzzle”

n = 2, ω/2π = 0.1826, 0.5497, isosurfaces 1/3umax.
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Relation of RM to Koopman modes

Koopman modes are a general way of analysing nonlinear system dynamics, closely
related to DMD∗.

Why do resolvent modes look like DMD/Koopman modes?

Can we determine Koopman modes with limited data?

∗Rowley et al JFM 2009; Schmid JFM 2010
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The Koopman operator

Suppose the dynamical system with state u,

∂tu(x, t) = f (u(x, t)) .

Define a state transformation

Sτ (u(x, t)) = u(x, t+ τ).

A Koopman operator Uτ is defined for each Sτ ,

Uτh(u) = h(Sτu).

The (family of) Koopman operators {U τ} describes the dynamics of observable h(u).
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Spectrum of the Koopman operator

Consider the eigenvalue problem for Uτ

Uτφn(u) = µnφn(u).

Expanding some vector valued observable g(u) accordingly,

g(u) =
∑
n

φn(u)µngn.

Mezic Nonlin. Dyn. 2005, A. Rev. Fl. Mech. 2013; Rowley et al, JFM 2009
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Koopman modes

For flow on a periodic orbit, decomposition in these eigenfunctions and Koopman
modes reduces to a Fourier decomposition,

g(x, t) = g∗(x) +
∑
n ̸=0

gn(x)e
inωt.

The Koopman mode gn(x) is the projection of the field g on the subspace spanned by
an eigenfunction of Uτ .

Note: temporal average emerges as g∗(x).
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Koopman mode interpretation

Points to note:

▶ Selects frequencies present in system behaviour

▶ Chaotic system may have point and continuous spectrum

▶ Spatial structure is wrapped up in Koopman mode

▶ Periodic orbit gives Fourier decomposition

▶ …but any transformation (e.g. reflection, rotation) also possible
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Generalising Koopman operator
We can define the Koopman modes where the Koopman operator does another

transformation (spatial shift, reflection, etc)

Define a state transformation

Sχ(u(x, t)) = u(x+ χ, t).

When periodic in x, Uχ gives

g(x, t) = ḡ(t) +
∑
l ̸=0

gl(t)e
ilαx.

The spatial Koopman modes are gl(t)

Note: spatial average appears as ḡ(t).

Sharma, Mezic, McKeon, PRF, 2016
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Combining Koopman operators

Combining the Koopman operators,

UχUτg(u) = µg(u).

gives

g(x, t) =
∑

n,m∈Z
gn,me

i(nωt+mαx),

which is an expansion in travelling waves.

For turbulent attractor, same applies but continuous instead of point spectrum.
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An expansion around the turbulent attractor I

Let u(t) be the state, and the Navier-Stokes equations be written

u̇(t) = f (u(t)) . (1)

In the “long run”, decompose the state as

u(t) =
1

2πi

∫ ∞

−∞
eiωtû(ω)dω.

Notice that the equation corresponding to ω = 0 is the mean equation

0 =

∫ ∞

−∞
f(u)dt

with û(0) the mean.
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An expansion around the turbulent attractor II

The expansion of (1) about this mean (and subtracting this mean equation) is

˙̃u(t) =
∂f

∂u

∣∣∣
ū
ũ(t) +O(2)

= Lũ(t) + g̃(t)

where g̃ represents the second-order terms in the expansion of f .

At a particular ω ̸= 0 we then have

û(ω) = (ωI − L)−1 ĝ(ω).

The second-order terms, rather than being truncated, act to excite the state.
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A low-rank basis

The resolvent H(ω) = (ωI − L)−1 is well-approximated by a projection Π(ω),

û(ω) = H(ω)ĝ(ω) ≃ Π(ω)ĝ(ω).

The SVD gives the optimal N-dimensional basis on which the velocity field
evolves, in sense that ∥H(ω)−ΠN (ω)∥F is minimised. [1]

The flow “lives” mostly in Π.

The ‘error’ is û⊥ = Π⊥
N ĝ.

[1] McKeon & Sharma, JFM, 2010.
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A basis for optimal projection; resolvent modes

Hĝ =

∞∑
m=1

ψm(x)σm ⟨ϕ∗m(x), ĝ(x)⟩

⟨ψm, ψm′⟩ = δm,m′

⟨ϕm, ϕm′⟩ = δm,m′

σ1 ≥ σ2 ≥ . . .

Each σm is a (real) gain, σ1 is the
maximum gain.
Velocity field response is ψm(x).

H
ĝ(x) û(x)

ĝ(x)
+⟨·, ϕ1⟩ σ1ψ1

χ1k

⟨·, ϕ2⟩ σ2ψ2

χ2

⟨·, ϕ3⟩ σ3ψ3

χ3

⟨·, ϕ4⟩ σ4ψ4

χ4

⟨·, ϕ5⟩ σ5ψ5

χ5

û(x)
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Relation between Koopman and resolvent modes

Comparing starting point of RM derivation, we see that the resolvent relates the
Koopman modes of u and f

um(y) = Hmfm(y)

so the resolvent modes are (linear-)optimal basis to guess the Koopman modes.
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Interpretation

▶ Resolvent modes a good ‘first guess’ of KM; for ordered expansion of KMs

▶ Koopman modes ≡ RM modes ≡ Fourier in homogeneous directions

▶ Where there are symmetries, they should be used before doing the DMD problem

▶ Expansion in RMs easily gives sensitivity of KMs to control / BC changes

▶ Meaning of spectrum of linear operator Hm(u0) is clear
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Application: 2D resolvent modes in a lid-driven cavity

ΛD
xz

y

D

▶ few, discrete frequencies

▶ complex geometry

With Gomez, Rudman, Blackburn; B McKeon, JFM 2016
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Lid-driven cavity

▶ Re = 1200, Λ = 0.945D

▶ Nonlinear, low-dimensional behaviour

▶ Three dominant wavenumbers: β = 0, 3, 6

▶ Three dominant frequencies: ω = 0, 0.76, 1.52

▶ spectral-hp 2D × Fourier (semtex)
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Fourier transform velocity (translation invariant in time, z; neglect transients)

u =
∑
β,ω

uβ,ω(x, y)e
i(βz−ωt)

Assume time-space mean u0 to close.

Same for nonlinear term,

−u · ∇u =
∑
β,ω

fβ,ω(x, y) e
i(βz−ωt)

18 / 26



Fluctuations:

uβ,ω = (iω − Lβ)
−1 fβ,ω.

Mean:

0 = f0 − u0 · ∇u0 +
1

Re
∇2u0.
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Take SVD of transfer function,

(iω − Lβ)
−1 =

∑
m

ψβ,ω,m σβ,ω,m ϕ∗β,ω,m

Gives gain-optimal basis to represent u and f , scalar coefficient c,

uβ,ω(x, y) =
∑
m

ψβ,ω,m(x, y) cβ,ω,m

fβ,ω(x, y) =
∑
m

ϕβ,ω,m(x, y) cβ,ω,m / σβ,ω,m
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Estimating mode coefficients from probe signal

Focus on β = 3, fit m = 1 coefficients at three frequencies.

Cβ = Ψ+
β (xp)Uβ(xp)
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Reconstructed signals
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Reconstructed field (RMS fluctuations)
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isosurfaces at 30% max wβ=3.
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Conclusions (cavity)

Limitations:

▶ Needs limited data to fix amplitudes, phases, dominant ω, β, mean

Benefits:

▶ Meaning of mean flow in linear operators is now clear

▶ Approximates whole flow from probed points + mean

▶ Modes are orthogonal (unlike eigenmodes)
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Conclusions

▶ DMD modes look like RM because RM look like Koopman modes

▶ Resolvent modes offer (linear-) optimal basis to expand Koopman modes of velocity

▶ For homogeneous directions, it’s just Fourier modes

▶ Global coherence allows fixing of coefficients from point data

▶ Can use to predict response of nonlinear system to control
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