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Why do DMD modes look like resolvent modes?

Gomez et al PoF 2014
‘Paco’s pipe projection puzzle”

n =2, w/2r = 0.1826, 0.5497, isosurfaces 1/3umqz.



Relation of RM to Koopman modes

Koopman modes are a general way of analysing nonlinear system dynamics, closely
related to DMD*,

Why do resolvent modes look like DMD/Koopman modes?

Can we determine Koopman modes with limited data”?

*Rowley et al JFM 2009, Schmid JFM 2010



The Koopman operator
Suppose the dynamical system with state u,
opu(z,t) = f (u(z,t)).

Define a state transformation
ST(u(z,t)) = u(x,t+ 7).
A Koopman operator U™ is defined for each S7,

UTh(u) = h(S"u).

The (family of) Koopman operators {U™} describes the dynamics of observable h(u).



Spectrum of the Koopman operator

Consider the eigenvalue problem for U™

UTpn(u) = pinpn ().

Expanding some vector valued observable g(u) accordingly,

g(u) = Z @n(u)ungn-

Mezic Nonlin. Dyn. 2005, A. Rev. Fl. Mech. 2013; Rowley et al, JFM 2009



Koopman modes

For flow on a periodic orbit, decomposition in these eigenfunctions and Koopman
modes reduces to a Fourier decomposition,

gz, t) =g"(z) + Z g (x)e™,
n#0

The Koopman mode gy, (x) is the projection of the field g on the subspace spanned by
an eigenfunction of U”.

Note: temporal average emerges as g*(z).



Koopman mode interpretation

Points to note:

v

Selects frequencies present in system behaviour

v

Chaotic system may have point and continuous spectrum

v

Spatial structure is wrapped up in Koopman mode

v

Periodic orbit gives Fourier decomposition

v

...but any transformation (e.g. reflection, rotation) also possible



Generalising Koopman operator

We can define the Koopman modes where the Koopman operator does another
transformation (spatial shift, reflection, etc)

Define a state transformation

SX(u(x,t)) =u(z + x, t).

\When periodic in x, UX gives

glo,t) = g(t) + Y _m(t)e"™".
1£0
The spatial Koopman modes are g; (t)

Note: spatial average appears as g(t).

Sharma, Mezic, McKeon, PRF, 2016



Combining Koopman operators

Combining the Koopman operators,
UXUTg(u) = pug(u).

gives

g($7t) = Z gn mei(nwt—i—max)’
nme”Z

which is an expansion in travelling waves.

For turbulent attractor, same applies but continuous instead of point spectrum.



An expansion around the turbulent attractor |

Let u(t) be the state, and the Navier-Stokes equations be written

In the “long run”, decompose the state as

1 R
u(t) = / e“a(w)dw.
2m J_
Notice that the equation corresponding to w = 0 is the mean equation
o0
0= / f(u)dt
—0o0

with @(0) the mean.



An expansion around the turbulent attractor I

The expansion of (1) about this mean (and subtracting this mean equation) is

. of
u(t) = —| ult 2
d(t) = 5| a(t) +0(2)
= Lu(t) + g(t)
where g represents the second-order terms in the expansion of f,

At a particular w # 0 we then have

a(w) = (Wl —L)"' g(w).

The second-order terms, rather than being truncated, act to excite the state.



A low-rank basis
The resolvent H(w) = (wl — L)_1 is well-approximated by a projection II(w),

u(w) = Hw)g(w) = (w)g(w).

The SVD gives the optimal N-dimensional basis on which the velocity field
evolves, in sense that |[H(w) — Iy (w)| » is minimised. [

The flow “lives” mostly in 11,

The ‘error’ is at = TIx §.

[1] McKeon & Sharma, JFM, 2010.



A basis for optimal projection; resolvent modes

o1 > 09> ...

Each o, is a (real) gain, oy is the
maximum gain.
Velocity field response is ¥, (x).

LS LG
g(x) }<"¢1>} X1k }U“pl} - i(x)
} (-, ¢2) } = }021/}2 }
} (- ¢3) } = }agw?, }
[ Con) | o
}<~,o;,>} X5 [ e ]




Relation between Koopman and resolvent modes

Comparing starting point of RM derivation, we see that the resolvent relates the
Koopman modes of u and f

W (y) = Hinfin (y)

S0 the resolvent modes are (linear-)optimal basis to guess the Koopman modes.



Interpretation

v

Resolvent modes a good ffirst guess’ of KM; for ordered expansion of KMs

v

Koopman modes = RM modes = Fourier in homogeneous directions

v

Where there are symmetries, they should be used before doing the DMD problem

v

Expansion in RMs easily gives sensitivity of KMs to control / BC changes

v

Meaning of spectrum of linear operator H.,, (uo) is clear



Application: 2D resolvent modes in a lid-driven cavity

/

» few, discrete frequencies

» complex geometry

With Gomez, Rudman, Blackburn; B McKeon, JFM 2016



Lid-driven cavity

v

Re = 1200, A = 0.945D

v

Nonlinear, low-dimensional behaviour

v

Three dominant wavenumbers: 5 =0, 3, 6

v

Three dominant frequencies: w = 0, 0.76, 1.52

v

spectral-hp 2D x Fourier (semtex)



Fourier transform velocity (translation invariant in time, z; neglect transients)

Bw

Assume time-space mean uy to close.

Same for nonlinear term,

—u - Vu — Z f,B,w(x, y) ei(ﬁz_“)t)
Bw



Fluctuations:

ug, = (iw — ﬁﬁ)_l fg’w.

Mean:
1

V2.
Re 1o

0=1fy —ug-Vug +



Take SVD of transfer function,

(’LW—EQ Z¢meaﬁwm¢ﬂ,wm

Gives gain-optimal basis to represent u and f, scalar coefficient ¢,

ungy Zwﬁwmxy)cﬁwm

fﬁ,w(x, y) = Z qbﬁ,w,m(x? y) CBw,m / 0B,w,m
m



Estimating mode coefficients from probe signal

Focus on g = 3, fit m = 1 coefficients at three frequencies.

Cp = ‘I’E (%) Us(xp)



Reconstructed signals
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Reconstructed field @vs fluctuations)
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isosurfaces at 30% max wg—3.
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Conclusions (cavity)

Limitations:

v

Needs limited data to fix amplitudes, phases, dominant w, 8, mean

Benefits:

v

Meaning of mean flow in linear operators is now clear

v

Approximates whole flow from probed points + mean

v

Modes are orthogonal (unlike eigenmodes)



Conclusions

v

DMD modes look like RM because RM ook like Koopman modes

v

Resolvent modes offer (linear-) optimal basis to expand Koopman modes of velocity

v

For homogeneous directions, it's just Fourier modes

v

Global coherence allows fixing of coefficients from point data

v

Can use to predict response of nonlinear system to control
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