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Stable basic flow at Re=40

Unstable basic flow at Re=100 Temporal mean of cylinder wake at Re=100

Snapshot of cylinder wake at Re=100
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linearisation about base flow

linearisation about mean flow

frequency of nonlinear flow

linearisation about mean flow

linearisation about base flow

Mean flow eigenvalue has RZIF property: 
Real part is near Zero. 
Imaginary part is near exact nonlinear Frequency. 



linearisation about base flow

linearisation about mean flow

frequency of nonlinear flow

linearisation about mean flow

linearisation about base flow



Malkus theory: Temporal mean of turbulent flow should be marginally stable





When is RZIF satisfied ? 

Why is RZIF satisfied?







At lowest order, mean “flow” has

Nonlinear interaction of these eigenmodes of the basic state



Hopf bifurcation to standing or traveling waves if separation 
ratio S=RaC/RaT<0

Temperature and concentration gradients are in opposite directions

convection threshold 
(reduced Rayleigh number)

Separation ratio

Hopf frequency

rHopf
rsteady

rsteady

Separation ratio
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Traveling Waves
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Standing Waves
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Traveling waves Standing waves

mean ﹦ exact mean ≠exact

RZIF RZIF



Traveling waves Standing waves

mean ﹦ exact mean ≠exact



@tU = LU+N (U,U)

U = U+
X

n 6=0
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in!t

0 = LU+N (U,U) +
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Evolution equation:

Temporal Fourier decomposition:

Substitute into evolution equation
Component 0:

Component 1:

i!u1 = Lu1 +N (U,u1) +N (u1,U)| {z }
LUu1

+N (u2,u�1) +N (u�1,u2) + . . .| {z }
small?
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Do TW generally have highly peaked temporal spectra? 
Do SW generally have broad temporal spectra? 

Mean flow eigenvalue has RZIF property: 
Real part is near Zero. 
Imaginary part is near exact nonlinear Frequency. 

N (u1, u1) N (u1, u�1)u2 u0feeds feeds

||un|| ⇠ ✏|n| =)

Yes!

feedsN1 ⌘ N (u2, u�1) +N (u�1, u2) + . . . u1

N1 ⌧ (i! � LŪ )u1



temporal spectrum for r=2.5

And WHY do TW have highly peaked temporal spectra? 
And WHY do SW have broad temporal spectra? 



Traveling waves

no generation of second temporal harmonic

Standing waves

generation of second temporal harmonic

(N. Périnet)

mean flow generated by phase difference        between      and T 

mean flow generated by phase difference        between      and T 

r ⇥rT =
⇡k

4
 1T1 [sin�+ sin(2!t+�)] sin 2⇡z



Does this argument hold for other cases ?



i!u1 = LUu1 +N1

(� + i!)u1 = LUu1

u1 from temporal Fourier 
decomposition of DNS:

u1 as eigenvector:



Traveling waves

no generation of mean flow

 = | 1|ei(kx�!t) sin⇡z + c.c.

Back to purely hydrodynamic flow, e.g. cylinder wake

r ⇥r! = 0

! = �r2 = (k2 + ⇡2) 

Standing waves
 =  1 sin kx sin⇡z sin!t

no generation of mean flow
r ⇥r! = 0

! = �r2 = (k2 + ⇡2) 



Cylinder wake

r I ⇥r!I small

r R ⇥r!R small



Multiple scale expansion near Hopf threshold

Asymptotic/numerical calculation of mean flow, limit cycle, eigenvectors, …

Counter-example of open-cavity flow: 
eigenvalues of mean flow do NOT predict the frequency. 



Multiple scale expansion near Hopf threshold

Asymptotic/numerical calculation of mean flow, limit cycle, eigenvectors, …



Counter-example of open-cavity flow: 
eigenvalues of mean flow do NOT predict the frequency. 



Traveling waves

Standing waves

OK

Thermosolutal Open flows

Cylinder wake

Open cavity

OK

NO NO



Is there an analogy between the

Cylinder wake with TW and                open cavity with SW       ????



Traveling wave behavior :
real and imaginary parts are Lx/4 out of phase 

Real part of 

Imaginary part of 
Real

Imag

u1

u1



Similar spectrum !!!

TURTON, TUCKERMAN, AND BARKLEY PHYSICAL REVIEW E 91, 043009 (2015)

(a) (b)

FIG. 4. (Color online) Temporal spectra of the temperature field
of traveling and standing waves. (a) Full temporal spectrum for r =
2.5, i.e., ||!n|| for multiples n of the observed frequency. (b) Ratio
||!2||/||!1|| as a function of r . The spectrum of the traveling waves
(blue, solid) is far more peaked at n = 1 than that of the standing
waves (red, dashed).

is far wider, with substantial amplitude for n ! 2. The ratio
||!2||/||!1|| is 10−2 for TW and 20 times higher than this
for SW.

Figure 4(b) shows that this trend holds over our range 2 "
r " 3 of observation by plotting ||!2||/||!1|| as a function of
r . Interestingly, for TW this ratio shows an upturn at r ≈ 2.5,
which is where Fig. 2(c) shows that σ TW

mean + iωTW
mean begins

to deviate from 0 + iωTW
exact. For SW, there seems to be little

or no correlation between the r dependence of the temporal
spectrum and that of σ SW

mean + iωSW
mean, which is to be expected if

the relationship between the two requires a peaked spectrum.
The RZIF property is corroborated by an order-of-

magnitude comparison of the terms in Eqs. (40). Examining
the equations corresponding to the temperature field for TW
at r = 2.5, the ratio of the maximum of the right-hand side
(which we wish to neglect) to that of the left-hand side
is 0.025. Comparing the quadratic terms that appear in the
temperature equation, we find that the ratio betweenJ [$1,!1]
and J [$1,!−1] + J [$−1,!1] is 0.1.

The spectra of the other fields comprising U also follow
this tendency, but not to the dramatic extent of !. The
concentration field at r = 2.5 has ||C2||/||C1|| ≈ 0.1 for TW
(ten times larger than for !) and 0.2 for SW (the same as for
!). Similarly, for the TW concentration field, the ratio of the
maximum of the right-hand side of (40) to that of the left-hand
side is 0.2 (ten times this ratio for !). The ratio between
the quadratic terms that appear in the concentration equation,
J [$1,C1] and J [$1,C−1] + J [$−1,C1], is 0.4.

VIII. RELATION TO PREVIOUS WORK
ON CYLINDER WAKE

In light of these results, we review some of the previous
work concerning RZIF. Linear stability analysis of the mean
field has been carried out only for open flows and almost ex-
clusively for the cylinder wake. Hammond and Redekopp [4],
Pier [5], Barkley [6], and Mittal [7] have shown that the
frequency of the cylinder wake is predicted with remarkable
accuracy by that of the mean field even quite far above onset, at

least until Re = 180 ≈ 4ReH. In keeping with our conjecture
that RZIF coincides with a monochromatic oscillation, Dusek
et al. [2] have found experimentally that the temporal spectrum
is highly peaked even at high Reynolds numbers. Knobloch
et al. [19] find that the traveling waves in a minimal model
of thermosolutal convection are almost monochromatic, while
the standing waves at the same parameter values are not.

Sipp and Lebedev [13] carried out a numerical weakly
nonlinear analysis of the cylinder wake about the Hopf
bifurcation point, and they were able to reproduce the slope of
the frequency as well as the zero growth rate. More specifically,
they approximated the flow U and its frequency ω, its mean
flow U, and the eigenvalues of this mean flow σU ± iωU near
onset ReH , and they found agreement between the slopes
of the mean-field frequency and the nonlinear frequency
ω′

U
(ReH ) ≈ ω′(ReH ) as well as marginal stability σU ≈ 0.

They did not capture its further evolution with Re, for example
its curvature at ReH , which would have required extending the
analysis to higher order.

More fundamentally, Sipp and Lebedev [13] determined
which of the contributions to the lowest-order nonlinear term
were required to be small in order to achieve this agreement.
These terms arise from the second temporal harmonic, just
as we have found. They also presented an important coun-
terexample. Performing the same weakly nonlinear analysis
on the flow in an open driven cavity, they found that the
second-harmonic contributions to the nonlinear term were not
small, and also that the weakly nonlinear analysis did not
reproduce ω′(ReH ). This counterexample shows that RZIF
does not hold for all flows and also corroborates the role of the
second temporal harmonic.

Our attempt to carry out a weakly nonlinear analysis
analogous to that of Sipp and Lebedev [13] was hampered
by the degeneracy of the Hopf bifurcation to traveling
waves in thermosolutal convection with free-slip boundary
conditions [18]; see Fig. 1. The cubic term in the normal
form is zero, requiring the calculation of a quintic term or an
appropriate model [19]. The bifurcation to standing waves is
free from this pathology, but, as shown in Sec. VI, the mean
fields of the standing waves do not have the desired property
near onset.

Mantič-Lugo et al. [14] proposed the following system:

0 = LU + N (U,U) + A2N (u1,u−1), (42a)

(σ + iω)u1 = LUu1, ||u1|| = 1, (42b)

σ = 0, (42c)

as a means of calculating U and ω for the cylinder wake without
recourse to time integration. Equation (42a) is a truncated
version of the exact equation (34) satisfied by the mean
field; consequently, its validity requires a strongly peaked
spectrum, as emphasized by Mantič-Lugo et al. [14]. Starting
from an estimate of the mean field by the base flow, their
equivalent of the conductive state, they solved (42b) for the
eigenvalue (σ + iω) and the eigenvector u1. Substituting u1
in (42a), they computed a new mean field U. The amplitude A
multiplying the eigenvector was adjusted until convergence to
marginal stability, σ = 0. Our attempt to carry out this iterative
procedure for the thermosolutal system did not converge.
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Open cavity

cylinder wake

Thermosolutal Open flows

Spectrum normalized by the first harmonic
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Mean flows without time integration:

A2N (u1,u�1)
Solve for      with Newton’s methodŪ,u1,�,!, A

Solve for (                   ) by diagonalisationŪ,u1,�,!, A

(� + i!)u1 = LŪu1 +N1

0 = LU+N (U,U) +
X

m 6=0

N (um,u�m)

ku1k = A

Yields almost exact                            !    
Find A  such that � = 0

Ū,u1Ū,u1,�,!, A

N1



Mean flow of  TW is independent of x 

Thermosolutal in x-homogeneous domain :

Newton             just invert LaplacianŪ(z) = �L�1N (u1, u�1)

0 = LŪ +N (Ū , Ū) +N (u1, u�1)

= �@�1
zz N (u1, u�1)   just invert @zz

TURTON, TUCKERMAN, AND BARKLEY PHYSICAL REVIEW E 91, 043009 (2015)

FIG. 2. (Color online) (a) Instantaneous temperature, concentration, and stream function for a traveling wave at P = 10, L = 0.1, S = −0.5,
and r = 2.5. ! is out of phase with C and ". The Boussinesq-shift symmetry (18) is especially clear for C. End points of ranges of !, C,
", are ±0.32, ±0.46, and ±3.4, respectively. (b) Temporally averaged fields !, C, and " for this traveling wave. The functional form is
approximately sin(2πz) and the amplitude of " is much smaller than that of ! and C. End points of ranges of !, C, and " are ±0.065,
±0.077, and ±1.7 × 10−4, respectively. (c) Frequencies (above) and growth rates (below) as a function of Rayleigh number for traveling
waves. The observed frequency (ωTW

exact, solid black) is closely tracked by the frequency of the traveling-wave mean field (ωTW
mean, long-dashed

red) and not at all by the frequency of the conductive state (ωcond, short-dashed blue). The growth rate σ TW
mean is near zero, indicating that UTW is

marginally stable. The horizontal line σmarg = 0 is used to indicate marginal stability. (d) Time series of !(x = λ/4,z = 1/2) for r = 2.5 from
low-amplitude initial condition. Projection of the conductive state is indicated by a square and that of the mean field by a triangle. (e) Phase
portrait showing projection of time-dependent evolution onto the temperature at (x = 0,z = 1/2) and (x = λ/4,z = 1/2). (f) Projection onto
!(x = 0,z = 1/2) and PM of (30), which is a proxy for projection onto the mean field.

043009-4



Convergence of SCM equations
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Resolvent Analysis

R(!)�j(x,!) = µj(!) j(x,!)

i!u1 = LŪu1 +N1

u1 = (i! � LU )
�1 N1 ⌘ R(!)N1

u(!) = R(!)N (!)More generally:

Singular value decomposition:

If resolvent has a highly dominant singular value              , 
then        extracts and amplifies the component of mode              in        
Independent of the details of N

N
µ
dom

�
dom

R

u(x,!) ⇡

u = R(!)
X

j

hN ,�ji�j =
X

j

hN ,�jiµj j ⇡ hN ,�
dom

iµ
dom

 
dom

scalar amplitude spatial dependence

hN ,�
dom

i(!) µ
dom

(!)| {z }  
dom

(x,!)| {z }
⇤(!)

McKeon & Sharma, JFM 2010



Fully turbulent flow with broad spectrum,  
rather than periodic flow with only !, 2!, . . .

N (x,!) ⌘ �(ũ ·r)ũ+ h(ũ ·r)ũi

u(x,!) ⇡
scalar amplitude spatial dependence

hN ,�
dom

i(!) µ
dom

(!)| {z }  
dom

(x,!)| {z }
⇤(!)



dominant optimal response 
of resolvent

simulation

Spatial dependence

Scalar amplitude

choose amplitude             so that dominant optimal 
response and simulation agree at two points

 
dom
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Dominant singular value 

Spectrum reproduced! 
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Thermosolutal TW: SVD highly peaked

Increase the reduced 
Rayleigh number



Thermosolutal SW: SVD not highly peaked



Stay tuned …

Thank you!


