Searches for new AM CVn stars

Paul Groot Department of Astrophysics, University of Nijmegen

pgroot@astro.kun.nl

- Gijs Nelemans (Cambridge)
- Danny Steeghs (CfA)
- Tom Marsh (Southampton)
- Gijs Roelofs (Nijmegen)
- Thomas Augusteijn (Nordic Optical Telescope)
- Hamburg-ESO Quasar Survey collaboration

Increasing current sample

- Only 11 systems known
- □ From population synthesis: expect more than CVs
- □ >700 CVs known: where are the AM CVn stars
- ★Paramount to increase sample to test evolutionary theories

Where to look?

Population synthesis expects most systems at long periods $\star P_{\text{orb}} > P_{\text{GPCom}} = 46min.$ \Box GP Com and CE 315 both blue : B - V < 0★Common trait in all AM CVn systems except V407 Vul □ Spectrum is dominated by strong He I emission lines \star At least at P_{orb} > CP Eri (29min) \Box HeI 6678Å falls in H α +120 ★ ! Hei 5015Å falls in Oi 5008 Åfilter!

AM CVn mini-survey

□ Used NOAO 4m + ESO 2.2m to survey 25 square degree

- \Box Imaged in H α , H α +120, B (g') and R (R')
- \Box Down to $R \sim B \sim 21$

★Expect GP Com/CE 315 like systems to be blue in B - R★and also blue in $He - H\alpha$

Check on GP Com and CE 315

Paul Groot

For all fields

8 candidates found out of >1.3 million objects

Spectroscopy is underway: no new systems found yet.

AM CVn stars in the Faint Sky Variability Survey

□ FSVS is variability survey down to V=24 in 23 square degrees

 \Box Blue (B - V < 0.38) spectroscopy complete to V=18.5 in 17.7 sq. degr.

AM CVn stars in the Hamburg ESO Quasar Surveys (HES)

- □ Blue colour + emission lines: stand out in QSO surveys
- Explicitly checked for AM CVn stars in Hamburg ESO Survey

Space density implications

□ Implications for space density depends strongly on M_V ★Two assumptions: M_V(CE 315) = 14 and M_V(CE 315) = 12 ★Implied distances: d_{14} (CE 315) = 50 pc and d_{12} (CE 315) = 125 pc

25 square degrees to V~21
$$ho_{14} < 2.5 imes 10^{-5}
m \, pc^{-3}$$

 $ho_{12} < 1.6 imes 10^{-6}
m \, pc^{-3}.$

In Nelemans et al. (2001) population synthesis: 25% systems have $P_{\text{Orb}} < P_{\text{CE315}}$

$$\Rightarrow \ \ \rho_{14} < 1 \times 10^{-4} \ {\rm pc}^{-3} \\ \rho_{12} < 6.4 \times 10^{-6} \ {\rm pc}^{-3}.$$

★Holds for emission line systems only

FSVS +HES AM CVn results

*No AM CVn stars found in FSVS Blue and HES

FSVS $\Rightarrow \rho_{14} < 1.1 \times 10^{-3} \text{ pc}^{-3}$ $\rho_{12} < 7.1 \times 10^{-5} \text{ pc}^{-3}$.

HES

⋆No AM CVn stars (all types) down to V=17.5 in 10000 square degrees

$$\Rightarrow \ \rho_{14} < 7.9 \times 10^{-6} \, \mathrm{pc}^{-3} \\ \rho_{12} < 5 \times 10^{-7} \, \mathrm{pc}^{-3}.$$

★Holds for all types

Limits on $M_{\rm V}$ of CE 315?

CE 315 has V=17.5 and μ =0^{''}.35 yr⁻¹ (same as GP Com!).

If $M_V = 14$ d = 50 pc $v_{tan} = 83 \text{ km s}^{-1}$ If $M_V = 12$ d = 125 pc $v_{tan} = 210 \text{ km s}^{-1}$ If $M_V = 16$ d = 31 pc $v_{tan} = 52 \text{ km s}^{-1}$ *Distances to AM CVn stars are needed *If GP Com = 70 pc, M_V (GP Com) = 11.7

GP Com, V803 Cen, AM CVn, HP Lib and CR Boo currently measured with HST FGS (finished end 2003).

All limits grouped together:

M_V (CE 315) = 14	He-emission Survey	$ ho < 2.5 imes 10^{-5} { m pc}^{-3}.$
	FSVS	$ ho < 1.1 imes 10^{-3} { m pc}^{-3}.$
	HES	$ ho < 7.9 imes 10^{-6} \mathrm{pc}^{-3}.$

$$\begin{split} M_{\rm V} \, ({\rm CE} \; 315) = 12 & {\rm He\text{-}emission} \; {\rm Survey} & \rho < 1.6 \times 10^{-6} \; {\rm pc}^{-3}. \\ {\rm FSVS} & \rho < 7.1 \times 10^{-5} \; {\rm pc}^{-3}. \\ {\rm HES} & \rho < 5 \times 10^{-7} \; {\rm pc}^{-3}. \end{split}$$

Comparisons

□ Warner's (1995):
$$\rho = 3 \times 10^{-6} \text{ pc}^{-3}$$

★But based on brighter systems and also assumed distances

□ Nelemans et al., 2001, total space densities

 \Rightarrow Effective spin-orbit coupling: $\rho = 1.7 \times 10^{-4} \text{ pc}^{-3}$ with dominance of WD-WD family

 \Rightarrow Ineffective coupling: $\rho = 4.0 \times 10^{-5} \text{ pc}^{-3}$ with dominance of He-WD family.

★Even optimistic HES limit factor 5 lower!

Ways out

 \square M_V(*CE*315) > 14: Improbable

Old systems don't look like GP Com, CE 315 and CP Eri

Most systems don't survive as AM CVn systems

*Direct impact phase: Marsh, Nelemans, Steeghs (2003)

□ AM CVns are a young population as IBWD

★CE phase is efficient and systems emerge as wide WD+WD binaries

Future:

- □ Compare results of more large area surveys
- ★EC survey, HE survey, SDSS, future Omegacam
- □ Extend new targeted surveys to deeper limits & larger area
- □ Extend spectroscopic follow-up FSVS down to V=20
- Identification of weak X-ray sources
- ★ROSAT, CHaMP(lain)
- More accurate modelling when distances are known
- Chemical abundances to identify parent populations of known systems