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Hydrodynamics is the effective field theory of thermalization.
’$

It is a perturbative expansion in the small parameter £0;, and the
equations depend only on symmetries and conserved quantities.
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Sometimes, hydrodynamics is unstable. The fluid above does not
exist in d = 1 spatial dimension; instead, we have KPZ.



What happens if the microscopic dynamics is subject to a
non-trivial constraint, such as dipole conservation?
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We say that such theories have fractons — elementary
excitations are immobile, and only move with other fractons.



There is a novel universality class of hydrodynamics with (just)
charge and dipole conservation:
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[Gromov, Lucas, Nandkishore; 2003.09429]
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[Morningstar et al; 2004.00096], [Feldmeier et al; 2004.00635]



@ We derived this result by constructing a Schwinger-Keldysh
action for hydrodynamics demanding suitable constraints. Due
to dipole conservation

8t/dda: z;n =0,
the Ward identity for charge conservation must be
o + 0;0;J;; = 0.
For J;; to obey a local fluctuation-dissipation theorem, we require
Jij = B10;0n + B20;;0r0kn + &;;.

This formalism further reveals an infinity of new hydrodynamic
universality classes with exotic multipole/subsystem
(“fractonic”) conservation laws!

[Gromov, Lucas, Nandkishore; 2003.09429]



@ In common speak, we usually associate hydrodynamic theories
with momentum conservation:
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So, what happens if we consider a dipole conserving theory with
momentum conservation?



The conserved quantities are
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The multipole algebra relating them is:
{F,Qt ={D;i,Q} =0, {D;, P;} = Qd;;.

This last Poisson bracket/commutator will make hydrodynamics
subtle!



We expect that hydrodynamic equations will take the form

6tn + 8iajjij == 0,
Oy + 0jTij =0.

But, what are the constitutive relations for J;; and 7;;7 The
dipole algebra demands the theory be invariant under
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Or, if we write
T
Vv = —,
n

the theory is invariant under v; — v; + ¢;. This includes
thermodynamics! So we conclude

entropy density = s(n, 0;v;).

[Grosvenor et al; 2105.01084], [Glorioso et al; 2105.13365]



After some algebra, we find the ideal constitutive relations:
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with first order dissipative corrections and noise:
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A standard fluctuation dissipation theorem holds.
[Glorioso et al; 2105.13365]



@ Is hydrodynamics stable in d space dimensions? Within linear
response:
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Let’s consider the pressure nonlinearity
P(n) = Py+ Pidn+ Py(5n)* + - - - .

P is “relevant” but non-dissipative, so we do not worry about it.

(Linear hydrodynamics makes sense!). But
d
[P2] =2 - 9’

meaning hydrodynamics is unstable when d < 4. This will lead
to a fractonic “dipole-KPZ” non-equilibrium universality class!



So, is it possible to actually look for this? A one dimensional
model with dipole, momentum (and energy) conservation is the
Hamiltonian system

H = Z le +V(z; — xig1),
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Just like momentum conservation corresponds to z; — x; + c,

dipole conservation corresponds to p; — p; + c.
We can also add dissipation and noise to this model to break

energy conservation. We will call this Model A. The linearized
Model A is equivalent to the Heisenberg ferromagnet:

N-1
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Sy ~D, S,~P S .~Q.



Model B is a model with emergent momentum and dipole

conservation:
N N-1
H = Z [—cosp; — Fa;] + Z V(zi — xiz1).
i=1 i=1

We take F' to be very large, so that the short time dynamics
consists of fast Bloch oscillations. The non-momentum
conserving version has been realized in a tilted Fermi-Hubbard
model in an experimental optical lattice.
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[Guardado-Sanchez et al; 1909.05848]



We simulated Models A and B. With random initial conditions,
the typical wave number of correlations should obey

kyp (1) ~ t71/%,
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When P, =0, z =~ 4; but when P, # 0, z ~ 2.5!



We have found a new non-equilibrium universality class in a
“fracton fluid”. However, we know that infinitely many more
new universality classes of this kind exist.

Interplays between spacetime symmetries (and their breaking)
and fracton hydrodynamics is quite subtle, and may not always
be captured by naive Landau prescription.

Work on field theoretic derivation of our results is (slowly) being
written up. May help understand how to couple fractons to
gravity.



	Acknowledgments

