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•  Why theory, why protons? 

•  Locus-dependent effects at Seattle University 
•  Proximity to UW, INT – collaborate – but identify projects 

to spin off for work with students 
•  Theorists at PUI – the “explainers” 
•  Recent keynote opportunity for bridge building 
 

•  Discussion of models  
 

Overview	
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2015 – the International Year of Light 

•  interdisciplinary – art, literature, science, technology  
•  “shining light” - illuminating, learning about, but also 

using light to discover structure 
 

http://www.lumiere2015.fr/	
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"For the invention of efficient blue light-emitting diodes, which 	


has enabled bright and energy-saving white light sources" 	



Latest UCSB Nobel 
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Undergraduate research at Wellesley 

Mentor – Phyllis Fleming  
experimental work  

Photoconductivity of PbS films – 
shine light on a sample and 
measure the electric current 

 

Long hours in the lab -> senior honors thesis -> first paper	



light, a common thread in my research career	
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First job – US Atomic Energy Commission 

- More experimental work – studied scattering of 137Cs 
photons in sand – shielding for accelerators 

 

Theory – at last! Studied light emitted by exotic atoms	



Grad school – University of Washington 	



Oxford – another exotic atom – proton + antiparticle = 	


	

   protonium – different spectra	



Systems getting simpler – decide to study proton itself	



Summer student research - experimental work at BNL 
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Why should we care about protons? 

•  the heart of every atom 
•  The fuel of stars  
 

•  applications – MRI 
•  proton therapy for cancer  
 

fusion reactions create energy in	


AE Aurigae: The Flaming Star 	





Critical role in the expansion of the universe 
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And stellar evolution 
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properties 

•  Charge: +1, which is extended in space 
•  Spin: looks like a little bar magnet 
•  Quantum rules: spin = ½, so it can 

point only up or down, and precess 
around a z-axis 

 

But is it an elementary particle? Let’s shine light on it, i.e.	


 do scattering experiments	
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It all depends on the wavelength of light 

Low resolution – a ball	


of positive charge	


	


	


	


Medium resolution – 	


3 quarks are seen (1970’s)	


at Stanford	


	


	


High resolution – a sea	


of quarks, antiquarks and 
gluons	
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A revolution 

•  The proton no longer considered a fundamental building block of 
matter, but a composite system, containing valence quarks, gluons, and 
a “sea” of quark-antiquark pairs.  

 
•  The theory of QCD, Quantum ChromoDynamics, tells us how to 

construct composite particles from the new building blocks, the 
quarks, and the gluons that carry the forces between them. 

 
•  The new “periodic table” given by the Standard Model is simpler, but 

the math much more challenging: 



The “periodic table” of particle physics 

Courtesy Fermilab Visual Media Services 
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“The proton (artist’s concept) is a bit like a troubled teenager: 	


    a mess inside and nearly incomprehensible.”	



“Probing the Proton”, 	


    by Adrian Cho,	


 SCIENCE, 23 JANUARY 2015	



The science journalist’s perspective	



“the seething maelstrom at the heart of matter”	



IMAGE: COURTESY OF JEFFERSON LAB 	
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Similar resolution phenomena in art 

Seurat - La Parade de Cirque (1888)	
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and in astronomy 
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Proton Structure Project  

	

A fundamental goal of 
physics research is to 
understand the properties 
of composite particles, 
such as the proton, in 
terms of their constituents: 
quarks, antiquarks, and 
gluons.  

Daphne	
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The quarks and antiquarks 
also have spin ½, and the 
gluons have spin 1. The 
quarks also may have 
orbital angular momentum 
relative to one another. 
Somehow, all these vector 
spins must always add up 
to ½. Solving this problem 
is a major challenge. 

The test of any model is to show that the known properties	


 of the proton arise from the properties and interactions of 	


the constituents. The proton has spin ½:	





Experimental studies!

Drell-Yan scattering of a proton beam by 
a proton target (hydrogen gas). 
 
A quark in the beam is annihilated by an 
antiquark in the target, creating a photon, 
which decays into 2 oppositely charged 
muons. The momentum of each muon is 
measured in a particle detector. The 
momenta of the quarks is determined 
from conservation of momentum.  
 
Same techniques used at the LHC. 

E866 experiment at FermiLab!
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Some of the challenges: 

•  There are, overall, more d-dbar quark pairs than u-ubar pairs 
–  Doesn’t make sense – they have about same mass 
–  No difference in energy cost to make them 

•  But at large fractions of the proton’s momentum, there are more u-ubar quark 
pairs than d-dbar pairs 
–  No one has been able to explain this 

•  There are strange quark pairs in this “sea” of quarks and antiquarks 
–  Allowed by the Heisenberg uncertainty principle 
–  Difficult to predict the probability that they are created 

 
One of the models we have used is statistical – similar to theoretical 
work done in chemistry. Our first attempt to describe the asymmetry 
between the dbar and ubar sea. 
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Fock state expansion: 

in which {uud} represents the valence quarks and {i,j,k} represents the      
number  of  u-ubar pairs, d-dbar pairs, and gluons, respectively.  

Processes included: 

p  =   ci, j,k {uud},{i, j,k}∑ ,        ρi, j,k = ci, j,k
2
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in which the rates R are determined by the number of partons that can 
split or recombine: 

Detailed balance: ρARA→B= ρBRB→A

The relative probabilities of Fock state components are then determined:	



and an excess of dbar (j) over ubar (i) states in the proton sea results:	



experiment:	
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Use Rambo to generate 
Monte Carlo distribution fn(x) 
of each n-parton state, with 

Momentum distributions: 

The x-distributions of the sea quarks are:	



7/1/15 

� 

u (x) = iρijk
ijk
∑ fn (x)   and  d (x) = jρijk

ijk
∑ fn (x)

� 

n = 3+ 2 (i + j) + k

23 
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Proton sea asymmetry – comparison with experiment 
 

x represents the fraction of the proton’s momentum carried by the antiquarks 	
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•  calculated ratio is approximately constant 	


•  need to include other processes (meson cloud)	


•  the proton can fluctuate into clusters of quarks –   

	

mesons and baryons	
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Meson Cloud Model	



The wave function of the proton is written in terms of a Fock 
State expansion!

For reviews, see Speth and Thomas (1997), Garvey and Peng (2001)!
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Bare distribution + contribution from meson-baryon splitting 

• Splitting functions require cutoffs; exponential forms should be used 
• Models differ in number of MB terms, qM, qB, coupling constants, cutoffs. 

Distribution functions	
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Adding a cloud of mesons – much better agreement with experiment	


But challenge to explain high-x behavior remains	





What about other flavors in the proton sea? 
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•  Pairs of strange, charm, top, and bottom quarks can all be created	



•  Strangeness in the proton sea established by experiment: NuTev, 
ATLAS, Hermes	



•  Affects cross-sections for dark matter searches	


	


•  Strangeness asymmetry possible –momentum of proton may not be 

shared in the same way by s and sbar quarks 	





Strangeness in the proton 

•  Total Strangeness 	


	


	


•  Expect fewer s-sbar pairs than u-ubar and d-dbar; suppression due to 

strange quark mass	


	



•  Surprising evidence that for low x,	



•  x-dependence of strange sea different than light quark sea	



7/1/15	

 TUI-3 at KITP	



S+(x) ≡ s(x)+ s (x)

rs = 0.5(s+ s ) / d

rs ≈1

30 



ATLAS	



http://p25ext.lanl.gov/e866/e866.html 
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•  ATLAS measurements: inclusive W+,  W-, 
and Z production at LHC	



•  Points – predictions from 4 global pdf 
analyses	



•  More strange sea than had been assumed	



PRL 109, 012001 (2012)	



rs = 0.5(s+ s ) / d

31 



HERMES	
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•  HERMES – semi-inclusive DIS, flavor tagging of 
charged kaons, DK is fragmentation function 	



•  predictions of xS(x) from 3 global pdf 
determinations 	



•  comparison to light sea pdf from CTEQ6L	


•  different shape and ratio for light vs. strange sea	



Phys. Lett. B666, 446 (2008)	


revised arXiv:1312.7028 (2013)	



32 



Strangeness asymmetry 

Constraints from CTEQ6.5S0:   −0.001 < S- < 0.005; 
best value 0.018	


	


What determines shape and sign of asymmetry?  	
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S−(x) ≡ s(x)− s (x)



Successful in explaining light sea asymmetry	


	


	


	



Meson cloud model	



p(uud)→ n(udd) + π + (ud ) creates an excess of d  over u

Strange mesons and baryons in the cloud will contribute to 
the strange sea	



	


	


	



p(uud)→Λ(uds)+K +(us ) creates s and s  in 
different environments - expect momentum asymmetry

ΛΚ*, ΣΚ, , ΣΚ*  intermediate states should also be included 
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To test dependence of asymmetry on pdfs in the 
cloud, use our statistical model,  
 
or light-cone wave functions: 
	


	


	



LCWF – use constituent quark masses in two-body wavefunctions,	


Gaussian form 	
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Hybrid Model 
•  Replace “bare” particle pdfs in meson cloud model with 

statistical model or LCWF pdfs: 

•  Total strangeness determined by MCM splitting functions 
and cutoffs; independent of meson and baryon pdfs  

•  S+(x) and S-(x) affected by form of meson, baryon pdfs 

36 



 student research project – Garrett Budnik -  study of convolution: fluctuation ⊗ pdfs 

MCM ⊗ LC:  convolution of meson cloud 
model for fluctuations with light cone 
wavefunctions for meson and baryon 
pdfs 
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MCM vs. LCM

LC ⊗ LC – blue	


MCM ⊗ global pdfs for meson and baryon 
parton distributions – green 
 
(Cao and Signal, 1999) 

Conclusion: sign and shape of asymmetry determined by pdfs of hadrons in the cloud	


	


Paper with student co-authors in preparation	
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Summary 
•  A complete description of the proton is still elusive. 

•  At SU we have developed calculations that provide a qualitative picture of 
the way proton momentum is shared among its constituents. We are also 
investigating strangeness in the proton, and will study proton spin. 

 
•  Experiments are continuing and will present us with new data - and 

challenges - soon. 
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•  To my research students – at SU (22) and UPS, Harvey Mudd, Holy Cross 
•  SU colleagues 
•  Collaborators – UW, Adelaide, CERN, Colorado, Giessen, Liege,  

   Los Alamos, Maryland, Munich, Uppsala 
•  Experimentalists – who make the measurements that challenge us 

Thanks	



Megan Kennedy – Santa Fe, 2010	

 Sam Tuppan and Jordan Fox – Waikoloa, 2014	



Students at poster sessions of the DNP Conference Experience for Undergraduates	




