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Overview

Frustration
General description
Magnetism as the paradigm
Ising & Continuous symmetry
Itinerant Fermi systems

Materials - brief comments
Hubbard model
Select results and future plans

Research interest: What are the low temperature phases of
correlated magnetic/charge systems in and how does
frustration affect those phases? Tune the frustration.
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Frustration - a toy model

You have two balls, red and blue Rule: stack rows of balls, nearest neighbors must be of
opposite color

The rule is satisfied for all balls

in a direct stacking
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Frustration - a toy model

You have two balls, red and blue Rule: stack rows of balls, nearest neighbors must be of
opposite color

The rule is satisfied for all balls.

in a direct stacking

The rule is not satisfied for a

closed packed stacking.

Frustrated
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A simple model of magnetism: Ising

H = J
∑

⟨i,j⟩

σiσj σi = ±1 = up/down J > 0 AFM
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A simple model of magnetism: Ising

H = J
∑

⟨i,j⟩

σiσj σi = ±1 = up/down J > 0 AFM

antiferromagnetic coupling

spin down, ï1 spin up, +1
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A simple model of magnetism: Ising

H = J
∑

⟨i,j⟩

σiσj σi = ±1 = up/down J > 0 AFM

?

Triangular motif induces competition among interactions, geometry induced frustration.
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J1 − J2 Ising model

Include 2nd nearest neighbor interactions: J2

H = J1
∑

⟨i,j⟩

σiσj + J2
∑

⟨⟨i,j⟩⟩

σiσj
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J1 − J2 Ising model

Include 2nd nearest neighbor interactions: J2

H = J1
∑

⟨i,j⟩

σiσj + J2
∑

⟨⟨i,j⟩⟩

σiσj

J1

J1 For J1 = 1, J2 = 0,
square lattice AFM
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J1 − J2 Ising model

Include 2nd nearest neighbor interactions: J2

H = J1
∑

⟨i,j⟩

σiσj + J2
∑

⟨⟨i,j⟩⟩

σiσj

J1

J2

With J1 = 1, J2 > 0, frustration

TUI-3 KITP, June 30, 2015 – p. 5/25



J1 − J2 Ising model

Include 2nd nearest neighbor interactions: J2

H = J1
∑

⟨i,j⟩

σiσj + J2
∑

⟨⟨i,j⟩⟩

σiσj

J1

J2

With J1 = 1, J2 > 0, frustration
Competing interactions
engender frustration.

?
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Mean-field phases

Fourier transform the interaction

J(q) =
∑

i,j

J(rij)e
−ıq·rij

The minimum of J(q) occurs at ordering wave vector, qord.
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Mean-field phases

Fourier transform the interaction

J(q) =
∑

i,j

J(rij)e
−ıq·rij

The minimum of J(q) occurs at ordering wave vector, qord.
What happens to qord as frustration is tuned?
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Mean-field phases

Fourier transform the interaction

J(q) =
∑

i,j

J(rij)e
−ıq·rij

The minimum of J(q) occurs at ordering wave vector, qord.
What happens to qord as frustration is tuned?

J1 − J2 model on the square lattice
Nearest neighbor model on the anisotropic triangular
lattice
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J1 − J2 model
J1 = 1, J2 = 0 qord = (π,π)

J1

J2
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J1 − J2 model
J1 = 1, J2 = 0.25 qord = (π,π)

J1

J2
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J1 − J2 model
J1 = 1, J2 = 0.50 qord = (q, q)

J1

J2

Disordered
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J1 − J2 model
J1 = 1, J2 = 1.00 qord = (π, 0)

J1

J2
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Anisotropic triangular lattice

J1 = 1, J2 = 0 qord = (π,π)

J1

J2
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Anisotropic triangular lattice

J1 = 1, J2 = 0.25 qord = (π,π)

J1

J2
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Anisotropic triangular lattice

J1 = 1, J2 = 0.50 qord = (π,π)

J1

J2
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Anisotropic triangular lattice

J1 = 1, J2 = 1.00 qord ≈ (2π/3, 2π/3)

But partial
ordering
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Anisotropic triangular lattice

J1 = 1, J2 = 1 qord ≈ (2π/3, 2π/3)

J1

J2

One possible configuration

Dots are random up/down

Residual entropy

S/N = 0.32306

Wannier, Phy. Rev. 79 1950

Houtappel, Physica 16 1950

TUI-3 KITP, June 30, 2015 – p. 8/25



Complicated Ising systems

Spin ice: Ho2Ti2O7 & Dy2Ti2O7

Nearest neighbor model Dipolar model

Quasi-degeneracy
yields interesting physics
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Continuous spin + frustration

H = J
∑

⟨i,j⟩

Si · Sj J > 0 AFM

Si → SO(n) or SU(N)
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Continuous spin + frustration

H = J
∑

⟨i,j⟩

Si · Sj J > 0 AFM

Si → SO(n) or SU(N)

Non-colinear states
Rich spin textures emerge
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Itinerant electrons

Relative to quantum magnets, the Hilbert space
expands to include charge, orbital, and spin dof
Consider the simplest model, single band & on-site
interactions: charge and spin dof only.
Hubbard model - single band

H = −
∑

<i,j>,σ

tij(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ) + U

∑

i

n̂i↑n̂i↓ − µ
∑

i,σ

n̂iσ

t

U

tij nn hoping

U on site repulsion

µ chemical potential
TUI-3 KITP, June 30, 2015 – p. 11/25



Itinerant electrons & frustration

Frustration enters via hopping, kinetic energy, term
Virtual fluctuations reduce energy if neighboring spins
are anti-aligned.
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Itinerant electrons & frustration

Frustration enters via hopping, kinetic energy, term
Virtual fluctuations reduce energy if neighboring spins
are anti-aligned.

t

t

t

t

X

t

t t
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Hubbard to quantum magnets

In the large U limit the 2nd OPT
t− J model and Heisenberg model

Capacity to tune from metal to insulator.

Physics

Metal Mott Critical point Insulator

U/t

Models 
Hubbard tïJ Heisenberg

Increasing U/t
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Materials - motivation
S = 1/2 magnets

Triangular lattice
Cs2CuCl4
Cs2CuBr4

Kagome lattice
ZnCu3(OH)6Cl2 herbertsmithite
Cu3Zn(OH)6Cl2 kapellasite (polymorph)

Itinerant systems

Triangular lattice
k-(ET)2Cu2(CN)3
k-(ET)2Cu2(SCN)3
NaxCoO2
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Links to field theory

A question of length scales.

Long lengths - QFT, continuum

Electrons on crystal - microscopic hamiltonian

Molecules - Schrödinger equation

Powell & McKenzie, Rep. Prog. Phys. 74 (2011)
Review on organic Mott insulators.
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Methods to study Hubbard model

Field theoretic techniques
Numerics to study the model directly - numerous
Mean field approximations of hamiltonian
Perturbative methods - series expansions
I have used quantum Monte Carlo (QMC), mean-field
theory, exact diagonalization
In QMC, the issue is with the interaction: U

∑
i n̂i↑n̂i↓

Hubbard-Stratonovich transformation

e−∆τUn̂i↑n̂i↓ = e−∆τ(n̂i↑+n̂i↓)
∑

xi=±1

P (xi)e
γxi(n̂i↑−n̂i↓)
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QMC - quick comments

detQMC∗ - finite T, sign problem with fermions and frustration

⟨Ô⟩ = TrTrx{ÔeβH[x]}
TrTrx{eβH[x]}

CP/ΦQMC∗∗ - T=0, project |Ψo⟩, importance sampled RW

|Ψo⟩ = lim
n→∞

e−n∆τH[x]|ΨT ⟩ → |Ψ(n)⟩ ∝
∑

k

OT (φ
(n)
k )|φ(n)

k ⟩

Importance function: OT (φ
(n)
k ) = ⟨ΨT |φ(n)

k ⟩

Constraint: OT (φ
(n)
k ) > 0 PBC; Re

{
OT (φ

(n+1)
k )

OT (φ(n)
k )

}
> 0 TABC

∗ PRD 24 2278; ∗∗PRL 74 3652, PRL 90 136401
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The sign problem in QMC

Origins of sign problem are method depend.
In essence the signal-to-noise vanishes in your
measurements.
In detQMC the weights (probabilities) can be negative

0 1 2 3 4 5 6 7 8 9 10
`

0

0.2

0.4

0.6

0.8

1

<m
>

 U = 4 
 U = 6

Average sign detQMC 6-lattice: L=6,  <n> = 1 

The sign is included in

calculation of observables

Frustration makes sign

problem worse
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Mean-field theory

In MFT you ignore fluctuations in the charge and spin dof.
Think of it as the next lowest order approximation,
non-interacting being the lowest. No sign problem.

H = −
∑

<i,j>,σ

tij(ĉ
†
iσ ĉjσ + ĉ†jσ ĉiσ) + U

∑

i

n̂i↑n̂i↓ − µ
∑

i,σ

n̂iσ

Hartree-Fock treatment of on-site interaction:

U
∑

i

n̂i↑n̂i↓ → U(n̂i↑⟨n̂i↓⟩+ n̂i↓⟨n̂i↑⟩ − ⟨n̂i↑⟩⟨n̂i↓⟩)

− U(Ŝ+
i ⟨Ŝ−

i ⟩ − Ŝ−
i ⟨Ŝ+

i ⟩ − ⟨Ŝ+
i ⟩⟨Ŝ−

i ⟩)

Self consistent MF equations: ∂F/∂⟨Ô⟩ = 0 → ⟨n̂i↑⟩, ⟨n̂i↓⟩, ⟨Ŝ+
i ⟩, ⟨Ŝ−

i ⟩
Our work, done a real-space lattice of N sites, in GCE and CE
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Lattice systems of interest

2D lattice with geometric frustration
Triangular lattice

Isotropic lattice at ⟨n⟩ = 2/3

Anisotropic lattice at ⟨n⟩ = 1

Kagome lattice
Anisotropic lattice at ⟨n⟩ = 1

t1

t2 t2

R2

R1

t1

t2 t2
R2

R1

a=1 a=2

a=3
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1/3-filling in ground state
Work with Richard Scalettar GCE at T/t = 0.01
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1/3-filling in ground state

Fourier transform of charge-charge correlations
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Metal-Insulator transition at
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1/3-filling at finite T
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Broken discrete symmetry of lattice, MW theorem does not apply.
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1st order
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1/3-filling in ground state

Charge order with partial magnetic order.
Magnetic order on honeycomb substructure - no
frustration.
Frustration driven MIT

n1=n2=n3 = 0.666667

U/t = 4.60
L = 18

Paramagnet
n1 = 0.69431, mz

1 =  0.16590

n2 = 0.61137, mz
2 =  0.00000

n3 = 0.69431, mz
3 = -0.16590

U/t = 5.20
L = 18
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Final comments

Complete the HF work on the triangular and kagome
lattices
Beyond Hartree-Fock MFT - make stronger connections
to materials

CP/ΦQMC ?
Include Onsager reaction field in the MFT
Thouless - Anderson - Palmer (TAP) applied to the
Hubbard model
Cluster MFT
Dynamics
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Final comments

Complete the HF work on the triangular and kagome
lattices
Beyond Hartree-Fock MFT - make stronger connections
to materials

CP/ΦQMC ?
Include Onsager reaction field in the MFT
Thouless - Anderson - Palmer (TAP) applied to the
Hubbard model
Cluster MFT
Dynamics

Thanks!
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