Synthetic Quantum Matter with Atoms and Photons **Ryan Wilson** **US Naval Academy** TUI-3 **KITP** #### Ryan - CU/JILA (grad) to NIST/UMD/JQI (NRC postdoc) to USNA (current) - Asst. Professor @USNA, Aug. 2014-present - Broadly curious about quantum many-body physics (in practice, ultracold atoms) - 2015-2017 KITP Scholar #### Ryan - CU/JILA (grad) to NIST/UMD/JQI (NRC postdoc) to USNA (current) - Asst. Professor @USNA, Aug. 2014-present - Broadly curious about quantum many-body physics (in practice, ultracold atoms) - 2015-2017 KITP Scholar #### **USNA** - 4400 "Midshipmen" representing all congressional districts - 1100 intro physics students, ~20-30 physics majors graduated/year - "Trident Scholar" program provides 18-24 research credits during senior year #### Research "Group" Q. Info Chaos **BEC** #### **Quantum Many-Body Physics** - Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too) - Quantum statistics are important at low temperatures - Ground states, non-equilibrium phases (ordering, topology) - Challenges: strong correlations, entanglement, large Hilbert spaces... #### **Quantum Many-Body Physics** - Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too) - Quantum statistics are important at low temperatures - Ground states, non-equilibrium phases (ordering, topology) - Challenges: strong correlations, entanglement, large Hilbert spaces... #### **Optical Lattices** #### **Spinors** S=1/2 – magnetism S=1 – nematic order S=N - SU(N) magnetism #### **Quantum Many-Body Physics** - Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too) - Quantum statistics are important at low temperatures - Ground states, non-equilibrium phases (ordering, topology) - Challenges: strong correlations, entanglement, large Hilbert spaces... #### **Optical Lattices** #### **Spinors** S=1/2 – magnetism S=1 – nematic order S=N – SU(N) magnetism #### **Quantum Many-Body Physics** - Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too) - Quantum statistics are important at low temperatures - Ground states, non-equilibrium phases (ordering, topology) - Challenges: strong correlations, entanglement, large Hilbert spaces... # Optical Lattices $V(\mathbf{r}) = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2 - 3(\mathbf{d}_1 \cdot \hat{r})(\mathbf{d}_2 \cdot \hat{r})}{r^3}$ (Wiemann/Cornell Rb87 BEC, JILA) #### **Quantum Many-Body Physics** - Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too) - Quantum statistics are important at low temperatures - Ground states, non-equilibrium phases (ordering, topology) - Challenges: strong correlations, entanglement, large Hilbert spaces... #### Optical cavities (nonlinear) #### Topological light Inherently dissipative, must be driven/pumped # Synthetic Quantum Matter with Atoms and Photons Driven-dissipative array of nonlinear optical cavities **Emergence in open quantum systems** $$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$ Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$ U(1) symmetry, broken by emergence of BEC Superfluidity, quantized rotation, etc. $$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$ Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$ U(1) symmetry, broken by emergence of BEC Superfluidity, quantized rotation, etc. (Ketterle Na23 Lab, MIT) Non-linear Schrodinger equation **Great for undergraduates** $$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$ Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$ U(1) symmetry, broken by emergence of BEC Superfluidity, quantized rotation, etc. week ending 17 OCTOBER 2014 PRL **113**, 165301 (2014) PHYSICAL REVIEW LETTERS #### Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas Wilbur E. Shirley. Rrandon M. Anderson, Charles W. Clark, and Ryan M. Wilson Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA molecules $$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$ Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$ U(1) symmetry, broken by emergence of BEC Superfluidity, quantized rotation, etc. week ending 17 OCTOBER 2014 PRL **113**, 165301 (2014) PHYSICAL REVIEW LETTERS #### Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas Wilbur E. Shirley. Rrandon M. Anderson, Charles W. Clark, and Ryan M. Wilson Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA #### **Vortices crystalize** Other types of ordering? (density crystals, supersolids, etc.) # Dipolar BEC #### Magnetic dipolar atoms (high-spin) ⁵²Cr (2005, Pfau, Stuttgart) PRL **94** 160401 (2005) ¹⁶⁴Dy (2011, Lev Lab, Illinois/Stanford) PRL **107** 190401 (2011) ¹⁶⁸Er (2012, Ferlaino, Innsbruck) PRL **108** 210401 (2012) ¹⁶⁰Dy & ¹⁶²Dy (2014, Lev Lab, Stanford) arXiv:1311.3069 (2014) $$l\left\{\begin{array}{c|c} \hline & & & \\ \hline & & & \\ \hline \end{array}\right. \qquad V(\mathbf{r}) = \frac{1 - 3\cos^2\theta}{r^3}$$ $$V(\mathbf{r}) = \frac{1 - 3\cos^2\theta}{r^3}$$ #### k-space interaction potential # Dipolar BEC #### Magnetic dipolar atoms (high-spin) ⁵²Cr (2005, Pfau, Stuttgart) PRL **94** 160401 (2005) ¹⁶⁴Dy (2011, Lev Lab, Illinois/Stanford) PRL **107** 190401 (2011) ¹⁶⁸Er (2012, Ferlaino, Innsbruck) PRL **108** 210401 (2012) ¹⁶⁰Dy & ¹⁶²Dy (2014, Lev Lab, Stanford) arXiv:1311.3069 (2014) #### k-space interaction potential #### Dispersion of quantum fluctuations Electrons in 2D... (idea: shift dispersion minimum away from k=0) Electrons in 2D... $$\hat{\mathcal{H}} \sim -oldsymbol{\sigma} \cdot ec{B}_{ ext{eff}}$$ Rashba Hamiltonian: $$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$ Rashba Hamiltonian: $$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$ Engineering in cold atoms... Rashba Hamiltonian: $$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$ Engineering in cold atoms... Energetically isolate 3 or 4 hyperfine states Cyclically couple with Raman beams Campbell et al. PRA 84 025602 (2011) Rashba Hamiltonian: $$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$ Engineering in cold atoms... $$\frac{1}{l} < k_{\rm so}$$ Rashba Hamiltonian: $$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$ Engineering in cold atoms... $$\frac{1}{l} > k_{\rm so}$$ RW, S. Gopalakrishnan, in prep. (2015) # Synthetic Quantum Matter with Atoms and Photons Dipolar BEC in synthetic gauge field (spin-orbit coupling) **Ground state ordering** Driven-dissipative array of nonlinear optical cavities **Emergence in open quantum systems** $$\hat{\mathcal{H}} = \boxed{-J\sum_{\langle i,j\rangle} \hat{a}_j^{\dagger} \hat{a}_i} - \mu \sum_i \hat{n}_i + U\sum_i \hat{n}_i (\hat{n}_i - 1) \qquad \text{(Bose-Hubbard)}$$ $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ laser A A A A A decay System = cavities + photon bath (Markovian), trace out bath $$\dot{\hat{ ho}} = -i\left[\hat{\mathcal{H}},\hat{ ho}\right] + \boxed{\frac{\gamma}{2}\sum_{i}\left(2\hat{a}_{i}\hat{ ho}\hat{a}_{i}^{\dagger} - \hat{n}_{i}\hat{ ho} - \hat{ ho}\hat{n}_{i}\right)}$$ (Lindblad equation) - *U*(1) symmetry broken by coherent driving (superfluid gone) - Mott insulator phase is gone - Energy & number not conserved (no ground state) - Phases characterized by steady state $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ Single cavity, mean-field $\, \alpha = \langle \hat{a} \rangle \,$ $$\dot{\alpha} = \operatorname{tr}\left[\dot{\hat{\rho}}\hat{a}\right]$$ #### **Optical bistability** # Two stable steady states 1st order phase transition $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ Single cavity, exact solution #### **Optical bistability** Two stable steady states 1st order phase transition #### Exact solution **not bistable** Steady state is unique Corresponds to ensemble average of many measurements Continuous (crossover, not a phase transition) $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ Wigner representation of density matrix: $\chi_W(\alpha, \alpha^*) = \operatorname{tr} \left[\hat{\rho} e^{\alpha \hat{a}^\dagger - \hat{a} \alpha^*} \right]$ Stochastic nonlinear equation: $$i\dot{\alpha}=-\mu\alpha+U|\alpha|^2\alpha+\Omega-i\frac{\gamma}{2}+d\dot{W}$$ (Gross-Pitaevskii) Wiener process (Brownian motion) $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ Wigner representation of density matrix: $\chi_W(\alpha, \alpha^*) = \operatorname{tr} \left[\hat{\rho} e^{\alpha \hat{a}^\dagger - \hat{a} \alpha^*} \right]$ Stochastic nonlinear equation: $$i\dot{\alpha}=-\mu\alpha+U|\alpha|^2\alpha+\Omega-i\frac{\gamma}{2}+d\dot{W}_{\rm K}$$ Wiener process (Brownian motion) (Perturbative) quantum treatment exhibits switching between classical steady states $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{x}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$ Hardcore bosons map to dissipative XXZ spin model: $\hat{a}_i \to \hat{\sigma}_i^-$ No bistability for single spin Assymetric simpl3e exclusion process $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement) Uniform phases? $(\langle \hat{\sigma}_i^{\alpha} \rangle = \langle \hat{\sigma}_i^{\alpha} \rangle)$ $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement) Uniform phases? $(\langle \hat{\sigma}_i^{\alpha} \rangle = \langle \hat{\sigma}_j^{\alpha} \rangle)$ #### **Collective bistability** $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement) Non-uniform phases have AB sublattice (AF) symmetry #### Semiclassical/Gutzwiller phase diagram $$J/\gamma = 10$$ $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement) Non-uniform phases have AB sublattice (AF) symmetry #### Semiclassical/Gutzwiller phase diagram #### Bloch sphere $$J/\gamma = 10$$ $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Exact solutions: $\langle \hat{\sigma}_i^{\alpha} \hat{\sigma}_i^{\alpha} \rangle \neq \langle \hat{\sigma}_i^{\alpha} \rangle \langle \hat{\sigma}_i^{\alpha} \rangle$ (entanglement) For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements **Exact solutions with quantum trajectories of wave function** $$\dot{\hat{\rho}} = -i \left[\hat{\mathcal{H}}, \hat{\rho} \right] + \frac{\gamma}{2} \sum_{i} \left(2 \hat{\sigma}_{i}^{-} \hat{\rho} \hat{\sigma}_{i}^{+} - \left\{ \hat{\sigma}_{i}^{+} \hat{\sigma}_{i}^{-}, \hat{\rho} \right\} \right)$$ Stochastic applications of $\hat{\sigma}_{i}^{-}$ non-Hermitian evolution Ensemble averaging corresponds to **exact** solution $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement) For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements #### **Exact solutions with quantum trajectories of wave function** Enhanced number fluctuations in BS region $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$ Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement) For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements #### All-to-all coupling approaches mean-field limit Enhanced number fluctuations in BS region $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement) For N spins, Hilbert space scales as 2^N **Exact solutions with quantum trajectories of wave function** Trajectory exhibits collective switching in bistable region $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$ Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement) For N spins, Hilbert space scales as 2^N #### **Exact solutions with quantum trajectories of wave function** $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ #### Two-state toy model $$\dot{\rho}_g = -\Omega \rho_g + (\Omega + \gamma) \rho_e$$ $$\dot{\rho}_e = \Omega \rho_g - (\Omega + \gamma) \rho_e$$ Gap: $$\Delta = \frac{1}{T_g} + \frac{1}{T_e}$$ $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ #### Two-state toy model $$\dot{\rho}_g = -\Omega \rho_g + (\Omega + \gamma) \rho_e$$ $$\dot{\rho}_e = \Omega \rho_g - (\Omega + \gamma) \rho_e$$ Gap: $$\Delta = \frac{1}{T_q} + \frac{1}{T_e}$$ all-to-all coupling $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$ Semiclassical phase diagram - 1st order transition, limit cycles - When is it recovered? Quantum trajectories w/ long-range couplings Stochastic GP simulations? - no entanglement - classical correlations - good for small U, large N $$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$ domains in 1D Semiclassical phase diagram - 1st order transition, limit cycles - When is it recovered? Quantum trajectories w/ long-range couplings Stochastic GP simulations? - no entanglement - classical correlations - good for small U, large N ### Conclusion ### T=0 (BEC) ground states of dilute Bose gases Interplay of dipolar interactions and spin-orbit coupling Rich phase diagram: vortex lattices, crystals, quasicrystals ### Driven-dissipative nonlinear optical cavities Semiclassical steady states include bistability (1st order), limit cycles, AF order Quantum trajectories show collective bistable switching and AF correlations Limit cycle, 1st order transition emerge with increasing dimensionality #### Other Dipolar fermions, large spin Bose gases (S=1), atoms in optical lattices NSF (RUI) to study quantum gases of diatomic molecules