Synthetic Quantum Matter with Atoms and Photons

Ryan Wilson

US Naval Academy

TUI-3

KITP

Ryan

- CU/JILA (grad) to NIST/UMD/JQI (NRC postdoc) to USNA (current)
- Asst. Professor @USNA, Aug. 2014-present
- Broadly curious about quantum many-body physics (in practice, ultracold atoms)
- 2015-2017 KITP Scholar

Ryan

- CU/JILA (grad) to NIST/UMD/JQI (NRC postdoc) to USNA (current)
- Asst. Professor @USNA, Aug. 2014-present
- Broadly curious about quantum many-body physics (in practice, ultracold atoms)
- 2015-2017 KITP Scholar

USNA

- 4400 "Midshipmen" representing all congressional districts
- 1100 intro physics students, ~20-30 physics majors graduated/year
- "Trident Scholar" program provides 18-24 research credits during senior year

Research "Group"

Q. Info

Chaos

BEC

Quantum Many-Body Physics

- Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too)
- Quantum statistics are important at low temperatures
- Ground states, non-equilibrium phases (ordering, topology)
- Challenges: strong correlations, entanglement, large Hilbert spaces...

Quantum Many-Body Physics

- Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too)
- Quantum statistics are important at low temperatures
- Ground states, non-equilibrium phases (ordering, topology)
- Challenges: strong correlations, entanglement, large Hilbert spaces...

Optical Lattices

Spinors

S=1/2 – magnetism S=1 – nematic order

S=N - SU(N) magnetism

Quantum Many-Body Physics

- Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too)
- Quantum statistics are important at low temperatures
- Ground states, non-equilibrium phases (ordering, topology)
- Challenges: strong correlations, entanglement, large Hilbert spaces...

Optical Lattices

Spinors

S=1/2 – magnetism S=1 – nematic order S=N – SU(N) magnetism

Quantum Many-Body Physics

- Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too)
- Quantum statistics are important at low temperatures
- Ground states, non-equilibrium phases (ordering, topology)
- Challenges: strong correlations, entanglement, large Hilbert spaces...

Optical Lattices $V(\mathbf{r}) = \frac{\mathbf{d}_1 \cdot \mathbf{d}_2 - 3(\mathbf{d}_1 \cdot \hat{r})(\mathbf{d}_2 \cdot \hat{r})}{r^3}$ (Wiemann/Cornell Rb87 BEC, JILA)

Quantum Many-Body Physics

- Condensed matter / solid state / ultracold atoms (laser cooling to T<10 nK) (non-linear photonics, exciton/polariton gases, too)
- Quantum statistics are important at low temperatures
- Ground states, non-equilibrium phases (ordering, topology)
- Challenges: strong correlations, entanglement, large Hilbert spaces...

Optical cavities (nonlinear)

Topological light

Inherently dissipative, must be driven/pumped

Synthetic Quantum Matter with Atoms and Photons

Driven-dissipative array of nonlinear optical cavities

Emergence in open quantum systems

$$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$

Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$

U(1) symmetry, broken by emergence of BEC

Superfluidity, quantized rotation, etc.

$$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$

Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$

U(1) symmetry, broken by emergence of BEC

Superfluidity, quantized rotation, etc.

(Ketterle Na23 Lab, MIT)

Non-linear Schrodinger equation

Great for undergraduates

$$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$

Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$

U(1) symmetry, broken by emergence of BEC

Superfluidity, quantized rotation, etc.

week ending 17 OCTOBER 2014

PRL **113**, 165301 (2014)

PHYSICAL REVIEW LETTERS

Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

Wilbur E. Shirley. Rrandon M. Anderson, Charles W. Clark, and Ryan M. Wilson Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA

molecules

$$\hat{\mathcal{H}} = \int d\mathbf{r} \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{H}_{0}(\mathbf{r}) \hat{\psi}(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \, \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r})$$

Order parameter (mean field): $\hat{\psi}(\mathbf{r}) \simeq \phi(\mathbf{r}) + \hat{\varphi}(\mathbf{r})$

U(1) symmetry, broken by emergence of BEC Superfluidity, quantized rotation, etc.

week ending 17 OCTOBER 2014

PRL **113**, 165301 (2014)

PHYSICAL REVIEW LETTERS

Half-Quantum Vortex Molecules in a Binary Dipolar Bose Gas

Wilbur E. Shirley. Rrandon M. Anderson, Charles W. Clark, and Ryan M. Wilson Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA

Vortices crystalize

Other types of ordering? (density crystals, supersolids, etc.)

Dipolar BEC

Magnetic dipolar atoms (high-spin)

⁵²Cr (2005, Pfau, Stuttgart) PRL **94** 160401 (2005) ¹⁶⁴Dy (2011, Lev Lab, Illinois/Stanford) PRL **107** 190401 (2011) ¹⁶⁸Er (2012, Ferlaino, Innsbruck) PRL **108** 210401 (2012) ¹⁶⁰Dy & ¹⁶²Dy (2014, Lev Lab, Stanford) arXiv:1311.3069 (2014)

$$l\left\{\begin{array}{c|c} \hline & & & \\ \hline & & & \\ \hline \end{array}\right. \qquad V(\mathbf{r}) = \frac{1 - 3\cos^2\theta}{r^3}$$

$$V(\mathbf{r}) = \frac{1 - 3\cos^2\theta}{r^3}$$

k-space interaction potential

Dipolar BEC

Magnetic dipolar atoms (high-spin)

⁵²Cr (2005, Pfau, Stuttgart) PRL **94** 160401 (2005) ¹⁶⁴Dy (2011, Lev Lab, Illinois/Stanford) PRL **107** 190401 (2011)

¹⁶⁸Er (2012, Ferlaino, Innsbruck) PRL **108** 210401 (2012)

¹⁶⁰Dy & ¹⁶²Dy (2014, Lev Lab, Stanford) arXiv:1311.3069 (2014)

k-space interaction potential

Dispersion of quantum fluctuations

Electrons in 2D...

(idea: shift dispersion minimum away from k=0)

Electrons in 2D...

$$\hat{\mathcal{H}} \sim -oldsymbol{\sigma} \cdot ec{B}_{ ext{eff}}$$

Rashba Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$

Rashba Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$

Engineering in cold atoms...

Rashba Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$

Engineering in cold atoms...

Energetically isolate 3 or 4 hyperfine states

Cyclically couple with Raman beams

Campbell et al. PRA 84 025602 (2011)

Rashba Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$

Engineering in cold atoms...

$$\frac{1}{l} < k_{\rm so}$$

Rashba Hamiltonian:

$$\hat{\mathcal{H}}_{\mathrm{so}} = k_{\mathrm{so}}(\mathbf{p} \times \boldsymbol{\sigma}) \cdot \hat{z}$$

Engineering in cold atoms...

$$\frac{1}{l} > k_{\rm so}$$

RW, S. Gopalakrishnan, in prep. (2015)

Synthetic Quantum Matter with Atoms and Photons

Dipolar BEC in synthetic gauge field (spin-orbit coupling)

Ground state ordering

Driven-dissipative array of nonlinear optical cavities

Emergence in open quantum systems

$$\hat{\mathcal{H}} = \boxed{-J\sum_{\langle i,j\rangle} \hat{a}_j^{\dagger} \hat{a}_i} - \mu \sum_i \hat{n}_i + U\sum_i \hat{n}_i (\hat{n}_i - 1) \qquad \text{(Bose-Hubbard)}$$

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

laser A A A A A decay

System = cavities + photon bath (Markovian), trace out bath

$$\dot{\hat{
ho}} = -i\left[\hat{\mathcal{H}},\hat{
ho}\right] + \boxed{\frac{\gamma}{2}\sum_{i}\left(2\hat{a}_{i}\hat{
ho}\hat{a}_{i}^{\dagger} - \hat{n}_{i}\hat{
ho} - \hat{
ho}\hat{n}_{i}\right)}$$
 (Lindblad equation)

- *U*(1) symmetry broken by coherent driving (superfluid gone)
- Mott insulator phase is gone
- Energy & number not conserved (no ground state)
- Phases characterized by steady state

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

Single cavity, mean-field $\, \alpha = \langle \hat{a} \rangle \,$

$$\dot{\alpha} = \operatorname{tr}\left[\dot{\hat{\rho}}\hat{a}\right]$$

Optical bistability

Two stable steady states 1st order phase transition

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

Single cavity, exact solution

Optical bistability

Two stable steady states

1st order phase transition

Exact solution **not bistable**

Steady state is unique

Corresponds to ensemble average of many measurements

Continuous (crossover, not a phase transition)

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

Wigner representation of density matrix: $\chi_W(\alpha, \alpha^*) = \operatorname{tr} \left[\hat{\rho} e^{\alpha \hat{a}^\dagger - \hat{a} \alpha^*} \right]$

Stochastic nonlinear equation:
$$i\dot{\alpha}=-\mu\alpha+U|\alpha|^2\alpha+\Omega-i\frac{\gamma}{2}+d\dot{W}$$

(Gross-Pitaevskii)

Wiener process (Brownian motion)

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{n}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

Wigner representation of density matrix: $\chi_W(\alpha, \alpha^*) = \operatorname{tr} \left[\hat{\rho} e^{\alpha \hat{a}^\dagger - \hat{a} \alpha^*} \right]$

Stochastic nonlinear equation:
$$i\dot{\alpha}=-\mu\alpha+U|\alpha|^2\alpha+\Omega-i\frac{\gamma}{2}+d\dot{W}_{\rm K}$$

Wiener process (Brownian motion)

(Perturbative) quantum treatment exhibits switching between classical steady states

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{a}_j^{\dagger} \hat{a}_i - \mu \sum_i \hat{n}_i + U \sum_i \hat{n}_i (\hat{x}_i - 1) + \Omega \sum_i \left(\hat{a}_i + \hat{a}_i^{\dagger} \right)$$

Hardcore bosons map to dissipative XXZ spin model: $\hat{a}_i \to \hat{\sigma}_i^-$ No bistability for single spin

Assymetric simpl3e exclusion process

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement)

Uniform phases? $(\langle \hat{\sigma}_i^{\alpha} \rangle = \langle \hat{\sigma}_i^{\alpha} \rangle)$

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement)

Uniform phases? $(\langle \hat{\sigma}_i^{\alpha} \rangle = \langle \hat{\sigma}_j^{\alpha} \rangle)$

Collective bistability

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement)

Non-uniform phases have AB sublattice (AF) symmetry

Semiclassical/Gutzwiller phase diagram

$$J/\gamma = 10$$

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Gutzwiller appx: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle = \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (no entanglement)

Non-uniform phases have AB sublattice (AF) symmetry

Semiclassical/Gutzwiller phase diagram

Bloch sphere

$$J/\gamma = 10$$

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Exact solutions: $\langle \hat{\sigma}_i^{\alpha} \hat{\sigma}_i^{\alpha} \rangle \neq \langle \hat{\sigma}_i^{\alpha} \rangle \langle \hat{\sigma}_i^{\alpha} \rangle$ (entanglement)

For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements

Exact solutions with quantum trajectories of wave function

$$\dot{\hat{\rho}} = -i \left[\hat{\mathcal{H}}, \hat{\rho} \right] + \frac{\gamma}{2} \sum_{i} \left(2 \hat{\sigma}_{i}^{-} \hat{\rho} \hat{\sigma}_{i}^{+} - \left\{ \hat{\sigma}_{i}^{+} \hat{\sigma}_{i}^{-}, \hat{\rho} \right\} \right)$$
 Stochastic applications of $\hat{\sigma}_{i}^{-}$ non-Hermitian evolution

Ensemble averaging corresponds to **exact** solution

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement)

For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements

Exact solutions with quantum trajectories of wave function

Enhanced number fluctuations in BS region

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$

Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement)

For N spins, Hilbert space scales as 2^N, ρ has 2^{2N} elements

All-to-all coupling approaches mean-field limit

Enhanced number fluctuations in BS region

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement)

For N spins, Hilbert space scales as 2^N

Exact solutions with quantum trajectories of wave function

Trajectory exhibits collective switching in bistable region

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$

Exact solutions: $\langle \hat{\sigma}^{\alpha}_{j} \hat{\sigma}^{\alpha}_{i} \rangle \neq \langle \hat{\sigma}^{\alpha}_{j} \rangle \langle \hat{\sigma}^{\alpha}_{i} \rangle$ (entanglement)

For N spins, Hilbert space scales as 2^N

Exact solutions with quantum trajectories of wave function

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Two-state toy model

$$\dot{\rho}_g = -\Omega \rho_g + (\Omega + \gamma) \rho_e$$

$$\dot{\rho}_e = \Omega \rho_g - (\Omega + \gamma) \rho_e$$

Gap:
$$\Delta = \frac{1}{T_g} + \frac{1}{T_e}$$

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

Two-state toy model

$$\dot{\rho}_g = -\Omega \rho_g + (\Omega + \gamma) \rho_e$$

$$\dot{\rho}_e = \Omega \rho_g - (\Omega + \gamma) \rho_e$$

Gap:
$$\Delta = \frac{1}{T_q} + \frac{1}{T_e}$$

all-to-all coupling

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i (\hat{\sigma}_i^+ + \hat{\sigma}_i^-)$$

Semiclassical phase diagram

- 1st order transition, limit cycles
- When is it recovered?

Quantum trajectories w/ long-range couplings

Stochastic GP simulations?

- no entanglement
- classical correlations
- good for small U, large N

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_j^+ \hat{\sigma}_i^- - \mu \sum_i \hat{\sigma}_i^+ \hat{\sigma}_i^- + \Omega \sum_i \left(\hat{\sigma}_i^+ + \hat{\sigma}_i^- \right)$$

domains in 1D

Semiclassical phase diagram

- 1st order transition, limit cycles
- When is it recovered?

Quantum trajectories w/ long-range couplings

Stochastic GP simulations?

- no entanglement
- classical correlations
- good for small U, large N

Conclusion

T=0 (BEC) ground states of dilute Bose gases

Interplay of dipolar interactions and spin-orbit coupling

Rich phase diagram: vortex lattices, crystals, quasicrystals

Driven-dissipative nonlinear optical cavities

Semiclassical steady states include bistability (1st order), limit cycles, AF order Quantum trajectories show collective bistable switching and AF correlations Limit cycle, 1st order transition emerge with increasing dimensionality

Other

Dipolar fermions, large spin Bose gases (S=1), atoms in optical lattices NSF (RUI) to study quantum gases of diatomic molecules