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A simple quantum experiment 



The experimental result 
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A quantum explanation of this result 
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         Questions 

(i)  Why do we have to work with “square roots” of probability?   
      Is there a deeper explanation? 

(ii)  And why are these “square roots” complex? 

I will try to answer the first question—why square roots? 
But my answer will make the second question more  
puzzling. 
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polarizing filter 

Measuring photon polarization 

By measuring many photons, 
we can estimate the probability 
of the vertical outcome. 

This tells us about the angle.  



The standard account of probability vs angle  

amplitude 
for vertical 

Squaring the amplitude 
gives the probability:  
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polarizing filter The angle varies continuously. 
But the measurement is probabilistic 
with only two possible outcomes. 

Is the communication optimal? 

A completely different explanation for that curve:  
     Optimal information transfer?  
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A Communication Puzzle 

Alice is going to think of a number θ  between 0 and π/2. 

She will construct a coin, with her number encoded in 
the probability of heads.  She will send the coin to Bob. 

To find θ, Bob will flip the coin, but it self-destructs after one flip. 
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The Goal: Find the optimal encoding p(θ ) 

θ	



Maximize the mutual information: 

Here n is the number of heads Bob sees (n = 0 or 1),  
and θ is distributed uniformly between 0 and π/2. 



     An Optimal Encoding (1 flip)  
(Information-maximizing for a uniform a priori distribution.) 
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Modified Puzzle—Bob Gets Two Flips 

The coin self-destructs after two flips. 

(It’s like sending two photons with the same polarization.) 
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An Optimal Encoding (2 flips) 
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New Modification—Bob Gets 25 Flips 

The coin self-destructs after 25 flips. 

(It’s like sending 25 photons with the same polarization.) 
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An Optimal Encoding (25 flips) 
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Taking the limit of an infinite number of flips 

For any given encoding pheads(θ ), consider the following limit. 

We ask what encodings maximize this limit. 



An optimal encoding in the limit of infinitely many flips  
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This is exactly what photons do! 
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Why this works:  Wider deviation matches greater slope  
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Alice’s number 
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N = number of tosses. 



Another way of seeing the same thing 

Δ(n/N) pictured 
on the probability 
interval. 

same size 
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Using square roots of probability equalizes 
the spread in the binomial distribution. 
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Same effect when there are more than two possible outcomes 
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In this sense square roots of probability arise naturally. 



CAVALLI-SFORZA AND EDWARDS

Fic. 4. Representation of a population, with gene frequencies Pi, P2, P3 at a single tri-
allelic locus, on the octant of a sphere.

turns out to be intractable owing to the curved space and difficulties with the
coordinate system, so that it is necessary to approximate the curved space in
the region of the populations by a Euclidean space of (m-1) dimensions by
means of a projection of one onto the other. An orthogonal projection onto the
hyperplane tangent to the hypersphere at the centroid of the populations
should suffice, although in the present work we have simply used, as the
distance between two populations an arc 20/7r apart, the length of the chord
joining them, which is (2V-21-)/r)1-cos 0. Thus the m-dimensional Euclidean
space in which the hypersphere is embedded has itself been employed.
These Euclidean spaces for the separate loci (assumed unlinked) may then

be combined, distances being given by Pythagoras's theorem in many dimen-
sions, so that the square of the distance between two populations is given by
the sum of the squared distances for each locus. In this way the data are rep-
resented in a Euclidean space, the scale of which is one unit per gene sub-
stitution.
Another type of continuous data of some interest is that in which measure-

ments can only be made directly on the pairwise distances between populations.
Such is the case, for instance, when "immunological" distances between popu-
lations are investigated by serological methods or when differences in nucleo-
tide sequences are estimated using hybridization procedures with nucleic acids.
In these cases, data consist of a triangular matrix of the pairwise distances
between populations, which is also the form to which multilocus gene fre-
quency data have been reduced by the methods described above. But whereas
in the latter case the erection of a Cartesian coordinate system in Euclidean
space by repeated applications of Pythagoras's theorem is bound to succeed,
in the former case it will often fail, the method then generating com-
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From Am. J. Human Genetics (1967). 



A Good Story 

In quantum theory, it’s impossible to have a perfect 
correspondence between past and future (in measurement). 

But the correspondence is as close as possible—information 
transfer is optimal—given the limitations of a probabilistic  
theory with discrete outcomes. 

This fact might begin to explain why we have to use  
“square roots of probability.” 



But this good story is not true! 
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But this good story is not true! 

Why not? 

Because probability amplitudes are complex.  



No information maximization in the complex theory. 
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An orthogonal  
measurement  
completely misses 
a whole degree of  
freedom (phase). 

pvertical = cos2(γ/2), 

but γ is not uniformly 
distributed. 
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This picture does not suggest complex square roots of probability. 

Very generally, information is transferred optimally (in our sense) 
in the real-amplitude variant of quantum theory but not in  
standard (complex) quantum theory. 



 Information about a unitary transformation? 

U	

 Information about the special unitary 
transformation U is expressed 
optimally in the outcomes. 



 Information about a unitary transformation? 

U	

 Information about the special unitary 
transformation U is expressed 
optimally in the outcomes. 

But this optimization has no obvious 
generalization to higher dimension. 



Conceivable answers to “Why complex amplitudes?” 

  Want an uncertainty principle (Stueckelberg) 
  Want “local tomography” (Hardy; Chiribella et al;  

               Müller & Masanes et al; 
               Dakić & Brukner; me) 

  Want complementarity (Goyal) 

  Want algebraic closure (many people)  

  Maybe there’s a ubit (Aleksandrova et al)  


