How does demography
affect adaptation?
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Adaptation
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Dynamics of adaptation:
Population structure
Clonal interference
Multiple mutations
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Simplest case

* Well-mixed asexual population of size N
* Beneficial mutations are rare

Fixation probability of a mutation with selective advantage s
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Complication: population subdivision

\\

Subpopulatlon [ deme / island




“With 10109 possibilities it may be taken
as certain that there will be an enormous
number of widely separated harmonious
combinations. <...> In a rugged field of
this character, selection will easily carry

the species to the nearest peak, but there
may be innumerable other peaks which

are higher but which are separated by
“valleys”. The problem of evolution as 1
see it is that of a mechanism by which
the species may continually find its way
from lower to higher peaks in such a

field.”

FiGure 2—Diagrammatic representation of the field of gene combinations in two dimen-
sions instead of many thousands. Dotted lines represent contours with respect to adap-
tiveness.

Sewall Wright (1932)

Wright, 6th Int Congr Genet, 1932
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Shifting balance theory (S.Wright)

Phase | extensive local differentiation with
stochastic variability in each locality

Phase |I occasional crossing of a saddle
leading to a higher selective peak in
a subpopulation




The island model
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Experimental design

* Haploid yeast, asexual
growth
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Well-mixed populations




0
0

0.

0

Fraction of populations

0.

3 Np
, No | 10°

’ Full5 5x103
0 FulllO| 104

31 Fullto Full20 Full20 | 2x104
2

1

0
095 1 105 11 115095 1 1.05 1.1 1.15
Relative fithess

0




1 1.05
Relative fithess




1 1.05
Relative fithess

Fraction of populations that
got one beneficial mutation




1 1.05
Relative fithess

Fraction of populations that
got one beneficial mutation

P1 =2sNuT' = 0.67




1 1.05

Relative fithess Np

Fraction of populations that
got one beneficial mutation

P1 =2sNul'= 0.67




1 1.05 e+ 56403 16+04 2e+04

Relative fithess Np

Fraction of populations that Slope of mean fitness
got one beneficial mutation
25T

—ist- ~ 0.013
log” s/

P1 =2sNul'= 0.67 k




1 1.05 e+ 56403 16+04 2e+04

Relative fithess Np

Fraction of populations that Slope of mean fitness
got one beneficial mutation
25T
P1=2sNuT = 0.67 k= — ~ 0.013
log” s/
nw~2x10°
s = 0.03



Mean fithess
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