Modeling and Quantification of HIV-1 and SIV Intrahost Evolution

Ha Youn Lee Department of Biostatistics and Computational Biology University of Rochester

HIV-1 Envelope Gene Evolution

Antibody Neutralization Assay

Virus.	Plasma, months									2.5	•		*.		´cdanindex.dat′ + ´cdabindex dat´ ★
months	0	3	6	9	12	15	18	21	25	2	• *	A-3	A-0	*	
0	26	219	675	1403	2670	2089	2190	2363	2411	1.5	A-0		4	-9	A-1∠ ₩
3	29	179	1024	2151	3733	3152	2808	2953	3086	1	-				<mark>∨-3</mark>
6	27	35	78	358	1769	1939	2247	3112	4345	-				v	- 0 + ···
9	36	67	82	200	795	1078	1371	2208	3375	0.5	-			•	*
12	19	48	36	64	76	166	556	937	1407		_				A-21 * A-18
15	29	43	64	76	90	119	374	721	1234	Ů	-				* +
18	42	65	61	152	117	134	122	289	526	-0,5	-				A-25 V-6
21	41	66	82	84	85	113	78	107	296						⁺ v-9
25	42	62	56	62	85	77	55	61	95	-1	-				
Controls										-1.5	-		v-18		
NL43	17	138	294	956	1172	953	1584	1868	2143			v 25	/-21 +	V-15	v-12
JRCSF	24	37	35	60	87	97	105	152	209	-2	-	v-25 +	+		Ŧ
AMPHO	<10	32	14	13	14	13	<10	<10	31	-2,5					
-										-6	5 -4	-3 -2	-1	c) 1
												[Richma	n et al,	PNA	S (2003)]

HIV-1 Competition Assay

[Troyer et al, J. Virol (2005)]

[Shankarappa J. Virol 1999]

Intrahost Sequence Evolution Model

Each virus is represented by the distance (d) from the founder strain

Intrahost Sequence Evolution Model

Constant Fitness and Constant Proportion of Mutant Offspring

$$\frac{\partial P(d,t)}{\partial t} = -mP(d,t) + mP(d-1,t)$$

$$F(z,t) = \sum_{d=0}^{\infty} P(d,t) z^d$$

$$\longrightarrow P(d,t) = e^{-mt} (mt)^d / d!$$

Linear Increase of Fitness

M(d) = m

 $F(d) = f_1 + f_2 d$

Constant Fitness and Linear Decrease of Proportion of Mutant Offspring

$$M(d) = (1 - d/d_{\text{max}})$$
 for $d \le d_{\text{max}}$ and $M(d) = 0$ $d > d_{\text{max}}$

$$\frac{\partial P(d,t)}{\partial t} = \left[\frac{d}{d_{\max}} - 1\right] P(d,t) + \left[1 - \frac{(d-1)}{d_{\max}}\right] P(d-1,t),$$

$$P(d,t) = d_{\max} ! / [(d_{\max} - d)!d!] [1 - e^{-t/d_{\max}}]^d [e^{-t/d_{\max}}]^{d_{\max} - d}$$

Linear Increase of Fitness and Linear Decrease of Proportion of Mutant Offspring

Emergence of More Fit Viruses (using CXCR4 coreceptors)

$$\begin{split} N(d,t) &= F_{\rm high}(d) \alpha N(d,t-1) [1-M(d)] + F[1-\alpha] N(d,t-1) [1-M(d)] \\ &+ F_{\rm high}(d-1) \alpha N(d-1,t-1) M(d-1) + F[1-\alpha] N(d-1,t-1) M(d-1), \end{split}$$

 $F_{\text{high}}(d) = F_{\text{high}}$ for $d \ge d_c$ and $F_{\text{high}}(d) = F$ otherwise

Time Dependent Proportion of Mutant Offsprings

Fit to the Dynamics of Divergence and Diversity

F(d)=f

Measuring Evolutionary Rate

$$ER(\overline{d}) = \frac{\sum_{\substack{i,j(t_i \neq t_j) \\ d < d_i, d_j < d + \Delta \\ \sum_{\substack{i,j(t_i \neq t_j) \\ i,j(t_i \neq t_j)}}} (d_j - d_i) / (t_j - t_i)}{\sum_{\substack{i,j(t_i \neq t_j) \\ i,j(t_i \neq t_j)}} 1}$$

Dynamics of Evolutionary Rate

What is happening at the end stages of infection?

HIV-1 Transmission and Early Stage of Infection

CD8+ T cells and acute SIV replication

- Effect of CD8+ lymphocyte depletion on control of SIV replication

[Schmitz, Science 1999] 20

Study Design

[Bimber et al. J Virol 2009]

- 4 Mauritian cynomolgus macaques (cy0161, cy0162, cy0163, cy0165)

- 4 Indian rhesus macaques (rh2122, rh2124, rh2126, rh2127)

Mafa-A1*063 restricted Nef₁₀₃₋₁₁₁ RPKVPLRTM (RM9)

Proportion of Each Epitope Variant

Mafa-A1*063 restricted Nef₁₀₃₋₁₁₁ RPKVPLRTM (RM9)

HIV-1 Escape Dynamics

KAALDLSHF, B*5701 Nef₇₃₋₉₀ epitope

Within 42 days post the first screening **The rate of escape : 0.33 day**⁻¹ **[0.22-0.42]** [Goonetilleke et al. JEM 2009]

Epitope Diversity Dynamics

First 6 months vs. Whole Infection Period (3-10 years)

Changes in Selection Strength?

Mathematical model for viral escape

Model Equations

$$\frac{dw(t)}{dt} = aw(t) - bw(t) - cw(t)$$

$$\frac{dm(t)}{dt} = a'm(t) - bm(t)$$

Fit the model to acute SIV escape dynamics

 $p(t) = \frac{m(t)}{w(t) + m(t)} = \frac{1}{1 + g \exp(-kt)}$

Nonlinear Least Squares

Beta Regression: data comes from a Beta distribution
with mean E(t)=1/[1+gexp(-kt)] and variance E(t)[1-E(t)]/(1+phi)
[Ferrari and Cribari-Neto, J. Appl. Stat. 2004]

Least Square vs. Beta Regression

Nonlinear Least Squares

	First Acute Escape
Timing of First Escape	22.1 (± 3.78) days
Rate of First Escape	0.36 (±0.36) day-1

Beta Regression

	First Acute Escape
Timing of First Escape	22.7 (±3.51) days
Rate of First Escape	0.33 (± 0.097)day ⁻¹

Comparison to other studies

Our Estimate

Rate of Escape 0.36 (\pm 0.36) day⁻¹

SIV							
Study	Disease Stage	Rate of Escape (day ⁻¹)					
Fernandez et al.	Acute	0.93					
Ganusov et al.	Acute	0.31 [0.03-0.58]					
Loh et al.	Acute	0.31 [0.1-0.52]					
HIV							
Goonetilleke et al.	Acute	0.33 [0.22-0.42]					

Escape dynamics of Gag₁₈₁₋₁₈₉CM9 epitope

Timing of escape : 419.6 day

Rate of escape : 0.014 day⁻¹

Persistence of Founder/Wild-type Epitope

At 140 days post infection

i) Wild-type (transmitted) epitopes persist as a minor population in every animal (mean 5.7%).

ii) 56% of acute transient epitopes are completely cleared.

Timing of first escape & CT8-TL response

Rather than the magnitude of CT8-TL response but peak timing of CT8-TL response plays a critical role of controlling timing of first escape

Vaccine induced greater level of CTL response

magnitude of CTL response (area under the curve) : 17 fold difference

[Vogel et al. J Virol 2003] ³³

CTL Vaccination induced earlier escape in immunodominant SL8 epitope

	(rh2122, rh2126, rh2127)	(rh2124)
Timing of First Escape	21.0 [18.4 : 23.6] days	27.3 (± 0.02) days
Rate of First Escape	0.27 [0.09 : 0.44] days	0.44 (± 0.0055) days
		24

Kinetics of loss of the wild-type epitope

438 times faster than predicted by the model equation

Strong selection pressure by CD8-TL targeting transmitted (founder) epitope

Questions

majority : 70-80% from 102 subtype B+69 subtype C acutely infected subjects

i) Single Strain Infection, One founder (transmitted) virus?

ii) Estimation of days post infection

iii) Identification of Transmitted Virus (Vaccine Design)

[Keele, PNAS 2008] [Lee, J Theo. Biol 2009]

Modeling Evolution of HIV-1 Proviral DNAs

Synchronous and Asynchronous Infection Models

 $P(mutations = n | gen. = a) = Binom(n; aN_B, \varepsilon).$

Probability of Coalescence

The probability of two sequences (at generation a) coalescing at generation m

$$\frac{R_0^{a-m}-1}{R_0^a-1}$$

At generation 40, the probability of coalescence at generation 1 is 0.167, at generation 2 is 0.028, at generation 3 or higher is <0.005.

Genetic Diversity : Hamming Distance

The probability that at least one site has mutated more than once

$$P = \frac{1}{2} N_B \frac{t}{\tau_a} (\frac{t}{\tau_a} - 1) \varepsilon^2 \qquad N_B = 2800 \qquad \varepsilon = 2.16 \times 10^{-5}$$

1. 30 days post infection $P = 4.8 \times 10^{-4}$

2. 100 days post infection $P = 5.6 \times 10^{-3}$

Hamming Distance Distribution

Synchronous Infection Model

$$P(HD[s_1, s_2] = d|a) = \sum_{k=0}^{d} P(HD_0 = k|a)P(HD_0 = d - k|a)$$
$$= \sum_{k=0}^{d} Binom(k; aN_B, \varepsilon)Binom(d - k; aN_B, \varepsilon)$$
$$= Binom(d; 2aN_B, \varepsilon).$$

Asynchronous Infection Model

$$P(HD_0 = d|n) = \frac{1}{F_n} \sum_{a = \lceil n/2 \rceil}^n \binom{a}{n-a} \binom{aN_B}{d} \binom{\gamma}{\alpha}^{n-a} \varepsilon^d (1-\varepsilon)^{aN_B-d}, F_n = (1+\varphi)^{n+1} - (1-\varphi)^{n+1}/2^{n+1}\varphi \varphi = \sqrt{1+8/R_0}$$

Poisson Distribution

$$P(HD = d, t) = e^{-\lambda(t)} \frac{\lambda(t)^d}{d!}$$

$$\lambda(t) = 2\varepsilon N_B \left(\left\lfloor \frac{t}{\tau_a} \right\rfloor \frac{1+\varphi}{2\varphi} + \frac{1-\varphi}{2\varphi^2} \right)$$

Hamming Distance Distribution

Subject	Gender	Fiebig stage	Number of sequences ^a	Base length	Viral load (copies/ ml)	CD4 count (cells/ml)	GenBank accession number
WEAU0575	М	II	43	2581	216,415	714	EU577344-EU577387
WITO4160	М	II	16	2550	325,064	247	EU577388-EU577403
TRJ04551	М	II	16	2574	8,121,951	336	EU577101-EU577118
SUMA0874	М	II	35	2568	939,260	760	EU577039-EU577073
1054	М	II	36	2562	320,000	NA	EU575244-EU575282
1056	М	II	46	2589	140,000	NA	EU575283-EU575328
1051	F	III	50	2619	280,000	NA	EU575134-EU575183
BORI0637	М	II	29	2607	2,400,000	902	EU576274-EU576302

Poisson Distribution

$$P(HD = d, t) = e^{-\lambda(t)} \frac{\lambda(t)^d}{d!}$$

Dynamics

Collaborations

Los Alamos National Lab

Alan Perelson Thomas Leitner Elena Giorgi Bette Korber

Colonge Univeristy Su-Chan Park

University of Alabama, Birmingham George Shaw

University of Rochester Tanzy Love Sally Thurston Sung Yong Park Michael Keefer Stephen Dewhurst

University of Wisconsin-Madison

Benjamin N. Bimber Benjamin J. Burwitz Matthew Reynolds David Watkins David O'Connor

Funded by

NIH R01-AI083115

NIH T32-ES007271 NIH U of R DCFAR (P30AI078498)

