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1.0. Introduction

Newly emerging DNA sequence 
data sets offer the potential to 
reveal the demographic histories 
of populations, as well as the role 
of natural selection on individual 
genes and populations. 

However, extracting this kind of 
information requires mathematical 
models that can capture the 
diversity and richness of 
population histories, and efficient 
tools that can fit models to 
massive amounts of data.



  

In populations of the same species, statistical inference 
based on the distribution of allele frequencies is the 
preferred approach. 

The evolution of allele frequencies depends on 
demography as well as on natural selection.

Recent population growth can be misunderstood as a 
signature of purifying selection.

Recent population admixture can cause non-trivial 
patterns of Linkage Disequilibrium, which can be 
misinterpreted as hitchhiking effects and/or epistasis.

1.0. Introduction



  

Complex demographic histories that involve several 
population splitting events, gene-flow, and population 
bottlenecks commonly underlie patterns of genetic 
variation in humans.

Most existing methods for studying demography are 
limited to working with relatively small numbers of loci 
and sampled chromosomes.

A growing amount of genome-wide sequence and 
polymorphism data motivates the development of new 
tools for the study of demography.
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                                          Chimpanzee Sequencing and Analysis Consortium. Nature (2005)

                                  Pairwise difference                                Boissinot et al. MBE (2001)

1.1. One motivation

Element  Chimpanzee Human

Alu 2,340 (0.7Mb) 7,082 (2.1 Mb)

LINE-1 1,979 (5.5Mb) 1,814 (5.0 Mb)

SVA 757 (1.1 Mb) 970 (1.3 Mb)

ERV class 1 234 (.1Mb) 5 (8 kb)

ERV class 2 45 (55 kb) 77 (130 kb)



  

The theory that describes the evolution of allele 
frequencies of diallelic markers in a population goes 
back to Fisher and Wright. 

2.0. Diffusion Theory and Demography
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As a first approximation we 
consider models of random 
drift, migration between 
populations, influx of 
mutations and population 
splitting events. 

We assume free 
recombination between loci 
(no linkage).

2.0. Diffusion Theory and Demography



  

Given a particular population tree topology T and 
demographic parameters Θ, our model predicts 
particular Allele Frequency Spectra (AFS) that can be 
compared with the data.

2.1. Allele Frequency Spectrum



  

The AFS is the distribution of joint allele frequencies at 
the time when the samples were collected. This can 
be seen as a set of points in the k-cube, distributed 
according to certain probability density φ(x).

A finite observation of the joint AFS is a k-dimensional 
matrix with the allele counts in a finite sample.

2.1. Allele Frequency Spectrum



  

Examples of finite observations of AFS in one and two 
populations.

2.1. Allele Frequency Spectrum



  

2.1. Allele Frequency Spectrum

A real example from the HapMap SNP data-set. (There 
are an average of 200 chromosomes per population.) 
Two 2d histograms with the density of derived alleles.



  

● Theory of predicting the AFS under irreversible 
mutation was developed by Fisher (1930), Wright 
(1938) and Kimura (1964). Kimura introduced the 
infinite sites model (1969).

● Wakeley-Hey (1997) computed the joint AFS using 
coalescent theory.

● Hudson (2002) computed the joint AFS using Monte-
Carlo simulations of the diffusion process.

● Williamson et al. (2005), Evans et al. (2007), 
Gutenkunst et al. (2009), and S. L. et al. (2011) 
numerically solved the Partial Differential Equations 
(PDEs) associated with the infinite sites model.

2.2. Inference of Demography from AFS



  

Most popular approaches, such as coalescent-based 
simulations (trees within trees) and Monte-Carlo 
simulations, are so computationally intensive that 
complete investigations of the statistical properties of 
such models are limited to very simple cases (k=2).

2.2. Inference of Demography from AFS



  

Diffusion theory-based modeling allows thorough 
statistical studies of large data-sets and of families of 
demographic scenarios that involve more than two 
populations with migration. 

Another important advantage of the diffusion approach 
with respect to coalescent-based modeling is the ease 
with which selection can be incorporated.

2.2. Inference of Demography from AFS



  

3.0. Diffusion Approach to Demography

Solving the associated PDEs that 
model the evolutionary process 
requires the use of numerical 
approximations.

Special approximations are needed to 
deal with boundary conditions, influx of 
mutations, and population splitting 
events.

The two preferred methods to 
numerically solve the PDEs are finite 
differences schemes and spectral 
methods.



  

3.0. Diffusion Approach to Demography

Finite differences schemes are very robust and 
simple to implement, permitting the analysis of 
complex demographic scenarios with up to three 
simultaneous populations with migration.

Spectral methods are 
more difficult to 
implement, although they 
are usually the preferred 
methods when the 
dimension of the domain 
is high and the solutions 
of the diffusion PDEs are 
smooth.



  

3.1. Numerical Solutions to the PDEs



  

3.1. Numerical Solutions to the PDEs

We write the solution to the PDE as truncated polynomial 
expansion: 

This gives a finite dimensional approximation to the 
spaces of densities that scales as ΛP . In a finite 
differences scheme, the finite dimensional approximation 
to the spaces of densities scales as MP, with M>>Λ 
working at the same level of accuracy.  

We project the diffusion PDE in the Fourier space, and 
solve the associated ODE.



  

3.1. Numerical Solutions to the PDEs

Singularities that appear when modeling population splitting 
events (jumping from dimension k to dimension k+1), can be 
substituted by smoothed approximations.

The influx of mutations, which is defined by a Dirac delta in 
Kimura's classical exact solution

can be substituted by a more general smooth effective 
mutation density. Both solutions, converge to the same AFS 
density (S.L. et. al. 2011).



  

3.1. Numerical Solutions to the PDEs

Comparison of the equilibrium densities of Derived Alleles in 
one population, associated to an effective mutation density 
and to the standard model:

              Λ=6                        Λ=12                        Λ=18



  

3.1. Numerical Solutions to the PDEs

The contribution to the density from each boundary 
component can be approximated by a smooth function.

Each term interacts with higher and/or lower boundary 
components via fixation of alleles in certain populations, 
migration events, and influx of mutations (S.L. et al. 2011)



  

We have shown how to use truncated polynomial  
expansions to solve diffusion processes on trees that 
model influx of mutations, random drift, migration and 
multiple population splitting events.

Despite the fact that polynomial expansions fail to 
approximate non-smooth functions (e.g. Dirac 
distributions), we have shown how every event that 
happens in natural evolutionary histories of populations 
can be approximated by smooth functions.

Given a tree topology T and model parameters θ, this 
approach yields accurate and fast evaluations of AFS, and 
comparisons with observed AFS.

  

3.1. Numerical Solutions to the PDEs



  

4.0. Comparison with other methods

We generated simulated data given different demographic 
scenarios with 2 and 3 populations.

We compared our implementation (left) with DADI (right).

DADI uses a Crank-Nicholson finite difference method, with 
an unknown mutational model, and zero flux at the 
boundary.

 



  

4.0. Comparison with other methods

We generated simulated data given different 
demographic scenarios with 2 and 3 populations.

We compared our implementation (left) with DADI 
(right).

 

Our method is slower than DADI if run on a single CPU (we 
use less memory and more CPU).

DADI gives fast approximations to the exact solutions of the 
PDE but does not converge to it (p-value~0.001).

Our method does converge (p-value~0.3). This might be due 
to our mutational model and choice of boundary conditions.

 



  

4.1. Example: 4 Populations of A. lyrata

Arabidopsis lyrata is an outcrossing 
diploid with a small genome and a non-
trivial demographic history linked to local 
adaptations of its populations. (T. L. 
Turner et. al. Nature Genetics 2010).

AFS density shaped by demography and 
adaptation. 

A. lyrata's proximity to the genetic model 
organism A. thaliana allows us to identify 
neutral polymorphisms.



  

4.1. Example: 4 Populations of A. lyrata

1=Conestoga granite; 2=Wissahickon granite; 3=State Line serpentine; 
4=Baltimore county serpentine.

In red we denote the populations found in serpentine 
soils; in blue we denote those found in granitic soils. 

25 diploid individuals per population were genotyped.



  

4.1. Example: 4 Populations of A. lyrata

After rooting with A. thaliana to identify ancestral states, 
8,433,201 SNPs were detected. 

5,465,168 SNPs were annotated as non-coding in A. 
lyrata.

Of those, ~300,000 SNPs were polymorphic in the 4 
populations simultaneously.

High-throughput sequencing of DNA pooled from the 25 
individuals, with 39-fold coverage, was the source of 
data (T. L. Turner, Nature Genetics 2010).

For each diallelic SNP, and for each population we have 
two observations: Total number of counts R, and 
number of counts of the derived allele r.



  

4.1. Example: 4 Populations of A. lyrata

Given a SNP, with total number of counts R, number of 
counts of the derived allele r, and hidden number of 
derived alleles i, the observed AFS will be given as



  

4.1. Example: 4 Populations of A. lyrata

The diffusion model with migration and 3 splitting events 
has 49 free parameters. We denote the space of model 
parameters as Ω.

We use a C++ implementation of the regularized setup 
to the problem here presented to solve the diffusion 
equations. The code will be freely available soon.

We compute the likelihood given the data by considering 
expectations for smaller sample sizes (10x10x10x10), 
on the folded AFS.



  

Solving the diffusion equations for each point  θ Є Ω 
takes between 125 secs and 200 secs depending on θ, 
using a single CPU and very little memory.

Maximum Likelihood Estimate is found by using the 
BFGS Quasi-Newton and down hill simplex methods.

Importance Sampling (using an auxiliary density given 
as a mixture of Gaussians on the parameter space) is 
used to describe the posterior probability distribution on 
the parameter space of the model given the data.

4.1. Example: 4 Populations of A. lyrata



  

Solving the diffusion model, and computing the distance 
between model-density, θ Є Ω c M(Λ), and empirical 
density, γ Є M(Λ), takes between 25 secs and 100 secs 
depending on θ, using a single CPU and very little 
memory.

Minimal density was found by using the downhill simplex 
method.

This can be optimized further. One can exploit 
geometric/topological properties of the embedding of 
model densities into the space of densities to 
understand qualitatively the likelihood surface (Morse 
theory).

u=3e-8 b.s. per gen.

N_1=12,500-14,000

N_2=11,700-13,300

N_3=12,700-14,400

N_4=7,800-8,900

Gene-flow: 0.2 haploid 
genomes per gen. Migration 
rates with 2Nm<0.1 are 
ignored in the figure.

4.1. Example: 4 Populations of A. lyrata



  

4.1. Example: 4 Populations of A. lyrata

R. Schmickl et al. BMC Evol Biol. 2010
U.S. Department of Agriculture webpage.



  

4.2. Example: Human expansion out of Africa and 
settlement of America

Using Environmental 
Genome Project sequence 
data.

68 individuals (YRI, CEU, 
CHB, MEX).

5.0 Mb of DNA resequenced 
at very high coverage.

~26,000 SNPs.

Used an adaptive AFS to 
reduce computational 
burden.



  

4.2. Example: Human expansion out of Africa and 
settlement of America

NAF=16500 (1500) NB=1200 (300)

NEU0=1800.0 (400) rEU=0.62 (0.10)

NAS0=5100 (1000) rAS0=0.0048 (0.002)

mAF-B=3.5e-05 (1.5e-05)

mAF-EU=1.6e-05 (1.0e-05)

mAF-AS=6.7e-05 (2.0e-05)

mEU-AS=4.0e-05 (1.5e-05)

TAF=270kya (80) TBB=20kya (5)

TEU-AS=17.2kya (4.5) NMX0=2100 
(1100) 

RMX=0.56 (0.21) TMX=17.1kya (4.5)      

fMX=0.32 (0.10) 



  

Conclusions

We have introduced a particular regularization of the 
influx of mutations, population splitting events and the 
boundary conditions, that allow us to solve numerically 
the PDEs associated with the multiple population infinite 
sites model using very efficient numerical methods.

With these methods we can work easily with four 
populations and find MLE for models with a large 
number of parameters. 



  

Thank you!

● Jody Hey.

● Kevin Chen.
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