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Littorina saxatilis

Eriksson, Mehlig, Panova, André & Johannesson (2009)
Panova, Boström, Hofving, Areskoug, Eriksson, Mehlig, Mäkinen, André & Johannesson (2009)

Multi-locus genotypes of a mother and her progeny,
Littorina saxatilis (microsatellite loci, step-wise mutation
model).

How is demographic history and geographic
structure reflected in the data?

Answer requires model for ancestral trees.

Note: high levels of multiple paternity.
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Humans
Single-nucleotide polymorphisms (SNPs). Empirically observed patterns of 
genetic variation in selectively neutral DNA segments. 
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Patterns of mutation (`genetic mosaic´).

How do these patterns reflect the history of the population? Determine role 
of mutation, recombination, migration, population-size changes, selection,...

First: single-locus properties. Then: recombination.
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Wright-Fisher model
Model for genealogy of selectively neutral loci.

(a) discrete non-overlapping generations
(b) constant population size
(c) freely mixing population
(d) Mendelian inheritance (sampling
     of chromosomes with replacement)

Mutation model: assume that mutations occur randomly on ancestral
lines with rate     per base-pair per generation (   ).

Consider sample genealogies (red).

Next: coalescent process. Model for sample genealogies of chromosomes
in the limit of large     . 
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Coalescent process
Wright-Fisher model. Probability     that    individuals have distinct parents
in previous generation:                        . Similarly:                                            .
In general: 

Probability that a coalescent event (pairwise merger) occurs after   generations

                                                       in the limit                .

Used that                               provided            .

The time to the first coalescent event is exponentially distributed.

Sample genealogies of many microscopic population models are 
consistent with those of the coalescent for             (in the limit of              ).     
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Coalescent process
Random process for generating sample
genealogies. Describes Wright-Fisher model
in the limit of large    .

Sample genealogies of many microscopic population models are 
consistent with those of the coalescent for             (in the limit of              ).     
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Population-size fluctuations
Variable population size          .
Expected time between coalescent events                      .
Coalescent proceeds faster when           is small.
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Effective population size
Variable population size          .
Genealogies nevertheless described by constant-    
coalescent but with `effective population size´

                                                       ?

Harmonic average: effect of catastrophic events (bottlenecks           ).

Whether or not the effective population-size approximation works
depends on frequency     of the size fluctuations.

Other definitions of effective population size.
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Distribution of total branch length
Population subject to time-variable carrying capacity         
(time-changing evironment). Choose                               .

Distribution            of genealogical branch 

length                      .

In a population of changing size, the times
    are correlated.
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Result for moments of 
Result for moments of total branch length in sample of size    : 
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where                                                       is the probability that
ancestral lines at time    coalesce to      lines at time     (further in the
past) in population of fluctuation size         .

Population-size intensity´ function                                       and
                                                                   
                                                                  in a population of constant size.
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Example 1

      
Population subject to time-changing carrying capacity                              .

Large frequencies    : rigid shift of          .

K(t) = K0 sin(ωt)
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Example 2

      
Population size randomly changing between two values,      and        (for
               )  with rates    and     . 

Piecewise constant random process
               
                               .

Compute moments         by averaging         over        .

By way of example we have done this for             . For          :

for                          and                                                      .

In the limit                      recover effective population-size approximation.                                    
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Evolution punctuated by bottlenecks

      
Consider neutral evolution punctuated
by severe bottlenecks

Example of     - coalescent (simultaneous
multiple mergers) 

as opposed to Kingman coalescent:
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Two-locus statistics (recombination)

      
Sample of           individuals (   and    ),            loci (   and   ).
In a recombination, part of a gamete is inherited from one parent and the 
remaining part from the other parent. Scaled recombination rate         
where     is recombination rate per generation per chromosome between
loci in question.

Recombination causes decorrelation of times          and          to most
recent common ancestor. Linkage equilibrium

n = 2 L = 2

r

i j x y

τx(ij) τy(ij)

R = 2Nr
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Covariance of gene histories

      
Sample of           individuals (   and    ),            loci (   and   ).
Recombination rate                .

In a population of constant size

Measure of linkage disequilibrium. 
Other measures     ,       .

For humans the covariance has been 
estimated from SNP data.

Influence of demographic history?

n = 2 L = 2i j x y

cov[τx(ij), τy(ij)] =
R+ 18

R2 + 13R+ 18
Griffiths (1981), Hudson (1983),
Hudson, in Oxford Surveys of Evolutionary Biology (1990)

r̂2 σ2
d

McVean, Genetics 162 (2002) 987

Jakobsson et al., Nature 451 (2008) 998

R = 2Nr

Jakobsson et al., Nature 451 (2008) 998
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Fluctuating population size

      
Covariance of gene histories in population of fluctuating size?

Effective population-size approximation. Replace     by       

and     by                      .  Can this work? Time-scale separation?

Investigate covariance of gene-histories in bottleneck model.
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`Multiple mergers´

      
Weak versus strong bottlenecks
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Results

      
Covariance of gene-history correlations

                                                               severe bottlenecks
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Comparison to empirical data

      
Human demography: repeated founder events,
correspond to repeated bottlenecks.

Expect that American LD curve (recent bottlenecks) 
should decay slower than African LD curve.

Jakobsson et al., Nature 451 (2008) 998
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Multiple paternity in L. saxatilis

      

mainland         islands
               (carrying capacity    ) 

migration     ,  colonisation

K
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x

Multiple paternity in L. saxatilis.

Determine minimum number of
sires of a batch of children from
multiple matings of a single 
mother.

Panova, Boström, Hofving, Areskoug, Eriksson, Mehlig, Mäkinen, André & Johannesson (2010)
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Repeated founder events in L. saxatilis

      

mainland         islands
               (carrying capacity    ) 

migration     ,  colonisation 
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Multiple paternity in L. saxatilis.

Study effect of multiple paternity
on genetic variation.
Compute population heterozy-
gosity       as a function of 
distance     from mainland.

Colonisation of empty islands                     Steady state with migration
Rimark & Rafajlovic (2010)
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Waves of genetic variation

      

mainland         islands
               (carrying capacity    ) 

migration      
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Study time-dependence of
population heterozygosity
in steady state.
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Conclusions

      
Single-locus sample genealogies in populations of fluctuating size
    - how quickly (slowly) are the `effective population-size´ limits are
      attained when             and              ? 
    - allow to compute statistics of genetic variation (moments of       ) 
      in populations of changing size
    
Linkage disequilibrium in populations of fluctuating size
    - Effective population-size approximation fails at large values of 
    - Effect of repeated founder effects (sequence of bottlenecks)
      upon decay of linkage disequilibrium as a function of     .
       
Repeated founder effects in fragmented populations of L. saxatilis
    - effect of multiple paternity?
    - waves of population heterozygosity? 
    - ancestral recombination graph in fragmented populations?
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