

Sex, Draft & Survival

Richard Neher Max-Planck-Institute for Developmental Biology

Richard Neher

MAX-PLANCK-GESELLSCHAFT

- Speed of adaptation
- Effect of recombination on fixation of deleterious or beneficial mutations
- How does neutral diversity depend on recombination?
- Polymorphism spectra?
- Tunneling probabilities (adaptation through deleterious intermediates)

Facultatively mating haploid population

- Complete reassortment of alleles upon mating
- Polymorphic at many loci (deleterious or beneficial)

Model inspired by HIV evolution

- Additive contributions to fitness
- Tracer mutations to study genealogies and fixation probabilities

Model inspired by HIV evolution

- Facultatively mating haploid population
- Complete reassortment of alleles upon mating
- Polymorphic at many loci (deleterious or beneficial)
- Additive contributions to fitness
- Tracer mutations to study genealogies and fixation probabilities
- Gaussian fitness distribution
- Traveling wave in case of adaptation
- Mutation/selection balance in case of deleterious mutations

Richard Neher

KITP, 2011

Speed of adaptation

Speed of adaptation

- Selection moves the distribution upwards (Fisher's theorem)
- Variation has to be replenished by mutations -> self-consistency condition

Speed of adaptation

- Selection moves the distribution upwards (Fisher's theorem)
- Variation has to be replenished by mutations -> self-consistency condition

$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2 = NU_b sp_{fix}(s, r, \sigma)$$

Traveling wave models: Tsimring et al, Rouzine et al, Desai & Fisher,...

Richard Neher

MAX-PLANCK-GESELLSCHAFT

birth rate : $B = 1 + s + x - \bar{x}(t)$

death rate : D = 1

$$w(x,t-dt) = w(x,t)(1 - dt(B + D + r)) + dtB(1 - (1 - w)^2) + dt r \int K_{xy}w(y,t)$$

Richard Neher

birth rate : $B = 1 + s + x - \bar{x}(t)$

death rate : D = 1

$$w(x,t-dt) = w(x,t)(1 - dt(B + D + r)) + dtB(1 - (1 - w)^2) + dt r \int K_{xy}w(y,t)$$

comoving frame :
$$x \to x - \bar{x}(t)$$

$$\sigma^2 \partial_x w(x) = r \int_y K_{x,y} w(y) + (x + s - r) w(x) - w(x)^2$$

Richard Neher

KITP, 2011

Infinitesimal model:

$$K(x|x_1, x_2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\left(x - \frac{x_1 + x_2}{2}\right)^2}{\sigma^2}}$$

Integrate over one parent:

$$K(y|x) = \frac{\sqrt{2}}{\sqrt{3\pi\sigma^2}} e^{-\frac{2(y-\frac{x}{2})^2}{3\sigma^2}}$$

Simplified communal model:

$$K(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}$$

Richard Neher

KITP, 2011

Richard Neher

KITP, 2011

$$p_{fix}(s,r,\sigma) \sim e^{-rac{\sigma^2 \log^2 r/s}{2r^2}}$$

Self-consistency condition:

$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2 = NU_b sp_{fix}(s, r, \sigma)$$

RAN, Shraiman, Fisher, Genetics, 2010, see also Rouzine & Coffin, Genetics 2005 and TPB 2010

$$p_{fix}(s,r,\sigma) \sim e^{-rac{\sigma^2 \log^2 r/s}{2r^2}}$$

Self-consistency condition:

$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2 = NU_b sp_{fix}(s, r, \sigma)$$

$$\frac{\partial}{\partial t}\bar{x}(t) = \begin{cases} 2s^2 \left(\frac{r}{s}\right)^2 \frac{\log NU_b}{\ln^2 r/s} & 1 \ll \frac{r^2}{s^2} \ll NU_b/\ln NU_b\\ NU_b s^2 \left(1 - \frac{4NU_b s^2}{r^2} + \dots\right) & \frac{r^2}{s^2} \gg 4NU_b \end{cases}$$

RAN, Shraiman, Fisher, Genetics, 2010, see also Rouzine & Coffin, Genetics 2005 and TPB 2010

$$p_{fix}(s,r,\sigma) \sim e^{-rac{\sigma^2 \log^2 r/s}{2r^2}}$$

Self-consistency condition:

$$\frac{\partial}{\partial t}\bar{x}(t) = \sigma^2 = NU_b sp_{fix}(s, r, \sigma)$$

$$\frac{\partial}{\partial t}\bar{x}(t) = \begin{cases} 2s^2 \left(\frac{r}{s}\right)^2 \frac{\log NU_b}{\ln^2 r/s} & 1 \ll \frac{r^2}{s^2} \ll NU_b/\ln NU_b \\ NU_b s^2 \left(1 - \frac{4NU_b s^2}{r^2} + \dots\right) & \frac{r^2}{s^2} \gg 4NU_b \end{cases}$$

- In large populations, recombination is limiting adaptation
- In small population, the supply of mutations is limiting

RAN, Shraiman, Fisher, Genetics, 2010, see also Rouzine & Coffin, Genetics 2005 and TPB 2010

KITP, 2011

Fixation probabilities?

Richard Neher

KITP, 2011

Fixation probabilities?

Quasi-neutrality

No effective neutral theory

Richard Neher

KITP, 2011

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

KITP, 2011

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

KITP, 2011

Time

t=2

KITP, 2011

13

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

Fitness Size of first clone: $n_1 \sim \frac{1}{x} e^{-\frac{(x+s-r)^2}{2}}$ Fitness distribution # of daughter clones: $\xi = rn_1$ Clone size distribution:

Population genetics dominated by draft

Instead of fixation probability, we have to calculate P(n,t)

Size of first clone: n_1

$$e_1 \sim \frac{1}{x} e^{-\frac{(x+s-r)^2}{2}}$$

of daughter clones: $\xi = rn_1$

Clone size distribution:

$$P(\xi) \sim \frac{e^{-r\sigma^{-1}\sqrt{2\log r\sigma^{-1}\xi}}}{\xi^2}$$

Diverging variance!

KITP, 2011

KITP, 2011

Number of clones

Recursion:

$$C_t(m) = \sum_{m'} p(m, m') C_{t-1}(m')$$

Generating function:

$$\partial_t \Phi(z) = s \Phi(z) - r e^{-r\sqrt{-2\log\Phi(z)}} \Phi(z)$$

$$\rightarrow P(n,t)$$

KITP, 2011

14

 $\Psi(z) = \langle e^{-z \int_0^t n(t)} \rangle_{n(t)}$

$$m'$$

$$\partial_t \Phi(z) = s \Phi(z) - r e^{-r \sqrt{-2 \log \Phi(z)}} \Phi(z)$$

Recursion:

$$C_t(m) = \sum_{m'} p(m, m') C_{t-1}(m')$$

Draft vs Drift

$$P_{sur}(T) \sim e^{\frac{-\sigma^2}{2r^2} \log^2 r^3 \sigma^{-2} T}$$

$$T_{fix} \sim \sigma^2 r^{-3} e^{r\sigma^{-1}\sqrt{2\log N}} \qquad \sim N$$

Quasi- neutral window:

$$s_c \sim r e^{-r\sigma^{-1}\sqrt{2\log N}} \qquad \qquad s_c = N^{-1}$$

Neutral allele frequency spectrum:

$$f(\nu) \sim \frac{e^{r\sqrt{2\log N\nu}}}{\nu^2}$$

Richard Neher

KITP, 2011

 $\sim \nu^{-1}$

Drift:

 $\sim T^{-1}$

Allele frequency spectra

Richard Neher

KITP, 2011

Allele frequency spectra

Richard Neher

KITP, 2011

HIV allele frequency spectrum

Data from Hedskog et al, 2010

Richard Neher

KITP, 2011

Richard Neher

KITP, 2011

- Lineages stay put
- Variance is maintained by beneficial mutations

- Lineages stay put
- Variance is maintained by beneficial mutations

- Lineages stay put
- Variance is maintained by beneficial mutations

- Lineages deteriorate by mutations
- Asexual, no ratchet: steady, poisson distribution
- Mutation-selection balance
- Variance maintained by deleterious mutations

Richard Neher

KITP, 2011

Identical results

Richard Neher

KITP, 2011

Deleterious mutations

Summary & Outlook

- Recombination can limit adaptation
- Lack of recombination in presence of selection changes everything...
- Epistasis?
- Linear Chromosomes?
- Population substructure?
- How do we test theoretical predictions?

Acknowledgements

Boris Shraiman, KITP

Daniel Fisher, Stanford

