Range Expansions with Competition or Cooperation

In 500 generations....

Large mammals expand over $\sim 10^{4} \mathrm{~km}$

Bacteria (in a Petri dish) expand $\sim 1 \mathrm{~cm}$

Red and Green Strains....

1. Could be neutral....
2. Could have different doubling times
3. One or both could secrete toxins that impede the other...
4. One or both could secrete amino acids useful to the other (mutualism)

Competition and Cooperation at Frontiers

Why Frontiers?

--Range expansions are very common in biology... Number fluctuations very large at the edge of a population wave
-- Can we test theories of frontier evolution and cooperation with colored bacterial strains with variable "mutualism"?

Stepping Stone Models of Competition and Cooperation

-- Frequency-dependent selection (prisoner's dilemma, snow drift, coordination games)
-- Phase transitions in 1+1 dimensions as the degree of cooperation is varied....
K. Korolev \& drn

O. Hallatschek
J. Xavier
K. Foster
N. Karohan
A. Murray
M. Mueller
M. Lavrentovich

Genetic Demixing of Escherichia coli

Linear inoculants (razor blade inculation) 50\%-50\% mixtures

Selective advantages in Paenibacillus dendritiformis:

I. G. Ron et al. Physica A320, 485 (2003)

Emerging sectors in compact colonies of P. dendritiformis.

Selective advantages from opening angles

HOMELAND

Razor blade innoculation

G is wildtype "indicator strain" growth velocity v
R is favorable mutant strain growth velocity $\mathrm{v}^{*}=v(1+s)$
R^{\prime} is unfavorable mutant strain growth rate $\mathrm{v}^{*}=v(1-s)$

Sector angles and selective advantage (O. Hallatschek)

Consider a front advancing for a time $t . .$.

$$
\begin{aligned}
& v=\text { growth velocity of wild type } \\
& v^{*}=\text { growth velocity of mutant } \\
& v^{*}=(1+s) v \\
& t v=t v^{*} \cos (\Phi / 2) \\
& \rightarrow \frac{1}{1+s}=\cos (\Phi / 2) \\
& \Phi=2 \arccos [1 /(1+s)] \\
& \Phi \approx 2 \sqrt{2 s}, \quad s \ll 1
\end{aligned}
$$

Selective advantages from trigonometry

HOMELAND

Razor blade innoculation

G is wildtype "indicator strain" growth rate a
R is favorable mutant strain growth velocity $a(1+s)$
R^{\prime} is unfavorable mutant strain growth velocity $a(1-s)$

Favorable Mutation in a Radial Expansion

$$
s=0.25
$$

Favorable Mutation in a Radial Expansion

$$
s=0.25
$$

Favorable Mutation in a Radial Expansion

$$
s=0.25
$$

Favorable Mutation in a Radial Expansion

$$
s=0.25
$$

Favorable Mutation in a Radial Expansion

$$
s=0.25
$$

Fisher genetic waves trace out a logarithmic spiral in radial inoculations (K. Korolev)

equate time increments at the front.....

Fisher genetic waves trace out a logarithmic spiral in radial inoculations (K. Korolev)

$$
\phi(r)=\sqrt{\frac{v_{M}^{2}}{v_{W}^{2}}-1} \ln \left(r / r_{0}\right)=\sqrt{s(2+s)} \ln \left(r / r_{0}\right)
$$

Genetic boundary is a logarithmic (equiangular) spiral.... c. f.

1. Jakob Bernoulli
2. Insect flight trajectories...
3. Nautilus shell....
4. Sectors in microorganisms

P. aeruginosa (K. Korolev)

S. cerevisiae (M. Mueller)

P. aeruginosa (K. Korolev)

S. cerevisiae (M. Mueller)

Genetic Demixing of Escherichia coli

Linear inoculants (razor blade inculation) 50\%-50\% mixtures

Razor blade inoculations are like massively parallel serial dilution experiments...

Gen X Gen Y Gen Z
OIn effect, a moving population front is a serial dilution experiment in a well mixed test tube

For a "zero-dimensional" frontier, $f(t)$, the fraction of red cells with selective advantage s at time t obeys

$$
\begin{aligned}
& \frac{d f(t)}{d t}=s f(1-f)+\sqrt{\frac{f(1-f)}{N}} \Gamma(t) \\
& \left\langle\Gamma(t) \Gamma\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) \text { (Ito calculus) }
\end{aligned}
$$

Assume
(1) the interface remains flat \&
(2) cells stop growing behind the frontier

Then invoke "dimensional reduction" and the....

One Dimensional
Stepping Stone Model
 of Population Genetics
$N=$ population size on an island
$f(x, t)=$ red fraction at position x , time t
$1-f(x, t)=$ green fraction at position x, time t
$D \propto m$, spatial diffusion constant

$$
\begin{aligned}
& \frac{\partial f(x, t)}{\partial t}=D \frac{\partial^{2} f}{\partial x^{2}}+s f(1-f)+\sqrt{f(1-f) / 2 N} \Gamma(x, t) \\
& <\Gamma(x, t) \Gamma\left(x^{\prime}, t^{\prime}\right)>=2 \delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Frequency-dependent selection

$$
\frac{\partial f(x, t)}{\partial t}=D \frac{\partial^{2} f(x, t)}{\partial x^{2}}+s(f) f(1-f)+\sqrt{f(1-f) / 2 N} \Gamma(x, t)
$$

Let w_{R} and w_{G} be the offspring produced during one generation at a given point on the frontier...
then, $s(f) \approx 2 \frac{w_{R}-w_{G}}{w_{R}+w_{G}}$

Describe mutualism by...
$w_{R}(x, t)=g+\beta(1-f(x, t))$
$w_{G}(x, t)=g+\alpha f(x, t)$
assume $\alpha, \beta \ll g$

$$
\begin{gathered}
\frac{\partial f(x, t)}{\partial t}=D \frac{\partial^{2} f(x, t)}{\partial x^{2}}-\frac{d V(f)}{d f}+\sqrt{f(1-f) / 2 N} \Gamma(x, t) \\
\frac{d V(f)}{d f}=-s_{0}\left(f^{*}-f\right) f(1-f)
\end{gathered}
$$

Connection with game theory ($\mathrm{g}=1$, zero dimensions)

$$
\left.\frac{\partial f(x, t)}{\partial t}=D \frac{\partial^{2} f(\kappa, t)}{\partial x^{2}}\right)+s_{0}\left(f^{*}-f\right) f(1-f)+\sqrt{f(1-f) / 2 N} \Gamma(x, t)
$$

$$
\begin{aligned}
& s_{0}=(\alpha+\beta) \\
& f^{*}=\beta /(\alpha+\beta)
\end{aligned}
$$

In a well-mixed culture, the evolutionarily stable strategy (ESS) for mutualists leads to (transient) mixing....

M. Nowak et al., Nature 428, 646 (2004)
J. Gore et al. Nature 459, 253 (2009)
E. Frey et al., Phys. Rev. Lett. 105, 178101 (2010)

Computer simulations: Can mutalism prevent genetic demixing?

Null Model: No selective advantage for mutualism ($s_{0}=0$)

$$
\begin{aligned}
& \frac{\partial f(x, t)}{\partial t}=D \frac{\partial^{2} f(x, t)}{\partial x^{2}}+\sqrt{f(1-f) / 2 N} \Gamma(x, t) \\
& <\Gamma(x, t) \Gamma\left(x^{\prime}, t^{\prime}\right)>=2 \delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)
\end{aligned}
$$

$H(x, t)=$ heterozygosity correlation function
$=2\langle f(y, t)[1-f(y+x, t)]\rangle=$ probability of different colors at separation x

$$
\begin{aligned}
\frac{\partial H(x, t)}{\partial t} & =2 D_{s} \frac{\partial^{2} H(x, t)}{\partial x^{2}}-\frac{1}{2 N} H(0, t) \delta(x) \\
H(x, 0) & \equiv H_{0}=1 / 2, \text { for } 50-50 \text { random } \\
& \text { initial conditions }
\end{aligned}
$$

$\lim _{t \rightarrow \infty} H(x=0, t) \approx\left(t_{f} / t\right)^{1 / 2}$
one color dominates locally

Local heterozygosity reaches a steady state value for large $\beta=\alpha$

$$
\alpha=\beta, L=10000, N=30, m N=2
$$

Mutualism is unstable for small β, but stable for large β

$$
\alpha=\beta, L=10000, N=30, m N=2
$$

$H(x, t)$ data for collapse for $\alpha=\beta$ suggest

a nonequilbrium phase transiton at a critical value of the "cooperativity" $s_{0}=2 \beta \ldots$

Conjecture that these are the critical exponents of the "DP2 model": H. Hinrichsen, Adv. Phys. 49, 815 (2000)

$$
\alpha=\beta, L=10000, N=30, m N=2
$$

$$
\begin{aligned}
& \text { Transition between genetic } \\
& \text { demixing/fixation and mutualism } \\
& \text { at the frontier persists for } \\
& \alpha \neq \beta \& f^{*} \neq 0.5
\end{aligned}
$$

Transitions are in either the "DP2" ($\alpha=\beta \& f^{*}=0.5$) or "directed percolation"
($\alpha \neq \beta \& f^{*} \neq 0.5$)
universality classes.

Competition and Cooperation at Frontiers

Why Frontiers?

--Range expansions are very common in biology... Number fluctuations very large at the edge of a population wave
-- Can we test theories of frontier evolution and cooperation with colored bacterial strains with variable "mutualism"?

Stepping Stone Models of Competition and Cooperation

-- Frequency-dependent selection (prisoner's dilemma, snow drift, coordination games)
-- Phase transitions in 1+1 dimensions as the degree of cooperation is varied....
K. Korolev \& drn

O. Hallatschek
N. Karohan
A. Murray
M. Mueller
M. Lavrentovich

