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How do phenotypes shape evolution?

Evolution shapes phenotypes
What is the role of phenotypes in shaping the fithess of an organism?
How is the genetic fithess landscape different from the phenotypic?

Can we introduce the environment in a meaningful way?



What can we learn from phenotypes?

« Can we predict/explain the distribution of fitness effects and epistasis
from mechanistic data?

« Can we predict/explain the evolution of particular phenotypes?

The Functional Synthesis

(Dean & Thorton Nature Reviews Genetics 2007)



Distribution of fitness effects and epistasis
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Epistasis

Perfeito et al 2007
erfeito et al Trindade et al PLoS Genet. 2009

 Are all functional classes of genes represented?
» Does a particular pattern of epistasis emerge from specific mechanistic patterns?
(e.g., the shape of the genetic network)



Two classes of mutations: cis-regulatory and
coding




Fithess effects of regulatory mutations

Fitness Fitness

[Protein] [Protein]

The effect of cis-regulatory mutations depends on:
« Which phenotypes are affected by protein concentration
* How these phenotypes interact with each other

» The interaction of these phenotypes with the environment (e.g., type and number
of substrates)



The lac operon of Escherichia coli
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Phenotypes affected by cis-regulatory
mutations in the lac operon

Lactose IPTG
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2 defined phenotypes:

v Protein concentration (of all the lac proteins)
e manipulated by mutation in lacO1
e monitored by measuring LacZ

v Protein activity (of LacY)
*manipulated by external IPTG concentration



The cis-regulatory mutants

minimal medium (0.1% glycerol) B minimal medium (0.1% glycerol) + 1 mM IPTG
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* Different lacO1 mutants have different expression values,
v" in the presence of the lac repressor

v" in the absence of the lac repressor

Chromosomal mutants (method adapted from Datsenko&Wanner PNAS 2000)



Fithess measurement

Competitive fithess assay
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W, = 1+s,

W = In(Nf_/Ni_)/In(Nf /Ni,)

Nature Reviews | Genetics

Reference strain (r) - AlaclZYA



Fithess as a function of protein expression
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Fithess as a function of protein expression
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Fithess as a function of protein expression
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v" Fitness cost of producing the lac proteins
* linear in the absence of IPTG

* nonlinear in the presene of IPTG



Fithess as a function of protein expression
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Fithess as a function of protein expression
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Fithess as a function of protein expression
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v The extra fitness cost in IPTG is related to the presence of the lac permease



The relevant parameters
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ow phenotype depends on growth
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How phenotype depends on growth




How phenotype depends on growth

:
Fast growing mutant

protein production: 2 permeases per cell \ internal IPTG molecule
growth rate: 1 division per time unit PTG
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How phenotype depends on growth
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Fast growing mutant
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How phenotype depends on growth

'
Slow growing mutant

protein production: 4 permeases per cell 1 internal IPTG molecule
growth rate: 1 division per 2 time unit PT6 (D)

rate of transport: 1 molecule per permease per H
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How phenotype depends on growth

'
Slow growing mutant
ar 1 internal IPTG molecule

protein production: 4 permeases per cell
growth rate: 1 division per 2 time unit PT6 (D)

rate of transport: 1 molecule per permease per H
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How phenotype depends on growth

Slow growing mutant
protein production: 4 permeases per cell
growth rate: 1 division per 2 time unit PT6 (D)

rate of transport: 1 molecule per permease per H*
time unit
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How phenotype depends on growth

Slow growing mutant )
protein production: 4 permeases per cell \ internal IPTG molecule
growth rate: 1 division per 2 time unit

IPTG(T)
rate of transport: 1 molecule per permease per H*
time unit
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v" The concentration of internal molecules
depends on growth rate

v" An increase in production/uptake leads
to a nonlinear increase in concentration

v Growth rate and phenotype interact



The relevant parameters

Phenotypes affecting fitness in the lac operon:

v" Protein production ( «)
v" Protein activity
 Transport via the lac permease (/'=yx a/W)
e  Concentration of IPTG inside the cell (7TW = yXx a/W ?)



The phenotype-fitness model

pathway
phenotypes

protein q
production + fithess
( O ) (growth rate)

activity dilution
(transport)

-
W =1- b x —
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Fithess as a function of phenotype
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Prediction of an extinction threshold
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The phenotype-fitness model

pathway
phenotypes

protein q
production + fithess
( O ) (growth rate)

activity dilution
(transport)

-
W =1- b x —
(a x a+ ><W)



The phenotype-fitness model

genotype
(lacO1)

environment
(IPTG)
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Fithess as a function of the genotype and the
environment
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Summary | - Phenotypic fithess
landscapes

= Make predictions beyond measured genotypes (even those that are
not viable)

= Show epistasis between phenotypes
= Predict how the environment changes fithess and in which direction

= Smoother, with less dimensions but still with striking features such
as extinction cliffs

pathway

phenotypes

genotype
(lacO1) protein /W
production + fitness
(growth rate)
environment O &_/

(IPTG)
activity dilution

(transport)




Summary |l - How much can we
generalise?

= Lactose has the same cost as IPTG (can show you the data later)

= The benefit brought by lactose adds another dimension to the
landscape

= The full landscape still has cliffs but they are in different places in
parameter space - there is no optimum expression value

= Bacteria have several transporters like LacY




Summary lll - Population features

= Amplification and maintenance of phenotypic variability

= Strong epistasis between mutations (coupled by growth rate),
leading to lethality of some combinations




The mutants

minimal meadium (0.1% glycerol) B minimal medium (0.1% glycerol) + 1 mM IPTG
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BW30270 lacO1 (wild type) AAT ACAATT
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T377 lacO1-SN9 ¥

T378 faeO1-SN12 AATTGTGAGCGCATAACAATT
1379 lacO1-SN19 AATTCTGAGCOGGATAACAGTT

Chromosomal mutants (method adapted from Datsenko&Wanner2000)



L actose Is also associated with a cost
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