

Fitness landscape of a metabolic pathway

Lilia Perfeito^{1,2}

Stephane Ghozzi², Johannes Berg², Karin Schnetz¹, Michael Laessig² ¹ Institute for Genetics ² Institute of Theoretical Physics

University of Cologne, Germany

How do phenotypes shape evolution?

- Evolution shapes phenotypes
- What is the role of phenotypes in shaping the fitness of an organism?
- How is the genetic fitness landscape different from the phenotypic?
- Can we introduce the environment in a meaningful way?

What can we learn from phenotypes?

- Can we predict/explain the distribution of fitness effects and epistasis from mechanistic data?
- Can we predict/explain the evolution of particular phenotypes?

Distribution of fitness effects and epistasis

- Are all functional classes of genes represented?
- Does a particular pattern of epistasis emerge from specific mechanistic patterns? (e.g., the shape of the genetic network)

Two classes of mutations: cis-regulatory and coding

Fitness effects of regulatory mutations

The effect of cis-regulatory mutations depends on:

- Which phenotypes are affected by protein concentration
- How these phenotypes interact with each other
- The interaction of these phenotypes with the environment (e.g., type and number of substrates)

The lac operon of Escherichia coli

Phenotypes affected by cis-regulatory mutations in the *lac* operon

2 defined phenotypes:

✓ **Protein concentration** (of all the *lac* proteins)

- manipulated by mutation in *lac*O1
- monitored by measuring LacZ

Protein activity (of LacY)
•manipulated by external IPTG concentration

The cis-regulatory mutants

- Different lacO1 mutants have different expression values,
 - ✓ in the presence of the lac repressor
 - ✓ in the absence of the lac repressor

Chromosomal mutants (method adapted from Datsenko&Wanner PNAS 2000)

Fitness measurement

Competitive fitness assay

$$W_m = 1 + s_m$$

$$N_m = \ln(Nf_m/Ni_m)/\ln(Nf_r/Ni_r)$$

Reference strain (r) - $\Delta laclZYA$

- Fitness cost of producing the lac proteins
 - linear in the absence of IPTG
 - nonlinear in the presene of IPTG

The extra fitness cost in IPTG is related to the presence of the lac permease

The relevant parameters

Fast growing mutant protein production: 2 permeases per cell growth rate: 1 division per time unit rate of transport: 1 molecule per permease per time unit

IPTG

Internal IPTG molecule

Slow growing mutant protein production: 4 permeases per cell growth rate: 1 division per 2 time unit rate of transport: 1 molecule per permease per time unit

I internal IPTG molecule

Internal IPTG molecule

✓ The concentration of internal molecules depends on growth rate

 ✓ An increase in production/uptake leads to a nonlinear increase in concentration

Growth rate and phenotype interact

The relevant parameters

Phenotypes affecting fitness in the lac operon:

- Protein production (α)
- Protein activity
 - Transport via the lac permease $(\Gamma = \gamma x \alpha / W)$
 - Concentration of IPTG inside the cell ($\Pi W = \gamma x \alpha W^2$)

The phenotype-fitness model

Fitness as a function of phenotype

Prediction of an extinction threshold

The phenotype-fitness model

The phenotype-fitness model

Fitness as a function of the genotype and the environment

Summary I - Phenotypic fitness landscapes

- Make predictions beyond measured genotypes (even those that are not viable)
- Show epistasis between phenotypes
- Predict how the environment changes fitness and in which direction
- Smoother, with less dimensions but still with striking features such as extinction cliffs

Summary II - How much can we generalise?

- Lactose has the same cost as IPTG (can show you the data later)
- The benefit brought by lactose adds another dimension to the landscape
- The full landscape still has cliffs but they are in different places in parameter space - there is no optimum expression value
- Bacteria have several transporters like LacY

- Amplification and maintenance of phenotypic variability
- Strong epistasis between mutations (coupled by growth rate), leading to lethality of some combinations

The mutants

Strain	lacO1 allele	Sequence
BW30270	lacO1 (wild type)	AATTGTGAGCGGATAACAATT
T274	lacO1-20R	ATCGCGACTGTCCACTGTGCA
T275	lacO1-20GCW	AGTGTCATTATACATCGATAG
T318	lacO1-20GCI	AATGCCACAGTCGCTCACCGG
T319	lacO1-SN2	A <u>T</u> TTGTGAGCGGATAACAATT
T320	lacO1-SN3	AACTGTGAGCGGATAACAATT
T321	lacO1-SN4	AATGGTGAGCGGATAACAATT
T322	lacO1-SN5	AATTCTGAGCGGATAACAATT
T522	lacO1-SN7	AATTGT <u>A</u> AGCGGATAACAATT
T323	lacO1-SN8	AATTGTGCGCGGATAACAATT
T377	lacO1-SN9	AATTGTGATCGGATAACAATT
T378	lacO1-SN12	AATTGTGAGCGCATAACAATT
T379	lacO1-SN19	AATTGTGAGCGGATAACAGTT

Chromosomal mutants (method adapted from Datsenko&Wanner2000)

Lactose is also associated with a cost

