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« We need:

(i) more detailed predictables (coalescent, including
ratchet and ss) (Cf Desai & Walczak 2011)

(ii) distributed s (cf 2-site: Gerrish, Schiffels)
(iif) simplest epistatic models
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not matter in the multi-site case for many properties)
« Traveling wave with quasi-stationary profile: deterministic
bulk+stochastic edge

- The engine of adaptation is extension of the edge by new
highly fit recombinants with parents far from the edge: long shot
in fitness space (not short range, as by mutation)

« Alleles preexist and/or added by mutation (fuel)




distance). Applied in a very general situation

This is not to be confused with the population fitness
distribution, which is derived from evolution equation, is more
narrow (distributed linkage disequilibrium), has a cutoff, can
have non-Gaussian prefactor etc

Given the Gaussian width o, to be found later self-consistently,

properties of the wave are general (Rouzine & Coffin 2005;
2007; 2010)



distributed linkage disequilibrium (fitness correlations among genomes
v = po? is the adaptation rate (FFT)

Value of p, clone structure, ancestral relationship, are all controlled by the clone
decay parameter S = rx,/v showing how much a clone born at edge, x, decays
due to recombination with other sequences until it becomes average, x=0

At p<<1, p~1-2In(1/p)/In(Nr), single clone born at edge x, dominates each
fitness class. It’s likeliest ancestors are in the middle of the tail, x,/2, i.e.,
atypically well fit.

At p>>1, p =1+ Olexp(- p))], a class with fithess x is comprised of many
smaller clones born far from the edge, x > x,. The likeliest parents of the next
generation of wave are also shifted towards rthe center, x > 0.5x,

Ancestral gene tree can be derived from the above clone structure, because
fitness classes are well mixed by recombination in time (unlike in few-locus
models)

The tree is nearly neutral in shape but compressed in time, with minimum 7Ty,cra
~1/sat g~ 1.

Coalescent events come mostly from rare clones born far ahead of the typical
edge



Self-consistency: NU,pg, = V = v/s

(Neher, Shraiman & Fisher 2010, approximating fitness distribution with exact
Gaussian of width o)

2) Transitory dynamics, standing variation at L identical sites (Rouzine & Coffin
2010):

ilnter-genomic correlations accumulating in time:

A (t) = SPL[1-CO][F-Cioss(M1-FOI1-Ciogs ()12

C(t) pairs of correlated sites (with same ancestor)

Cioss(f) sites where all population is correlated (good alleles lost)
1-f(f) good allele frequency

Self-consistency: dC/dt = (1-C)/IN,.(c?)

Cioss VS C is the neutral tree relation

N,.. (%) and the coalescence density derived from the clone structure of fitness
classes



 NSF 2010: self-consistent condition for o has been
solved in the simple approximation that the fitness
distribution of the population is exact, constant
Gaussian with width o, same as in the starting
recombination kernel

« The validity is an open issue (cf. Fig. 2A in NSF
2010)

« Various features of the real general solution obtained
iIn RC 2010 for given o are potentially important and
are being discussed



crossover number per genome is important for
adaptation rate.

* In multi-site theory, it is not: only outcrossing rate
matters (crossover number matters for some
measures of LD)

« Any hope of connection? At 30% 50% 90% sex?

e



(Batorsky et al 2011, submitted)

» Atypically low virus load: r =0 => Asex close to the
“continuous fitness™ case, s << V <~ U,

« Treated patients, hidden pockets: farther in due to
low N => lower V



s > 1%, smaller U, ~ 103-10-* “Traveling wave” or
“stochastic edge” regime asex; or with recombination.

* Primary drug resistance: even larger s and smaller
U,



cytotoxic epitopes, individual for each patient.
CTL clones for many of them are activated by virus

Escape mutants occur at 5-25 epitopes, most of them
within 6 months.

Time gap between escapes is increasing

20-70 escape mutants per epitope are observed
(singles and doubles). Only one is fixed.

CTL clone number is increasing
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z|0]S Ope gecreasing irom vu. Or earilie
escapes, to almost none (~ 0.02) within a year

« Escape slope ¢is measured by fitting 1/{1+expl[- &(t-
t=5)]} to the winner frequency.

* Predicted &>~ 1 for full CTL pressure per site



 Avidity (antigen sesitivity) of CTL
subsets

 Mutation costs

Who is responsible for what feature?



I :Number of cells infected with a sequence

seq

f,. = exp[—z Sy ]t Sequence fitness

seq

EM
dl,,
d l_q [p R T seq 5 k Z j Seq Z Seq seq' seq
L. recognize
dEI — O_+ F([I.I‘(?C)EI’
dt

I : Total # of cells infected with sequences recognized by ith clone, E,

F(I”™): CTL expansion rate (next slide)



Decay Expansion

thr
I/

thr
I1

rec

Recognized infected cells, Z;

Effector expansion rate

Og : CTL death rate
g: maximum possible CTL expansion rate
n CTL subsets ordered in descending avidity

nt" site cannot mutate

Dynamic parameters are mostly known from HIV dynamic
studies, but the avidity (threshold) and mutation costs are ours
to play with



QuickTime™ and a
jecompressor
are needed 1o see this picture.




Frequencies of escape variants at consecutive epitopes (hnumbers on
curves) ordered in descending avidity. (B) Frequencies of multiple
mutants, mutated sequential epitopes are shown. (C) Numbers of CTLs
recognizing different epitopes (numbers on curves). (D) Depletion of
permissive cells with respect to their level in uninfected host. Inset:
Analytic and simulated predictions for the maximum number of mutated
epitopes. X-axis: x = (1/a) log[0.74 /(I,!""&)] + 1. Here a is the step of
log avidity: h,, = h, exp[-a(n-1)]. Other parameters are defined in the
legend to Fig. 5. Parameter values in A-D: &; = 1/day, p = 4.0 107
/day/cell, 2= 1.0 108 cell/day, & = 1/day, k = 3.0 10° /day/cell, & =
0.2/day, o,= o= 2.0 10° cell/day, g = 2/day, s=0, ©u=3 10>, h, =1.0
107 cell, a = 0.634 (varies in the inset on panel D). Initial conditions:
E.(0) and T(0) at their steady state levels in uninfected host, /,,(0) = 10
cell, other sequences absent.



CTL disappear and escape stops due to T cell
depletion when death=replication w/o CTL (cf. rapid
surge of virus under CD8 T cell depletion, Schmitz et
al 1999 etc)

Slopes of early escapes 3-fold large
Fixing it with large s ~ 1 does not work: once s >~

5%, WT rapidly comes back and we have steady
diversity instead of full escapes as observed

Small s do not help with slopes



IStriputed pressure

« l|dea 2: Interference of EM within and between
epitopes slows down escape and causes delay
(works differently within and between)

« Both ideas seem to work (have simulation
examples...)



lointormatic too

Constant selection pressure may effectively work in a time
interval (epitope cluster with similar avidity)

Mutation cost of fixed EM is small <~ 10%
Order or escapes is set by CTL antigen thresholds

Threshold ladder should converge up, then clonal interference
and distribution of CTL pressure will cause more and more
delay and smaller slopes

Depletion of T cells is not really that important (for increasing
time intervals between escapes)

Need to replace deterministic simulation with cutoff 1/N by a
correct analytic multi-ste model (Part 1)
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