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Childhood infectious diseases

 Examples: measles, whooping cough (pertussis), rubella, chicken pox, etc.

 Pathogen: virus (measles, rubella, chicken pox) or bacteria (pertussis)

 The diseases are spread easily among children through coughing, 
sneezing or spitting 

 The diseases are highly contagious (high      )

 Latent and infectious periods: 1 week-2 months

 Confer permanent (measles) or long lasting immunity (pertussis)
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Motivation

 What is the origin of recurrent epidemics of childhood infections?

Our results/Contribution

 Development of the methods capable to explain the diversity of temporal 
patterns

 Description of stochastic and spatial correlation effects for well mixed and 
network structured populations

 Study of the interplay of seasonality, the system's nonlinearities and intrinsic 
stochasticity

 Application to the pertussis and measles dynamics in the prevaccine era

Conclusions



Historical data

[measles, Birmingham][whooping cough, Portugal]

 recurrent epidemics/noisy oscillations
 disease dependent patterns
 location dependent patterns
 extinctions of disease
 power spectra with one or two peaks 

(seasonal + ?)

[measles, Maryland]



[measles, NYC]

[chickenpox, Manitoba]

Time series Power spectra

Time series analysis

C. T. Bauch & D. J. D. Earn, Proc. R. Soc. Lond. B 270, 1573-1578 (2003)

 power spectra with one or two peaks (seasonal + ?)

 different power spectra for diseases with similar parameters 



Time series Power spectra

 power spectra with one or two peaks (seasonal + ?)

 different power spectra for diseases with similar parameters 

[rubella, Ontario]

[whooping cough, London]

Time series analysis

C. T. Bauch & D. J. D. Earn, Proc. R. Soc. Lond. B 270, 1573-1578 (2003)



Basic deterministic SIRS model

 Population of constant size N, compartments – susceptible (S), infectious (I) 
and recovered (R)

 Parameters:       (infection rate),      (recovery rate) and      (immunity waning 
rate)

 Differential equations for the susceptible and infected densities:

 Two possible steady states: disease-free and endemic

 Overdamped or underdamped oscillations in the endemic phase
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Phase diagram of the deterministic SIRS model
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Damped oscillations in 
the endemic phase
for small values of 

immunity waning rate

epidemic/endemic
threshold



Basic deterministic models
missing ingredients

 contact network structure

 partial immunity and reinfection

 incubation period

 environmental and seasonal forcing

More advanced popular models –
seasonally forced systems

 Seasonally forced deterministic SIRS model
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D. J. D. Earn, P. Rohani, B. M. Bolker & B. T. Grenfell, Science 287, 667-670 (2000)

 stable attractors are stable limit cycles

 rich bifurcation diagrams

 highly intertwined basins of attraction

Seasonally forced deterministic SEIR model
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 Seasonally forced nonlinear models explain the data for some diseases (for
example, measles)

 Stochasticity has a secondary role (extinctions, switching between different
attractors and sustaining small amplitude fluctuations around a determinis-
tic system’s equilibrium)

Many data records cannot be understood in a deterministic framework, fluc-
tuations can be dominant (in particular, for whooping cough)

Seasonality versus stochasticity debate



A. J. McKane & T. J. Newman, Phys. Rev. Lett. 94, 218102 (2005)

Fluctuations

 Ecological and epidemiological data show noisy oscillations

 Individual realizations of stochastic simulations show large persistent cycles

Mean field equations and average densities exhibit damped oscillations

Resonant amplification of stochastic fluctuations
(non-spatial stochastic predator-prey model)

Damped oscillations

analytical 
(dashed line)

simulations 
(solid line)



Resonant amplification of stochastic fluctuations
(non-spatial stochastic predator-prey model)

 Sustained oscillatory patterns arise through resonant amplification of internal
noise

 Power spectrum can be computed from the van Kampen expansion of the master
equation around a coexistence equilibrium of the deterministic equations

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1981)
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analytical 
(solid lines)

simulations 
(noisy lines)
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 1st order in N  deterministic equations

 2nd order in N  fluctuation equations
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multivariate linear 
Fokker-Planck/Langevin

Resonant amplification of stochastic fluctuations 
(the general theory)

master equation



 Infection 

 Recovery 

 Immunity waning
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Stochastic mean field approximation SIRS system modeled 
as a network of fixed coordination number k
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The fluctuations power spectrum around the
deterministic equilibrium is ‘resonant like’

We now want to study the behavior of 
resonant fluctuations in network structured 

populations 
(stochasticity + spatial correlations)



 Infection 

 Recovery 

 Immunity waning

Stochastic pair approximation SIRS system modeled 
as a network of fixed coordination number k
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G. Rozhnova & A. Nunes, Phys. Rev. E 79, 041922 (2009)



Phase diagram of the PA and MFA deterministic models (d=2)

J. Joo & J. L. Lebowitz, Phys. Rev. E 70, 036114 (2004)



Phase diagram of the PA and MFA deterministic models (k=4) 

G. Rozhnova & A. Nunes, Phys. Rev. E 79, 041922 (2009)

 This region corresponds to childhood infectious diseases for which 
the immunity period is much larger than the infectious period 

PA

MFA
PA



Phase diagram of the PA deterministic model 
k = 2.1 (blue), k = 3 (red), k = 4 (black), k = 5 (green)



 Resonant stochastic fluctuations are larger and more coherent
 The main frequency is shifted
 The peak increases sharply and harmonic peaks appear close to the region III

Analysis of the spectra of stochastic fluctuations
in the PA stochastic model

PA

MFA

analytical
(black lines)
simulations
(green lines)



Power spectra of the stochastic fluctuations for the SIRS system

 In the slow driving regime, the power spectrum of the stochastic fluctuations  
of long time series is ‘resonant like’

 Sustained oscillatory patterns arise in the time series of discrete systems 
through resonant amplification of internal noise

 The noise is amplified by the spatial correlations



Density of infectives in the steady state as predicted by the PA 
and MFA deterministic and stochastic models (region III) 

 PA deterministic model predicts periodic solutions in region III

 Global oscillations are predicted by the PA stochastic model

 Low amplitude fluctuations in the MFA stochastic model

MFA(stoch)

PA(det)

PA(stoch)



Spectra of the stochastic fluctuations on a RRG-4

G. Rozhnova & A. Nunes, Phys. Rev. E 80, 051915 (2009)

610,5.2,04.0  N

610,5.2,09.0  N

 The detailed PA stochastic model is necessary to describe the power spectra
 The full description requires resorting to higher order cluster approximations  

analytical 
(green lines)
simulations
(black lines)

RRG-4 is a 
random
regular 

graph of
degree 4



PA deterministic model (blue lines) vs stochastic simulations 
(black lines) on a RRG-4 in region III

region III region III



 Infection 

 Disease onset

 Recovery 

 Death

 Birth

Stochastic seasonally forced SEIR model
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 Seasonally forced deterministic SEIR model



Behavior of the deterministic SEIR model
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 The main attractors are stable limit cycles of periods 1, 2 and 3



Analysis of the spectra of stochastic fluctuations (annual cycle)

deterministic peak
stochastic peak

G. Rozhnova, A. Nunes, Phys. Rev. E 82, 041906 (2010)
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Analysis of the spectra of stochastic fluctuations (annual cycle)

 The shape of the power spectrum is sensitive to all the basic epidemiological 
parameters and the system size and so, despite its simplicity, the model is 
capable of reproducing the diversity of the temporal patterns of real diseases



Analysis of the spectra of stochastic fluctuations (biennial cycle)

deterministic
theory

stochastic
theory

 The main frequency of the stochastic peak does not necessarily equal the frequency 
of the damped oscillations of deterministic perturbations around the cycle



Switching between the deterministic attractors? 
No, between the limit cycles of periods 1 and 3 (or 2 and 3).

triennial cycle

annual cycledensity of infectives



Switching between the deterministic attractors? 
Yes, between the limit cycles of periods 1 and 2.

 Switching depends strongly on 
the shape of the deterministic limit 

cycle

 The bifurcation diagram of the 
SIR model is not robust with respect 

to the modifications of the model

 The resonant amplification
rather than noise induced switching 

between competing attractors of 
the deterministic system is the key 

ingredient to understand the 
observed incidence patterns of 
childhood infectious diseases



Dynamics of pertussis in the prevaccine era
Analysis of the historical data records

G. Rozhnova & A. Nunes, in preparation (2011)



Dynamics of pertussis in the prevaccine era
Analysis of the historical data records

G. Rozhnova & A. Nunes, in preparation (2011)



Dynamics of pertussis in the prevaccine era
Analytical models

model (a)  the SIR model
model (b)  the SIRS model

model (c)  R. Aguas, G. Goncalves & M. G. Gomes, Lancet Infect. Dis. 6, 112–117 (2006)
model (d)  H. J. Wearing & P. Rohani, PLoS Pathog. 5(10), e1000647 (2009)
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Dynamics of pertussis in the prevaccine era
Comparison of the models

 Power spectrum for the model with temporary immunity and subsequent reinfection
[model (d)] is compatible with the power spectra obtained from the data
 This model [(d)] is also robust with respect to variation of the parameter values and 
predicts a lower value for the ratio A(det. peak)/A(stoch. peak)
 The stochastic peaks in the spectra for models (b) and (c) lie outside of the shaded region 
(results not shown), the SIR model is the model (a) whose spectrum is shown on the left

model (d)model (a)

shaded region 
shows the fre-
quencies of the 
stochastic peaks
calculated from 

the data 



Conclusions

 In stochastic epidemic models, the fluctuations power spectrum is resonant-like 
indicating that stochastic effects can give rise to the patterns of recurrent epidemics

 Resonant amplification of demographic stochasticity occurs in the parameter region 
relevant for childhood infectious diseases modeling

 The spatial correlations have a relevant influence on the behavior of fluctuations by 
enhancing their amplitude and coherence and by changing the characteristic frequency

 The interplay between seasonality and the mechanism of resonant amplification of 
demographic fluctuations provides the description of power spectra with seasonal and 
non-seasonal peaks

 The developed methods are capable to explain the diversity of temporal patterns of 
infectious diseases
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