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The Classic Model of Asexual
Evolution (Muller, 1932)

» Change occurs by sequential occurrence
and selection of new clones.

* The population should consist of a single
clone, except during periods when an
adaptive shift is occurring.

» Known as clonal replacement, and
predicts “adaptive sweeps”.
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Population structure in the
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Yeast in chemostats: Selection in action

Selection & Time
-_

fresh medium

Continuous cultures maintain a
steady-state growth rate under
nutrient limitation.

Limiting nutrient: Glucose (0.08%)
Asexual S. cerevisiae

Haploids
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Evolution in the Presence of

Clonal Interference
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Normalized Percentage

Results: Experiment #2
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General Observations

e Adaptive events (observable expansion of a
population) roughly every 50-100 generations
—Similar to previous reports for yeast

e Clonal interference plays an important role in
shaping the population structure

* Note - fixation of a color is not necessarily
indicative of fixation of an adaptive event.
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Sorted Subpopulations
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Sorted Subpopulations
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Relative Fitness Coefficient

Fitness coefficient against original parents
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Solexa Data

DsRed M3 M5
Total reads 18,984,170 9,361,251 13,793,258 24,034,054 18,787,801 17,041,684
13.850.624 7,848,858 11.174.470 18,211,571 14,238,716 11,998,617
Mapped reads ooy o0,
(73%) (84%) (81%) (76%) (76%) (70%)
Sequencing
coverage...
~ 38X 22X 30.5X 50X 39X 32X
...unique 24-bp
regions
...nuclear 34.5X 21X 27.4X 48X 37X 31X
...mitochondrial 192X 179X 210X 192X 203X 208X
Physical coverage 99.98% 99.97% 99.97% 99.97% 99.97% 99.97%
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Coverage Shows Amplification
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Clone | Gene Mutation Amino acid Comment
change
MTHI | CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
MTHI | GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
chrl5 | GtoT 5’ end of Tyl LTR
M3 IRAI | GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
Yellow | MTHI | TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
TAFS5 | GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
HXT6/7| amp High-affinity glucose transporter
RIMI5 | 1bpdel | {frame shift Glucose-repressible protein kinase
MNN4 | Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
chrl6 | Tto G Intergenic - 5> of MLC1 & SKI3
GPB2 | LTR 1ns Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | AtoC | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
M5 _ Vaguolar H+ ATPase |
Yellow DALSI | GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYE] | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41l | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Serd41 to Stop Prpteln of .un.known .functlon; computatlongl analy51.s qf large—scale.
protein-protein interaction data suggests role in transcriptional regulation
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Clone

M5
Yellow

Amino acid

Gene Mutation Comment
change
CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT 5’ end of Tyl LTR
GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
amp High-affinity glucose transporter
1 bpdel | frame shift Glucose-repressible protein kinase
Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
Tto G Intergenic - 5° of MLC1 & SKI3
GPB2 | LTR 1ns Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | AtoC | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
vacuolar H+ ATPase
DALS81 | GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYEI | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41l | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Serd41 to Stop Protein of unknown function; computational analysis of large-scale

protein-protein interaction data suggests role in transcriptional regulation
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Determining adaptiveness: Competitive

chemostat
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Relative Fithess

Single mutation relative fitnesses: |-2 measurably
adaptive mutations per clone
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Clone | Gene Mutation Amino acid Comment
change
MTHI | CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
MTHI | GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
chrl5 | GtoT 5’ end of Tyl LTR
M3 IRAI | GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
Yellow | MTHI | TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
TAFS5 | GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
HXT6/7| amp High-affinity glucose transporter
RIMI5 | 1bpdel | {frame shift Glucose-repressible protein kinase
MNN4 | Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
chrl6 | Tto G Intergenic - 5> of MLC1 & SKI3
GPB2 | LTR 1ns Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | AtoC | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
M5 _ Vaguolar H+ ATPase |
Yellow DALSI | GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYE] | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41l | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Serd41 to Stop Prpteln of .un.known .functlon; computatlongl analy51.s qf large—scale.
protein-protein interaction data suggests role in transcriptional regulation
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Clone | Gene Mutation Amino acid Comment
change
MTHI | CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
MTHI | GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
chrl5 | GtoT 5’ end of Tyl LTR
M3 IRAI | GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
Yellow | MTHI | TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
IAF5 | GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
HXT6/7| amp High-affinity glucose transporter
RIMI5 | 1bpdel | {frame shift Glucose-repressible protein kinase
MNN4 | Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
chrl6 | Tto G Intergenic - 5> of MLC1 & SKI3
GPB2 | LTR ins Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | Ato C | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
M5 _ Vaguolar H+ ATPase |
Yellow DALS8I| GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYEI | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41 | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Ser44l to Stop Prpteln of .un.known .functlon; computanngl analy51.s Qf large—scale.
protein-protein interaction data suggests role in transcriptional regulation
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Clone

M3
Yellow

M5
Yellow

Amino acid

Gene Mutation Comment
change

MTHI | CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
MTHI | GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway

chrl5 | GtoT 5’ end of Tyl LTR

IRAI | GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
MTHI | TtoA |[Leu24l to Stop| Negative regulator of the glucose-sensing signal transduction pathway

1AF5 | GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
HXT6/7| amp High-affinity glucose transporter

RIMI5] 1 bpdel | {frame shift Glucose-repressible protein kinase

MNN4 | Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase

chrl6 | Tto G Intergenic - 5> of MLC1 & SKI3

GPB2 | LTR ins Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter

MAS | Ato C | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the

vacuolar H+ ATPase

DALS8I| GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways

BYEI | TtoC |Silent at Thr57 Negative regulator of transcription elongation

SLY41 | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport

MUKI | CtoA |Ser44l to Stop Protein of unknown function; computational analysis of large-scale

protein-protein interaction data suggests role in transcriptional regulation
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Clone | Gene Mutation Amino acid Comment
change
MTHI | CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
MTHI | GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
chrl5 | GtoT 5’ end of Tyl LTR
M3 IRAI | GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
Yellow | MTHI | TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
IAF5 | GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
HXT6/7| amp High-affinity glucose transporter
RIMI5 | 1bpdel | {frame shift Glucose-repressible protein kinase
MNN4 | Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
chrl6 | Tto G Intergenic - 5> of MLC1 & SKI3
GPB2 | LTR ins Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | Ato C | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
M5 _ Vaguolar H+ ATPase |
Yellow DALS8I| GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYEI | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41 | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Ser44l to Stop Prpteln of .un.known .functlon; computanngl analy51.s Qf large—scale.
protein-protein interaction data suggests role in transcriptional regulation
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Clone

M5
Yellow

Amino acid

Gene Mutation Comment
change
CtoT |GIn338 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT |Glu269 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT 5’ end of Tyl LTR
GtoA |Argl583 to Lys GTPase-activating protein that negatively regulates Ras
TtoA |Leu241 to Stop| Negative regulator of the glucose-sensing signal transduction pathway
GtoT | Gly693 to Val Subunit (90 kDa) of TFIID and SAGA complexes
amp High-affinity glucose transporter
1 bpdel | frame shift Glucose-repressible protein kinase
Ato G | Lys924 to Glu Putative positive regulator of mannosylphosphate transferase
TtoG Intergenic - 5” of MLC1 & SKI3
GPB2 | LTR ins Multistep regulator of cAMP-PKA signaling
HXT6/7| amp High-affinity glucose transporter
MAS | Ato C | Glu37 to Ala Subunit D of the eight-subunit V1 peripheral membrane domain of the
vacuolar H+ ATPase
DALS8I| GtoA | Ala584 to Thr | Positive regulator of genes in multiple nitrogen degradation pathways
BYEI | TtoC |Silent at Thr57 Negative regulator of transcription elongation
SLY41 | GtoT | Trp253 to Leu Protein involved in ER-to-Golgi transport
MUKI | CtoA |Ser44l to Stop Protein of unknown function; computational analysis of large-scale

protein-protein interaction data suggests role in transcriptional regulation
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Hypothesis: mth1 and (HXT6/7), mutations are
mutually exclusive because of reciprocal sign
epistasis.

Do mth1 and (HXT6/7), determine
evolutionary trajectory by constraining
the fitness landscape?




Allele Frequencies also Suggest Epistasis

1.0

—|—e— mth1-3
—e— (HXT6/7)n 00RO

—O0— Yellow frequency e
/
O
O
O
O
o—%oq
.. 0. )
. O
O

0.8
I

[
o
9
o)
o
e
o
g
N
N
o _ —= -
o
| | | | |
0 100 200 300 400

Generation




Sign epistasis constrains evolutionary trajectories

AB = wild-type
wn i
)
Q
= b b
2 a a
L
AB Ab AB Ab
No epistasis Magnitude
epistasis

Adapted from Poelwijk et al, Nature, (2007). Theory by Weinreich et al, Evolution, (2005)
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Sign epistasis constrains evolutionary trajectories

AB = wild-type
wn A
)
)
E b b
2 a a
L
AB Ab AB Ab
No epistasis Magnitude
epistasis
wn A
%)
Q
= Ab Ab
=
B AB aBTAB
Sign epistasis Reciprocal

sign epistasis

Adapted from Poelwijk et al, Nature, (2007). Theory by Weinreich et al, Evolution, (2005)
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Fithess Landscape?
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What about other inter-clonal
epistasis relationships?
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Summary

» Clonal interference an important effect in
adaptive evolution of yeast

—Population dynamics
—Allele frequencies

—Several adaptive mutations lost or nearly lost
due to other adaptive mutations

» Signaling through the Ras pathway an
important target of adaptation

» Mutually exclusive mutations play a role In
defining the adaptive landscape
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Future Work/Questions

* Are some “hitchhikers” adaptive in the presence
of other mutations?

* How general are the adaptations?
—In other conditions

» What fraction of the adaptive landscape have we
explored?

—Other evolved populations
—Haploid vs. Diploid
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Seven additional populations
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