Diversity in microbial populations in the wild

Sheri Simmons
Assistant Scientist, Bay Paul Center
Marine Biological Laboratory
Woods Hole, MA

Sequencing: a window into microbial life

Cells of the iron oxidizing bacterium *Leptosprillum* group II (Clara Chan)

UBA.fasta.screen.ace.jill						Contig8205	
Search for String	Compl Cont	Compare Cont	Find Main Win	Err/19kb:	20.41		
		74,700	74,710	74,720	74,730	74,740	74,750
CONSENSUS	GTC	GGGATCGAA*C	AGCAAATGGATCA	ATTGCCCGCGC	:AAA <mark>A</mark> *GA*G	T×CCACCTGG×GCC	GGG*CGGCACGA
BGUC19422.g1 BGUC46140.x1 BGUC46140.x1 BGUC65641.x1 BGUC65641.x1 BGUC64429.g1 BGUC62295.b1 BGUC66870.g1 BGUC4751.g1 BGUC21677.g1	sto GTC sto Gtc GGC GTC GTC	ggaa*cgaa*c GGGATCGAA*C gggatcgaa*c gggatcgaa*c gGG <mark>G</mark> TCGAA*CA GGGATCGAA*CA GGGATCGAA*CA	agcaaagga*ca agcaaatggalca agcaaatggalca agcaaatgg AGCAAATGGATCA AGCAAATGGATCA AGCAAATGGATCA	attgoogs*o attgoogsGo attgoogsGo ATGGCCCTCGO ATTGCCCGCGO	CAAAA* T G	CCCGCG(CG(CCG(CG(CG(CG(CG(CG(CG(CG(CG(CG	

Sequencing allows us to access genetic variation within microbial communities

- What processes regulate its distribution and dynamics?
 - Key evolutionary rates largely unknown in most communities (HGT, recombination)
 - Importance of neutral processes relative to selection
- How do ecological parameters affect rates of fundamental evolutionary processes in communities?

Spectrum of variation accessible through sequencing

Wilmes, Simmons et al. (2009) FEMS Microbiol Rev 33:109-32.

Assemble partial "population genomes": Analysis of genetic variation and evolutionary processes

Variation is visible within the population genome

New technology greatly increases power of sequencing for metagenomics

Old- ABI capillary sequencer

- 1,000 reads/day =~ 20% of a microbial genome
- ~700-1000 bp reads
- First microbial metagenome: 100 Mbp, published 2004

New- Illumina HiSeq 2000

- 100 million reads/day =~ 10,000 microbial genomes
- Reads are 35-150 bp
- 200 Gigabases sequence output from a single run
- First metagenome: 572 Gbp, published 2010
- Not yet widely used for metagenomics, but tremendous potential

So why don't we sequence everything?

- Most microbial communities in nature have highly skewed abundance distributions
- We undersample nearly all species in the community using shotgun metagenomics

Cardon, Simmons (unpub)

Illumina HiSeq 2000	Max yield 200 Gbp per run
Reads per lane	125 million
Gbp per lane	12.5
Yield of a genome present at 1% of the community	125 Mbp
Coverage of a 5 Mbp genome at 1%	25x
Coverage of a 5 Mbp genome at 0.1%	2.5x

Why don't we sequence everything (2)

- Cost of 1 lane of paired end sequencing on a HiSeq 2000 (max yield = 125 million reads) is ~\$2500
- But...
 - Cost of constructing 1 genomic library = ~\$500
 - Cost of constructing one meta-transcriptomic library = ~\$900
 - To multiplex 10 genomic samples your cost is ~\$5,000

- The biggest cost is computational!
 - 2 Tb of data produced per run of the HiSeq
- Assembly, mapping, and annotation are computationally intensive
- Pipelines are not standardized

Central questions in microbial ecology

- What is the relative importance of selective and neutral processes in microbial populations?
 - Crucial for determining the functional significance of diversity
 - Tells us how communities will recover from perturbation
- How repeatable is community assembly over space and time?
- What is the rate of genetic exchange in the wild?
- Are there common dynamic processes in microbial communities?
- How do patterns of microbial diversity depend on spatial scale?

Outline

Microevolutionary variation in microbial communities in acid mine drainage (work with Jill Banfield)

At the MBL:

- 1. Model microbial systems:
 - Dynamics of microbes on the surface of plant leaves
 - Horizontal gene transfer in natural communities
- 2. Open microbial systems:
 - Haplotype tracking in mixed communities
 - Taxonomic, genetic, and functional diversity in agricultural soils

Microevolutionary variation in acid mine drainage microbial communities

- Sequencing of microbial communities in acid mine drainage
 - Does selection maintain variation within a population?

Postdoctoral work with Jill Banfield, UC Berkeley

Sampling location of all community genomic datasets within the Richmond Mine Iron Mountain, California

A snapshot of the 5-way biofilm community

- Dominated by Leptospirillum group II: ~20x coverage,
 2.72 Mbp complete genome
- Ferroplasma acidarmanus, other archaea, Leptospirillum group III present at low abundance
- Iron oxidation is the predominant metabolic process

pH ~ 0.7, 30-56° C nearMolar [Fe] subMolar [Zn, Cu, As]

Net increase in soluble metal

Tyson et al. Nature 2004

Variation is visible within the population genome

Distinct strains are present within the population

We use synonymous and nonsynonymous polymorphisms to test potential adaptive value of strains

Simmons et al. 2008, PLoS Biol. 6(7): e177

Hypotheses explaining strain variation

McDonald-Kreitman test

Lack of selection on strains supports isolation and drift model

Period of geographic isolation
(at least 1400 years, ~800,000 generations)

Ancestral 5-way CG strain

Mixing and recombination
~ 150 years ago

Model versus open microbial systems

- Why do we need a model system for microbial ecology?
 - Most communities of environmental importance are very hard to manipulate experimentally: e.g. soils and human gut
 - Open systems do not allow accurate estimates of key parameters in the neutral model: dispersal rate and source pool composition
 - Biological replication is crucial to establish patterns
 - Controlled time series sampling is needed to determine the repeatability of assembly processes

The tomato phyllosphere: a new model system

- Rapid growth, maintained under controlled conditions in the MBL greenhouse
- Large number of biological replicates
- Continual emergence of new leaf substrates
- Direct measurements of dispersal rates and composition of colonizing pool
- Complex, yet controlled

17-day old tomato seedlings growing in the MBL Greenhouse

Seedlings germinated in sterile phyto-agar in lab incubator

11-day seedling

Microbial biofilm detached from the leaf surface

Compound leaf of Solanum lycopersicum "Green Zebra"

Key questions

- 1. Do microbial communities develop in parallel over time?
- 2. Is the development of genomic variation over time repeatable?
- 3. What is the contribution of niche versus neutral processes to community assembly?

2. Testing neutral and niche based models of community assembly

 Prediction of the neutral model: the average abundance of a taxon across multiple local communities = its abundance in the source pool

 We will measure both parameters directly for taxonomic and functional genes

Prediction of the neutral model Capture 50% red airborne microbes 50% blue 50% blue 50% red Wash from leaf surface

Experimental design

- Do taxonomic and functional gene abundances fit the simple neutral model, or are they correlated with abiotic characteristics?
- We will quantify:
 - Size and composition of the airborne colonizing pool
 - The migration rate onto leaf surfaces
 - The taxonomic and functional composition of individual leaf communities using metagenomics
 - Abiotic conditions, including plant nutrient status

Determining haplotype frequencies in natural populations

Approach

- Paired end Illumina sequencing of time series samples
- De novo assembly and alignment to reference genomes
- Custom pipeline for extracting allele frequencies
- Pilot study: Illumina sequencing of strain mixes in defined proportions

Summary

- Next-generation sequencing gives us tremendous power to investigate microbial evolution and ecology
- We can use it to ask large-scale questions about the fundamental processes structuring microbial communities in nature, in a way not previously possible
- A complementary approach using model and open systems allows targeting of ecological/evolutionary mechanisms of community assembly

Acknowledgements

MBL: Banfield lab, UC Berkeley:

Meghan Chafee

Emelia DeForce Vincent Denef

Zoe Cardon Paul Wilmes

Brett Baker

Funding:

G. Unger Vetleson

foundation, anonymous donor

Funding: NSF, DOE

