Statistically characterizing antibody diversity

work with Thierry Mora,William Bialek, Curt Callan
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Inferring evolutionary processes
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Understanding evolutionary processes:

* test consistency of data with null models
* currently: easy to use neutral or weak selection models
* disagreement: selection, demography, geography ...

Goal: develop null models with selection

* test consistency of data with null models with selection
* rule out models also when neutrality does not apply
* infer selective parameters from data
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Evolutionary scenarios

Genetic Drift Natural Selection
Well understood Reduces diversity
But what do deviations mean?
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Demography Geography
Bottlenecks, expansions reduce diversity Environmental structure increases diversity

What should we look at? What do we expect?



Model the fate of each site in the genome




Model the fate of each site in the genome

o .

Calculate the fate of each mutant forward in time.




Model the fate of each site in the genome
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Calculate the fate of each mutant forward in time.

Fate of each mutation is not in steady state

But there is a steady state distribution of the
distribution of mutant frequencies




Nearby mutations are not independent

Haplotypes

Chimpanzee

GHIQEMm@DUAOWW

[

Base Position

11111112222222333344
1456702334591112449134612
5947903053732366187800800
7442152069361506795967889

CCGGTTATGCCGAGAATACGGCGCC

- -ACCC--TGT--AC-CC-~-~-~- T-
--ACCC--TGT--AC-C--~-~-~~- T-
- -ACCC- -TGT--AC-C---A--T-
---CCC--TGT--AC-C----~-~- T-
“A----- C--*-T----- Te-T---
TA----- Covevmmmnn- T--T---
-A----CC-====-mmmm- TA-----
-A----- C-====-- G--T---C-T
-A----CC-=-*==-=-G--T---C--
-A----- C--*A-=-===-- T-A-C--
A= ——— Conftocnnann | |

[Harris and Hey 1999]

Strong correlations between mutations.

Mutations are physically linked.

Recombination breaks linkage.

No recombination - fully linked sites



No selection: Coalescent Theory




No selection: Coalescent Theory

past
A

]
present

The whole sequence shares a common genealogy.
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No selection: Coalescent Theory

past
A

v
present \ \

The whole sequence shares a common genealogy.

Cannot easily handle selection, despite 20 years of effort.
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Comparison to the neutral null model
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Is this data consistent with neutral well-mixed random-mating population!?

What can we infer about the evolutionary history of this population?
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Comparison to the neutral null model

) 4
X

X X
X X

X X

X X

X
X X

X X
X X

Is this data consistent with neutral well-mixed random-mating population!?

What can we infer about the evolutionary history of this population?

Are the coalescent trees that lead to some aspect of the observed diversity likely?
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Evolution of the fitness distribution

A

selection

l

Number of Individuals

mutation
-«

T selection

fitness

>
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Evolution of the fitness distribution

A

log number of individuals

fitness

Balance between mutations and selection in each class:
Deterministic steady state fitness distribution.
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Evolution of the fitness distribution

log number of individuals

>

A

log number of individuals

fitness

Balance between mutations and selection in each class:
Deterministic steady state fitness distribution.

dhy (1)
dt

In steady state:

= Udhk—l — Udhk — S(k — kav)hk

. Uk
_ —Uyg/s™~d
fp = e k!s

-k+1)s  -ks -(k—l)sr ﬁtneé.:.
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Many fluctuating lineages maintain the balance

* each fitness class is not genetically homogenous
* each class composed of many lineages
 different alleles with the same total fitness

A

Number of individuals

fitness

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.
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Many fluctuating lineages maintain the balance —L—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

A * diffusion limit of Wright-Fisher model

-(k-k5,)s

!

* mutation decoupled from selection
* perfect linkage

log number of individuals

* infinite alleles model, but keeps track of
how many deleterious mutations each
individual has

-k+1)s  -ks -(k-1)s fitnes;
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Many fluctuating lineages maintain the balance —L—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

A * diffusion limit of Wright-Fisher model

-(k-k5,)s

!

* mutation decoupled from selection
* perfect linkage

New alleles created at (mutation) rate:

Hk per genome

E = Nhk_lUd + NhkU’n per generation

log number of individuals

* infinite alleles model, but keeps track of
how many deleterious mutations each
individual has

-k+1)s  -ks -(k-1)s fitneS;

19



Many fluctuating lineages maintain the balance —L—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

A * diffusion limit of Wright-Fisher model

-(k-k5,)s

!

* mutation decoupled from selection
* perfect linkage

New alleles created at (mutation) rate:

Hk per genome

E = Nhk_lUd + NhkU’n per generation

Experience effective selective pressure:

sp = —Uyg— Uy, — (k — kay)s

log number of individuals

* infinite alleles model, but keeps track of
how many deleterious mutations each
individual has

-k+1)s  -ks -(k-1)s fitneS;
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Many fluctuating lineages maintain the balance i—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

A * diffusion limit of Wright-Fisher model

(k-k_)s

!

* mutation decoupled from selection
* perfect linkage

New alleles created at (mutation) rate:

ek per genome

E = Nhk_lUd + NhkU’n per generation

Experience effective selective pressure:

sp=—Ug—U, — (k—kq)s

log number of individuals

* infinite alleles model, but keeps track of
how many deleterious mutations each
individual has

> A Uk
-k+1)s  -ks -(k-1)s fithess h’“ze_Ud/Sk_!i

0, and s, determined by state of other fluctuating alleles: self-consistency.
21



Many fluctuating lineages maintain the balance —L—

Each class is maintained by flux in of new mutant  New alleles created at (mutation) rate:

alleles as old alleles drift and go extinct. 01 Nhe U+ NI per genome
o k—1Uq 1 kYn

A 2 per generation

-(k-k,,)s

!

Experience effective selective pressure:

sp = —Uy— U — (k — kuy)s

0, and s, determined by state of other
fluctuating alleles: self-consistency:

. Uk
_ —Uyg/s~d
g = e kls

log number of individuals

-k+1)s  -ks -(k-1)s fitneS;
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Many fluctuating lineages maintain the balance i—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

log number of individuals

-(k+1)s

-(k-k3\)s

!

-ks

-(k-1)s

fitness

New alleles created at (mutation) rate:

0
Yk — Nhy_ Uy + NhpU, per genome

2 per generation

Experience effective selective pressure:

sp = —Uy— U — (k — kuy)s

0, and s, determined by state of other
fluctuating alleles: self-consistency:

k
iLk = B_Ud/sg

l kls

no neutral mutations:
* 55 < 0, each class except for k=0 is always
receiving new individuals due to mutations

* older individuals must die out to conserve steady
state fitness distribution

* k=0 class drifts neutrally - fitness advantage
balanced by loss of individuals to less fit classes
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Many fluctuating lineages maintain the balance —i‘—

Each class is maintained by flux in of new mutant
alleles as old alleles drift and go extinct.

log number of individuals

-(k+1)s

-(k-k3\)s

!

-ks

-(k-1)s

. »
fithess

New alleles created at (mutation) rate:

0
Yk — Nhy_ Uy + NhpU, per genome

2 per generation

Experience effective selective pressure:

sp = —Uy— U — (k — kuy)s

0, and s, determined by state of other
fluctuating alleles: self-consistency:

k
iLk = 6_Ud/3%

l kls

no neutral mutations:
* 55 < 0, each class except for k=0 is always
receiving new individuals due to mutations

* older individuals must die out to conserve steady
state fitness distribution

* k=0 class drifts neutrally - fitness advantage
balanced by loss of individuals to less fit classes

with neutral mutations:

* 55 < 0, effective selection even more negative

* even 5o < 0,all classes effectively selected
against! 24



Allelic diversity within each class

>

Number of individuals

fithess
Balance between creation and destruction of alleles

25



Allelic diversity within each class

>

Number of individuals

fithess
Balance between creation and destruction of alleles

Fluctuations of particular mutations are not independent. Fluctuations of alleles are. 2



Allelic diversity within each class

>

Number of individuals

fithess
Balance between creation and destruction of alleles

—> Distribution of probability of seeing an allele frequency x:

; . 1 — ¢ 2Nsk(1—x) ; 30

Poisson Random Field (PRF) gives
distribution of lineages in given fitness class

-+
self-consistency condition - fluctuations of alleles affect the

mean fitness and the rate of mutations to less-fit alleles

2

Average Number of Alleles

00 02 04 06 0s 10

1
hk :/ Zka(ZE)dZC Frequency of Allele
0
Fluctuations of particular mutations are not independent. Fluctuations of alleles are.



Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene

(o Jv)
1
3

The model: p(z; z0, 1) fprreobability distribution 9f derived a.IIeIe
quency x at time ¢, given x( at time {

28



Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene

The model: p(CIJ; To, t) probability distribution of derived allele g L

frequency x at time ¢, given xg at time ¢

9q(zo; x,1) n D(x0) 0%q(zo; z,t)

q(xo; x, t) backward+equation: q(zo;x,t) = v(w0)
absorbing boundary conditions

at t=1 or xt =0

Oxo 2 0z
v(zg) = 2N szo(1 — zo)
D($0) = 33‘()(1 — I‘O)

29
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Poisson Random Field traditionally = =
PRF - qualitatively determines the intensity of selection on a particular gene
The model: p(ZIJ‘ T t) probability distribution of derived allele D v ’
0 frequency x at time ¢, given xq at time t; o 1—z
dq(xo; D(x0) 8%q(o;
q(zo; z,t) backward+equation: Oeq(xo;z,t) = v(zo) q(g(;ox’t) + (;0) Q(giéx’t)

v(zg) = 2N szo(1 — zo)

absorbing boundary conditions
D(ZBO> = 33‘0(1 — l‘())

at t=1 or xt =0

T = | 'Hwizo)iz - mean time until absorption (MFPT)

—> mean time derived allele frequency spends in the interval (x,x + dz): f(z) = 1—e2Ns  z(1—2x)

30
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Poisson Random Field traditionally = -
PRF - qualitatively determines the intensity of selection on a particular gene

I . D TS
The model: : probability distribution of derived allele
p(; o, t) frequency x at time ¢, given x( at time t © -
0 -, t D 02 2, b
q(zo;7,1) backward+equation: 0sq(wo; x,t) = v(20) Q(gg;f ) | (50) Q(gigx )
absorbing boundary conditions v(zo) = 2Nszo(1 — o)
at t=1 or =0 D(z0) = wo(1 — o)

T = | 'Hwizo)iz - mean time until absorption (MFPT)

—» mean time derived allele frequency spends in the interval (z,x + dx): f(x) =

Generalize to multiple alleles, assume:
* mutations arise at Poisson times

e each mutation forms a new allele

* independent alleles - each mutant follows an independent Wright-Fisher process

31



Poisson Random Field traditionally = =

PRF - qualitatively determines the intensity of selection on a particular gene

e . D r s
The model: : probability distribution of derived allele
p(@; @0, t) frequency x at time ¢, given g at time ¢ O l —x
0 cx,t D 0? b
q(xo; 2, 1) backward+equation: 0rq(zo; z,t) = v(w0) Q(g(;jf’ ) | (;0) Q(g;’%x )
absorbing boundary conditions v(zo) = 2Nszo(1 — o)
at t=1 or =0 D(z0) = zo(1 — 20)

T = | 'Hwizo)iz - mean time until absorption (MFPT)

—» mean time derived allele frequency spends in the interval (z,x + dx): f(x) =

Generalize to multiple alleles, assume:
* mutations arise at Poisson times

e each mutation forms a new allele

* independent alleles - each mutant follows an independent Wright-Fisher process

/ 0f ()da = / f(z)dz - expected number of sites with derived allele/lineage frequency in a given range:
1 — 62]\75(1—3:)
dx

(1 — 62Ns)$(1 _ ZIZ) ) - per site mutation rate

f(z)dx =06

32



Poisson Random Field traditionally = =

PRF - qualitatively determines the intensity of selection on a particular gene

e . D r s
The model: : probability distribution of derived allele
p(@; @0, t) frequency x at time ¢, given g at time ¢ O l —x
0 cx,t D 0? b
q(xo; 2, 1) backward+equation: 0rq(zo; z,t) = v(w0) Q(g(;jf’ ) | (;0) Q(g;’%x )
absorbing boundary conditions v(zo) = 2Nszo(1 — o)
at t=1 or =0 D(z0) = zo(1 — 20)

T = | 'Hwizo)iz - mean time until absorption (MFPT)

—» mean time derived allele frequency spends in the interval (z,x + dx): f(x) =

Generalize to multiple alleles, assume:
* mutations arise at Poisson times

e each mutation forms a new allele

* independent alleles - each mutant follows an independent Wright-Fisher process

/ 0f ()da = / f(z)dz - expected number of sites with derived allele/lineage frequency in a given range:
1 — 62]\75(1—3:)
dx

(1 — 62Ns)$(1 _ ZIZ) ) - per site mutation rate

f(z)dx =06

The number of sites that have i copies of the derived allele are Poisson distributed with mean:

EZ???!EZ:?: ttrfzes::utqile ]k@m(l — )" f (z)dx [hence Poisson Random Field]




Allelic diversity within each class

>

Number of individuals

fithess
Balance between creation and destruction of alleles

—> Distribution of probability of seeing an allele frequency x:

; . 1 — ¢ 2Nsk(1—x) ; 30

Poisson Random Field (PRF) gives
distribution of lineages in given fitness class

-+
self-consistency condition - fluctuations of alleles affect the

mean fitness and the rate of mutations to less-fit alleles

2

Average Number of Alleles

00 02 04 06 0s 10

1
hk :/ Zka(ZE)dZC Frequency of Allele
0
Fluctuations of particular mutations are not independent. Fluctuations of alleles are.



Allelic diversity within each class _-*-_

>

N|sp| >> 1, selection is strong
enough - no lineage ever becomes a
substantial fraction of the population

Number of individuals

fithess
Balance between creation and destruction of alleles

—> Distribution of probability of seeing an allele frequency x:

; . 1 — ¢ 2Nsk(1—x) ; 30

Poisson Random Field (PRF) gives
distribution of lineages in given fitness class

-+
self-consistency condition - fluctuations of alleles affect the

mean fitness and the rate of mutations to less-fit alleles

2

Average Number of Alleles

00 02 04 06 0s 10

1
hk :/ Zka(ZE)dZC Frequency of Allele
0
Fluctuations of particular mutations are not independent. Fluctuations of alleles are. 3



=
L4
Self-consistency condition -

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

=+
steady state distribution of fitness classes

1
hk:/ x fir.(x)dx
0

Nlsp| >>1 s =—Ug—U, — (k — k’av)S

36



=
L4
Self-consistency condition -

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

=+
steady state distribution of fitness classes

1
hk:/ x fir.(x)dx
0

Nlsp| >>1 s =—Ug—U, — (k — k’av)S

close tok,,:
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=
-
Self-consistency condition =

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

=+
steady state distribution of fitness classes

1
hk:/ x fir.(x)dx
0

Nlsp| >>1 s =—Ug—U, — (k — k’av)S

close tok,,:

NU;>>1 or NU,>>1 <— self-consistency holds

38



=
Self-consistency condition =

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

=+
steady state distribution of fitness classes

1
hk:/ x fr.(x)dx
0

Nlsp| >>1 s =—Ug—U, — (k — kaU)S

close tok,,:
N(Ud + Un) >> 1

|

NU;>>1 or NU,>>1 <— self-consistency holds

For N(Us+U,) <1 PRF breaks down :

* the growth of some mutants is limited by size of population
* lineages are no longer independent 30



Number of individuals

Expected genetic variation _-*-_

A

\

1 _ e—QNSk(l—ZC)

fr(x)dx = 0, 1— 2% 2(l — 2) dx

p—
fithess

Sample n individuals.
What is the probability of a particular allelic configuration!?

(n4 individuals with allele 1, no individuals with allele 2,....)

Homozygosity: Q2 = Z/IL‘ fe(@)de =)

k=0

A Sample n=2 individuals.What
is the probability that they
2N sy, have the same genotype!?

“Bji TS Sample n=3 individuals.What is
IZygosity ' Q21 = Z 32 (1 — o) fx(z)dx the probability that two have the
same alleles and one is different?

I

OV
DO
5;5
x

—_

|

2|
N
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=
Comparison to known results =

Sample n individuals.
What is the probability of a particular allelic configuration?

(n4 individuals with allele 1, n, individuals with allele 2,....)

== generalization of Ewens Sampling Formula (ESF)

* neutral model
n! nj

00 +1).(0+n—1)

0 * steady state with respect to mutation and drift
jnj N ' .

P(nl, ...,7?,2) —

n
1 infinite alleles

* sample size n<<N - population size

41



=
-
Comparison to known results =

Sample n individuals.
What is the probability of a particular allelic configuration?

(n4 individuals with allele 1, n, individuals with allele 2,....)

== generalization of Ewens Sampling Formula (ESF)

* neutral model
n! nj

00 +1).(0+n—1)

* steady state with respect to mutation and drift

0
P —
(N1, .5 M2) s nj! ]

n
1 infinite alleles

* sample size n<<N - population size

Effective Population Size Approximation (EPS):

* deleterious mutations are purged quickly from the population
* all individuals are recently descended from neutral individuals
* only the zero-class matters

* results in neutral population with an effective reduced population size

* makes predictions about diversity at individual sites ®

* only makes predictions for neutral sites

¢
O
l

N, = Nhg = NeUa/s X




Expected genetic variation

Homozygosity: Q2 = Z/l‘ fr(z

0.01 T
|
| -3
0.009 - Q, - our theory : — 1 O
44444 Q, - NM-ESF , _4
c.oo8- | Q, - NS-ESF | Un — ]. O -
|
_ _ _Q,-EPS |
0.007 - I
[
|
0.006 -
o 0.005 ———
0.004 -
0.003 -
0.002 -
0.001
0 | |
-8 -7 -6

r =3

k=0

i
QNSk
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Expected genetic variation

= h
Homozygosity: Q2 = Z/Ika(w)df’f - Z QNkSk
k

k=0
0.01
|
| -3
0.009 - Q,, - our theory : S = 1 O T
44444 Q, - NM-ESF , _4
0.008 - | Q, - NS-ESF | U. n — 10 .
|
|
0.007 - |
|
0.006
o o.o{

0.004

0.003 -

0.002 -

0.001 -

e all neutral models agree: ESF BGS 44



Expected genetic variation

= h
Homozygosity: Q2 = Z/Ika(%’)dx - Z QNkSk
k

0.01

0.009 - Q, - our theory

0.008| Q

0.007 -

0.006

o o.o{

0.004

0.003 -

0.002 -

0.001 -

s=10"3 -
U, =107% -

e all neutral models agree: ESF BGS

k=0

EPS - change in reduced effective
population size of “neutral”

0 = 2N (U, + Uy)eYa/lsl

population:

45



Expected genetic variation

= h
Homozygosity: Q2 = Z/JJka(ﬂ?)dx - Z QNkSk
k

0.01

0.009 - Q, - our theory

0.008| Q

0.007 -

0.006

o o.o{

0.004

0.003 -

0.002 -

0.001 -

s=10"3 -
U, =107% -

e all neutral models agree: ESF BGS

k=0

EPS - change in reduced effective
population size of “neutral” population:

0 = 2N (U, + Uy)eYa/lsl

NM-ESF - neglect deleterious mutations: 0 = 2NU,

NS-ESF - neglect selection against

deleterious mutations: 0 = 2N Uy + Ua)

46
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Expected genetic variation -
— h
. k
Homozygosity: = z° fio(z)dx =
ygosity: Q2= [ a*fu(@)dz = S5
k k=0
0.009 Q, - our theory :I s =103
ool | o oo U, =10"*
| o gijP; 5 " EPS - change in reduced effective
0.007F | population size of “neutral” population:

0.006

o o.o{

0.004 1~

0.003 -

0.002 -

0.001 -

0 =2NU, >>1

neutral case, U; = 0:

Q2 =

psr_ 1
2 146

e all neutral models agree: ESF BGS

0 =2N (U, + Ug)e”Ve/1®

NM-ESF - neglect deleterious mutations: 0 = 2NU,

NS-ESF - neglect selection against

deleterious mutations: 0 = 2N Uy + Ua)

e deleterious mutations decrease the homozygozity, Uy ~ s
* deleterious mutations decrease homozygosity less

than neutral ones (they must eventually die)

e deleterious mutations are not rare for U; > s,

NM-ESF breaks down

e for U, > sstill significant difference between NS-

ESF and our results

* important parameter: are mutations purged

slowly enough to matter Ug ~ s

e contrary to intuition from EPS, more deleterious

: L 47
mutations cannot decrease diversity



° ° ° — --
Expected genetic variation -
— h
. k
Homozygosity: Q2 = 2° fr(z)dz =
ygosity: Qo =3 [ a®fu@)du =3 5
k k=0

0.009 |- Q, - our theory || — 10_3
0.008 |- - Qz_:M_:SFF | U, = 10_4 i
| o gz:E: ’ 5 " EPS - change in reduced effective
0.007 i population size of “neutral” population:
ooz/_\ ,'I 7 0 =2N(U, + Ud)e_Ud/|S|
0-004\/ “\"’»\,_\ ,' ! NM-ESF - neglect deleterious mutations: 6 = 2NU,
0.002} ,’, 1 NS-ESF - neglect selection against B
0.001 |- oA // deleterious mutations: 0 =2N(Un + Ua)

Q L e deleterious mutations decrease the homozygozity, Uy ~ s

neutral case, U; = 0: 0 =2NU, >>1
1
Q2 = 9
ESF _ 1
2 1+6

e all neutral models agree: ESF BGS

* deleterious mutations decrease homozygosity less

than neutral ones (they must eventually die)

e deleterious mutations are not rare for U; > s,

NM-ESF breaks down
e for U, > sstill significant difference between NS-

ESF and our results
* important parameter: are mutations purged

slowly enough to matter Ug ~ s
e contrary to intuition from EPS, more deleterious

mutations cannot decrease diversity
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° ° ° i --
Expected genetic variation = W-_
— h
. k
Homozygosity: = 2° fr(z)dz =
ygosity: Qo= [ 2*fu(2)dw =} 5o
k k=0
0.009 |- Q, - our theory :I S = 10—3
oml | o -naesr U, =107* |
| - Ejim’ 5 " EPS - change in reduced effective
o | population size of “neutral” population:

0.004 1~

l
0.006 | .
!
[
\

0.003 -

0.002 -

0.001 -

neutral case, U; = 0: 0 =2NU, >>1
1
Q2 = 9
ESF _ 1
2 1446

e all neutral models agree: ESF BGS

" deleterious mutations:

0 =2N (U, + Ug)e”Ve/1®

T~ NM-ESF - neglect deleterious mutations: 6 = 2NU,

NS-ESF - neglect selection against 0 = 2N(U, + Uy)

e deleterious mutations decrease the homozygozity, Uy ~ s
* deleterious mutations decrease homozygosity less

than neutral ones (they must eventually die)

e deleterious mutations are not rare for U; > s,
NM-ESF breaks down

e for U, > sstill significant difference between NS-
ESF and our results

* important parameter: are mutations purged
slowly enough to matter Ug ~ s

e contrary to intuition from EPS, more deleterious

: L 49
mutations cannot decrease diversity
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Expected genetic variation = W-_
— h
. k
Homozygosity: = 2° fr(z)dz =
ygosity: Qo= [ 2*fu(2)dw =} 5o
k k=0

0.009 |- Q, - our theory : S = 10—3
ool | o wsesr U, =107* |
| - Ejim’ " EPS - change in reduced effective
o — i population size of “neutral” population:
< | | 0 = 2N (U, + Ug)e Ve/I*!

.

g O —_— ===
0'004\/

0.003 -

T~ NM-ESF - neglect deleterious mutations: 6 = 2NU,

0.002 -

NS-ESF - neglect selection against

o001 // deleterious mutations: 6 =2N(Un + Uad)
. / S L e deleterious mutations decrease the homozygozity, Uy ~ s
-8 -7 -6 -5 -4 -3 -2 -1 0 . . .

1005 = * deleterious mutations decrease homozygosity less
than neutral ones (they must eventually die)

e deleterious mutations are not rare for U; > s,
neutral case, U; = 0O: 0 =2NU, >>1 NM-ESF breaks down

1 e for U, > sstill significant difference between NS-
Q2 = 9 ESF and our results
psrp 1 * important parameter: are mutations purged
2 T 140 slowly enough to matter Uy ~ s

* contrary to intuition from EPS, more deleterious

. .
all neutral models agree: ESEBGS mutations cannot decrease diversity
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Expected genetic variation

N

= h
Homozygosity: &2 = Z/xsz ()dr = Z 2Nksk
k

k=0

0.01 T I} T T T I
\ _45 Q, - our theory,
0.009 | \ Ud = 107™ — - Q- NM=ESF|
I R Q, - NS-ESF
0.008|- Up =10 m %
NM-ESF - neglect deleterious mutations: 6 = 2NU,
0.007 -
. . 0.006 -
NS-ESF - neglect selection against 0 = IN(U, + Uy) -
deleterious mutations: - n d G 00051 — — i m s S oo
0004_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, \\ \\ N \‘ P T T Ty U —
0.003 -
EPS - change in reduced effective 0.002k
population size of “neutral” population:
0.001 -
0 = 2N(U,, + Uy)e~Va/lsl L \
-5.5 -5 -4.5 -4 -3 5Iog (S)—S -2.5 -2 -1.5 -1
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Expected genetic variation

=
=
%
i .

©. @)

h
: 2 k
Q=Y [FaEn=Y
Homozygosity: / fr(2) SN,
k k=0
0.01 - ‘ ‘ : :
\ Q, - our theory,
0.009|- \ Ud — 10_4'5 — = G~ NM-ESF
_4 QQ—NS—ESF
0.008} Up =10 m %
NM-ESF - neglect deleterious mutations: 6 = 2NU, |
0.007
NS-ESF - neglect selection against PR \
deleterious mutations: 0 =2N(Uy + Ua) S S e — 1
0.004 |- \\\\‘\— _______________
0.003 -
EPS - change in reduced effective 0002}
population size of “neutral” population:
0.001 -
0 = 2N(U,, + Uy)e~Va/lsl . \ \ o
-5.5 -5 -4.5 -4 -3.5 Iog1 O(S)—S -2.5 -2 -1.5 -1

* for strong selection mutations eliminated quickly - neutral
mutations dominate - NM-ESF holds

* for very weak selection, deleterious mutations are like
neutral - NS-ESF holds

* regions where no neutral theory holds

e EPS underestimates size of most fit for weak selection
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=
Expected genetic variation =

= h
Homozygosity: @2 = Z/xsz(x)dx B Z 2Nksk
k

k=0
0.01 T T T T T I
\ 45 Q, - our theory,
0.000 - \\ Ud = 10"* — .~ Q,-NM-ESF ||
\ _4 02 - NS-ESF
\ Un — ]_O _ _ _Q,-FEPS
0.008 \

NM-ESF - neglect deleterious mutations: 6 = 2NU, \m‘ |

0.006 -

NS-ESF - neglect selection against
deleterious mutations:

0 =2N (U, + Uy) o

g 0.005

0.004 -

0.003 -

EPS - change in reduced effective
population size of “neutral” population:

0.002 -

0.001 -

0 = 2N (U,, + Uy)e~Yd/lsl 0

! ! ! ! ! ! ! !
-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

* for strong selection mutations eliminated quickly - neutral
mutations dominate - NM-ESF holds
* for very weak selection, deleterious mutations are like
neutral - NS-ESF holds
* regions where no neutral theory holds
e EPS underestimates size of most fit for weak selection
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=
Expected genetic variation =

©. @)

h
. 2 k
X 2 — 7 fr(x)dx =
Homozygosity: @2 = ) / fr(x) > No
k k=0
0.01 ‘ ' ‘ | | —
! ,— our theory
0.009 - \ U; = 10—45 _ _ Q,-NM-ESF |
| \ _4 Q, - NS-ESF
0.008/- ! Un =10 _ _ _Q,-EPS

NM-ESF - neglect deleterious mutations: 6 = 2NU, \m‘ |

0.006 -

NS-ESF - neglect selection against

deleterious mutations: 0 =2N(Un + Ua)

EPS - change in reduced effective
population size of “neutral” population:

0 = 2N (U, + Ug)e”Ve/1®

! ! ! ! ! ! ! !
-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1

* for strong selection mutations eliminated quickly - neutral
mutations dominate - NM-ESF holds

* for very weak selection, deleterious mutations are like
neutral - NS-ESF holds

* regions where no neutral theory holds

e EPS underestimates size of most fit for weak selection
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=
Comparison with simulations =

N=10000 N=10000
" | | G, theory, U,=0.00052 o7 Q, , theory, U =0.00032
. . —_Q,-NS-ESF, U=0.00032 2'1_ - ESF, U=0.
* MC OfWI’Ight-FIShEI" e Q,simulations, U =0.00032 0.06- ° 82'1 sianfIati(f:: Ut:(;):go();; 1
0.025 . .
population
. 0.05
* constant size N ooz}
* N individuals sampled with ooty
. o 0.015F | <
replacement in each % el
generation oorl
. . . 0.02
* sampling according to relative
fitness in the population T oo
* Poisson number of deleterious . ‘ i
. 2 4 6 8 10 12 14 16 18 20 2
and neutral mutations e
introduced in each generation | | | S ey U 250005
. . Q, - NS - ESF, U =0.00032
° mutatlons Introduced e Q,simulations, U =0.00032
randomly and independently
among individuals o'
* keep track of frequencies of all 0
g o
genotypes °
* genotype - set of mutation
sites
10° ‘ ‘ ‘ ‘ ‘ 10° ‘ , ‘ : ‘
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
N 4 N 4
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Statistics to describe deviation from neutrality

neutral ESF result: comput.e effective calculate other
ESF
— > > e e
2 146, 0 Q31,3

Compute expected Q,, or Q; Given Q,
Q5.1/Q2,1

Expected deviation from neutral ratio
Q5/Qs
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Statistics to describe deviation from neutrality

, Deviation from Neutrality

neutral ESF result: compute effective calculate other
mutation rate: istics:
BSF _ 1 g R StitlSthi.
2 1 —I—@e 9@ Q2,17Q37
1.12 U e e
— U =107, N=10" 0.9
1.1 earses Upm107, Nat0® , —__U=10", N=10° |
- = < U0, Nt e un=1o4. N=10°
s - = U =107 N=10°
108} =
3 o0s
-
§
106+ = 05
S 1.04 o
03
0.2
1.02
= T .. = - 0 0 r - - - :
Iogw(Uﬂu |ogw(Udl
Compute expected Q, ; or Q; Given Q,
o e . QS 1/ Q2,1
Expected deviation from neutral ratio 0% /0
3/ &3
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N

Q

, Deviation from Neutrality

Statistics to describe deviation from neutrality

neutral ESF result: compute effective calculate other
1 mutation rate: statistics:
ESF — > > e e
2 1 —I—@e 9@ Q2,17Q37
1.12 i B
U, =107, N=10" 09
1.1 , Up=107%, Nat0® U =107, N=10° |
-4 ()
o = U =107 N=10 osf | U107, N=10°
& - = U =107 N=10°
1.08 =
£ 06
z
£
1.06} £ 05
g
1.04 o
03
0.2
1.02
k :
et e e - A > -~ J 0 1 1 1 1
-7 -6 5 -4 3 -2 -1 0 -7 -6 5 4 3 2

Compute expected Q,, or Q; Given Q,
Q5.1/Q2,1

Expected deviation from neutral ratio
Q5/Qs

There is no effective population size that reproduces the statistics consistently

58



Tracing the genealogies

X
X

X X

X X

X X
X X

X X

X

X X
X X

We now know the probability of different allelic configurations

What is the relationship among alleles?
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An effective coalescent approach

»

Number of individuals

| kil

fitness

Trace the ancestry of each individual through the fitness distribution
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An effective coalescent approach

»

Number of individuals

fitness

Trace the ancestry of each individual through the fitness distribution
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An effective coalescent approach

»

Number of individuals

fitness

Trace the ancestry of each individual through the fitness distribution

62



An effective coalescent approach

»

Number of individuals

fitness

Trace the ancestry of each individual through the fitness distribution
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Number of individuals

Effective coalescent probabilities _-L_

»

\

1 L 6—2N8k(1—33)

fr(x)dx = 0y 1 2% 2(l — o) dx

fitness

Sample 2 individuals from class k
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Number of individuals

Effective coalescent probabilities _-L_

»

\

1 . 6—2N8k(1—513)

fu(@)dr = Oy (1 — e 2Nsu)gp(1 — ) dr

fitness

Sample 2 individuals from class k

2
Coalescent probability in class k: prk=k — / %fk(iv)da?
k
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Number of individuals

Effective coalescent probabilities _-*-_

»

\

1 — 6—2Nsk(1—:1:)

fr(x)dx = 0y 1 2% 2(l — o) dx

I
fitness

Sample 2 individuals from class k
2
Coalescent probability in class k: prk=k — / %fk(iv)da?
k

Coalescent probability in class k-1:

kk—k—1 _
P! _ /

probability an individual ~ Probability that a lineage  joint distribution of times t,

deydtl dtQ

comes from class k and :c” class k'1f changes in and t, - times when
lineage with frequency x tirrenCéuﬁrjf[:)l/ rom xtoyin lineages in class k where
2 1

founded by mutations
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Number of individuals

Effective coalescent probabilities _-*-_

»

\

1 — 6—2Nsk(1—:1:)

fr(x)dx = 0y 1 2% 2(l — o) dx

I
fitness

Sample 2 individuals from class k
2
Coalescent probability in class k: prk=k — / %fk(iv)da?
k

Coalescent probability in class k-1:

kk—k—1 _
P! _ /

probability an individual ~ Probability that a lineage  joint distribution of times t,

deydtl dtQ

comes from class k and :c” class k'1f changes in and t, - times when
lineage with frequency x tirrenCéuﬁrjf[:)l/ rom xtoyin lineages in class k where
2 1

founded by mutations
kk—k—2
P = ... N



Number of individuals

Effective coalescent probabilities _-*-_

»

\

1 — 6—2Nsk(1—:1:)

fr(x)dx = 0y 1 2% 2(l — o) dx

I
fitness

Sample 2 individuals from class k

2
Coalescent probability in class k: PRk — / %fk(:c)daz
k

General coalescent probability in class k-{:

pritm=k=t dzdydt, dt,

probability an individual ~ Probability that a lineage joint distribution of times t,

comes from class kand ~ In class k-{ changes in and t, - times when
lineage with frequency x ~ frequency from x to y in lineages in class k where
time It,-t.1

founded by mutations 68



=
L
Non-conditional approximation -

phktm—k—£ _ / k-t G-ty = 2|t = tal) e (t1,to)dxdydt,dts

bk
hi—1 hi—1 fotm
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=
L4
Non-conditional approximation ey ool

phoktm—k—t _ / Zfre—e YGr—e(y — . [ta —t1]) p o
c hi—1 hi—1 koktm

y integral is just mean y - deterministic
* result for the change in the frequency of

the lineage

(tl ) tg)dibdydtl dtz

2
kkdtm—k—f T fp—e _ ke—0)|to—t k—¢
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Non-conditional approximation

Pk,k+m—>k—€ _ / xfk—ﬁ ka—E(y — €, ‘tQ o tl‘) k—¢ (tl tQ)diEdydtldtQ

k.k
hi—i hi—i tm

y integral is just mean y - deterministic
* result for the change in the frequency of

the lineage

2
kkdtm—k—f T fp—e _ ke—0)|to—t k—¢

Assume:

* non-conditional approximation: the times at which the two individuals moved from one fitness
class to another is independent

4l



Non-conditional approximation

kk+m—k—f __ Tfr—0 YGr—o(y — T, [t2 — t1])
Pc - = / Qk k4+m (tl, tg)dﬁdydtldtz
hi—1 hi—1
y integral is just mean y - deterministic
* result for the change in the frequency of

the lineage

phktm—h—t _ / _thk Cemsth=tla=tilQh=t (4, t)dudtdts
k—I

Assume:
* non-conditional approximation: the times at which the two individuals moved from one fitness

class to another is independent

[generally not true
because moving between

X
Pck,k—l—m—ﬁﬂ—f :/M —s(k— €)|t2—t1‘Q7€ e(tl)Qk+m(t2)dxdt1dt2 fitness classes assumes no

h I coalescence - but small
correction]
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Non-conditional approximation

kk+m—k—f __ Tfr—0 YGr—o(y — T, [t2 — t1])
Pc - = / Qk k4+m (tl, tg)dﬁdydtldtz
hi—1 hi—1
y integral is just mean y - deterministic
* result for the change in the frequency of

the lineage

Pf,k—l—m—ﬂc—ﬁ :/% —s(k— €)|t2—t1|Q k+m(t1,t2)dﬂidt1dt2
k—I

Assume:
* non-conditional approximation: the times at which the two individuals moved from one fitness

class to another is independent

[generally not true
because moving between

X
Pck,k—l—m—ﬁﬂ—f :/M —s(k— €)|t2—t1‘Qk e(tl)Qk+m(t2)dxdt1dt2 fitness classes assumes no

h2 I coalescence - but small
I correction]

distribution of mutant timings:
I]:—e(t) = Z‘l(t) * QZ_Q( ) * Qk £+1(t) and ka £+1< ) =s(k—{+ 1)€_S(k—£+1)t
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Non-conditional approximation

Lk Tfh—t YGr—e(y — @, |t2 — 11
Pf’k+m k—€ __ / f Y (y ) ‘ ‘)Qk e (tl,tg)diﬁdydtldtz
hi—1 hi—1
y integral is just mean y - deterministic
* result for the change in the frequency of
the lineage
bbtm—k—t _ [ TSl s(k—0)|ta—t
Pc = /hQ— ( )It2 1|Q k+m(t1,t2)dﬂ?dt1dt2
k—1
Assume:
* non-conditional approximation: the times at which the two individuals moved from one fitness
class to another is independent

[generally not true
because moving between

X
Pck,k—l—m—ﬁﬂ—f :/M —s(k— €)|t2—t1‘Q7€ e(tl)Qk+m(t2)dxdt1dt2 fitness classes assumes no

h2 I coalescence - but small
I correction]

distribution of mutant timings:
k_e(t) — Z_l(t) * QZ_Q( ) * Qk £+1(t) and ka £+1< ) =s(k—{+ 1)6_8(k_£+1)t

k
* evaluate many integrals
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=
= -
— e

Non-conditional approximation

kk+m—k—f __ Tfr—0 YGr—o(y — T, [t2 — t1])
Pc - = / Qk k4+m (tl, tg)dﬁdydtldtg
hi—1 hi—1
y integral is just mean y - deterministic
* result for the change in the frequency of

the lineage

phktm—h—t _ / _thk Cemsth=tla=tilQh=t (4, t)dudtdts
k—I

Assume:
* non-conditional approximation: the times at which the two individuals moved from one fitness

class to another is independent

[generally not true
because moving between

X
Pf’k+m—>k_€ :/M —s(k— €)|t2—t1‘Qk e(tl)Qk+m(t2)dxdt1dt2 fitness classes assumes no

h2 I coalescence - but small
I correction]

distribution of mutant timings:
O = Q)+ Q) ¢ .. QE Ty (t) and QTy, (t) = s(k — £ 4 1)e ST

* evaluate many integrals

.« . . m— k,m
In non-conditional approximation: prktm=hmt — = Nhp_gs(k—0) A,
Easy formula for coefficient: g _ (kkt?) (kﬁg)
- (2k—l—m) -
20+m



Etfective coalescence probabilities _-L_

»
»

vy
© * coalescence probability increases for longer steptimes -
-3 coalescence in more fit classes is more likely
=
©
3=
e
O
p—
v
= 1
= phk+m—k—f _ ARm
> ¢ Nhy_ps(k —0)"¢
.
fitness
10° \ \ I ] = \ \ T T T I ]
= = Ns=10 | NG Ns=10 |]
....... Ns=50 | \ v Ns=50 |4
/ Ns=100 Ns=100

0 1‘ 2 3 p 5 6 7 /
Sampled k just right of mean Sampled k left of mean
(more fit than mean) (less fit than mean)

[e9)
o
N
N
[«
©
—_
o
—_
N

14
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Effective coalescence probabilities _-*-_

»
-~

vy

© * coalescence probability increases for longer steptimes -
-8 coalescence in more fit classes is more likely

= « coalescence probability decreases with selection

T

= » coalescence probability decreases with population size
e

O

p—

v

= 1

- kk+m—k—0 _ k,m

= PC o L — /¢ AE

Z = )

———
fithess

Ns=100 |1

0 1‘ 2 3 p 5 6 7 /
Sampled k just right of mean Sampled k left of mean
(more fit than mean) (less fit than mean)

[e9)
o
N
N
[«
©
—_
o
—_
N

14
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Effective coalescence probabilities

r N

Lo
C
>

s

=

T

k=

e
o
—
@

Q
=
=

P

1

o

»
-~

« coalescence probability increases for longer steptimes -
coalescence in more fit classes is more likely

« coalescence probability decreases with selection
» coalescence probability decreases with population size

* coalescence probability is less likely in most probable class

kktm—k—0f _ k,m
P, = A,

k— /)
———
fithess

T~

Ns=100 |1

mean of fithess
distribution

| 2 3 p 5 5 7
Sampled k just right of mean
(more fit than mean)

[e9)
o

12 14

14
Sampled k left of mean

(less fit than mean) e



log number of individuals

Comparison to variable population size

>

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O fitness

1
k.k+m—k—~0 __ k,m
Pc AE

N Nhk_gs(k — 5)

1

Nk—£Sk—¢

k.k+m—k—¢ __ k,m
P — Ab

Pk,k, |

T i
————— Ns=10 |
------- Ns=50 |-
Ns=100 |

79
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log number of individuals

Comparison to variable population size

>

-10s -9s -85 -7s -6s -5s -4s -3s -2s -s O fitness
phktm—k—t _ L em
c Nhy_ds(k —£) *
1

k.k+m—k—¢ __ k,m
P — Ab

Pk,k, |

Nk—£Sk—¢

T i
————— Ns=10 |
------- Ns=50 |-
Ns=100 |

80
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log number of individuals

Comparison to variable population size

>

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O fitness

1
k.k+m—k—~0 __ — k,m
P, Ay

— V
.D

1
AP
N —p¢Sk—v¢

phktm—k—t _
&

Pk,k, |

T i
————— Ns=10 |
------- Ns=50 |-
Ns=100 |

81
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log number of individuals

Comparison to variable population size

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O

phktmoak—t _ L Ak
C

p— 7
H

1
AP
N —p¢Sk—v¢

Pk,k—l—m—>k—€ _
- —

lineage spends ~1/s,generations in each class
—> per generation coalescence probability in class k is 1/n,

>

fitness

Pk,k, |

107 F

107°F"

T i
————— Ns=10 |
''''''' Ns=50 |-
Ns=100 |
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log number of individuals

Comparison to variable population size

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O

phktmoak—t _ L Ak
C

p— 7
H

1
AP
N —p¢Sk—v¢

Pk,k—l—m—>k—€ _
- p—

lineage spends ~1/s,generations in each class
—> per generation coalescence probability in class k is 1/n,

historically varying population size - different
effective population sizes depending on initial
position in fitness distribution

>

fitness

Pk,k, |

107 F

10

107°F"

T i
————— Ns=10 |
''''''' Ns=50 |-
Ns=100 |
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log number of individuals

Comparison to variable population size

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O

phktmoak—t _ L Ak
C

p— 7
H

1
AP
N —p¢Sk—v¢

Pk,k—l—m—>k—€ _
- p—

lineage spends ~1/s,generations in each class
—> per generation coalescence probability in class k is 1/n,

historically varying population size - different
effective population sizes depending on initial
position in fitness distribution

>

fitness

Pk,k, |

107 F

10

107°F"

N

-
-----------

“weird” varying
population size

less fit than mean:

1
4 6 8 10 12

84

14



log number of individuals

Comparison to variable population size

-10s -9s -85 -7s -6s -5s -4s -3s -25s -s O
B 1
N 1
P(Zc,k—l—m k—€ _ A?,m
Nig—¢Sk—¢

lineage spends ~1/s,generations in each class
—> per generation coalescence probability in class k is 1/n,

historically varying population size - different
effective population sizes depending on initial
position in fitness distribution

fitness

Pk,k, |

107 F

== Ns=10

_____

more fit than mean:

“simple” varying population size

107°F"

-
-----------

less fit than mean:
“weird” varying
population size

1 1
0 2 4 6 8 10 12 14
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log number of individuals

Comparison to variable population size

-10s -9s -8s -7s -6s -55s -4s -3s -2s =-s O

phktmoak—t _ L Ak
C

p— 7
H

1
AP

k.,k+m—k—£ __

P )
p —
Nk—£Sk—¢

lineage spends ~1/s,generations in each class
—> per generation coalescence probability in class k is 1/n,

historically varying population size - different
effective population sizes depending on initial
position in fitness distribution

fithess

Pk,k, |

107 F

_____

more fit than mean:
“simple” varying population size

107°F"

-
-----------

less fit than mean:

“weird” varying
population size

8

10 12

—> really strange variation in population size for two individuals from different classes 86

14



From

coalescence probabilities to selected diversity —l*-—

m, — per site heterozygosity at
deleterious sites — distance in
number of mutations between
individuals

log number of individuals

-10s -9s -85 -7s -6s -5s -4s -3s -2s -s O fitnes;

coalesced k-2  did not coalesce did not coalesce in
classes ago k-1 class ago k class
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log number of individuals

From coalescence probabilities to selected diversity —*'—

m, — per site heterozygosity at
deleterious sites — distance in
number of mutations between
individuals

log number of individuals

>

-10s -9s -85 -7s -6s -5s -4s -3s -2s -s O fitness

coalesced k-2  did not coalesce did not coalesce in

classes ago k-1 class ago k class
Analogous expressions apply f?r1 k, I, k”
P(r =) = P(mq = 20 +m) = Phktm=k=t H(l — phktm—k=j)
§=0
Average over distribution of k, I, k’:
7Td/2 o0
,0(7Td) _ Z ZH(k7 k+m==Fk+my — 2£)Pé€+m:k+ﬂd—2£<7 _ e)

=0 k=0
-10s -9s -85 -7s -6s -5s -4s -3s -2s -s O fitness
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Scaling of <m> =

<t >

30 T f 30 T T T T T T T T T
Ns=5 \ . S U /s=2
..... Ns=10 MCP.< Td > = 2Ud/8 d
— — = Ns=100 S 1 R el Ud/S=6 IIIIIII
251 S ah D51 _
lllllll Ns=500 e - = =U/s=10
,,,,,,, U /s=14
20 20 .
P it
-
-
-
A
° 15 e® 151 7
V
10} 10" .
5+ 51 il
| | 0 | | | | | | | | |
00 5 10 15 0 50 100 150 200 250 300 350 400 450 500
U/s Ns

* large selection - weak N dependence
e mean coalescence path approximation for large N and large U /s (weaker selection) :

* large number of lineages in each fitness class - coalescence events unlikely L—0
* all coalescence happens in zeroth class (like in EPS) g
* coalescence time is dominated by time it takes to get to zeroth class (unlike EPS) = Ua/s

e for small N - larger probability to coalesce in bulk - smaller <m >
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Distribution of per site heterozygosity x, -i‘-_
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

oo 00O k
U()=> > > Ut k+m, Ok (r = OH(k, k+m)
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

co oo k
k=0 m=0 ¢=0

distribution of actual coalescence probability to coalesce
time conditional on them coalescing ¢ steps ago

average over class
frequencies
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

co oo k
k=0 m=0 ¢=0

longer of the actual e : g
( ) distribution of actual coalescence probability to coalesce

average over class

mutation times+time for | »~ frequencies

coalescence in class k-{ time conditional on them coalescing ¢ steps ago
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

co oo k
k=0 m=0 ¢=0

longer of the actual o — average over class
mutation timestime for § ~ distribution of actual coalescence probability to coalesce frequencies
coalescence in class k- time conditional on them coalescing ( steps ago

* as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time
is drawn from distribution of coalescence times (branch lengths)

o(my) = / 2Unl]™ 20t (4

T,
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

co oo k
k=0 m=0 ¢=0

longer of the actual o — average over class
mutation timestime for § ~ distribution of actual coalescence probability to coalesce frequencies
coalescence in class k-{ time conditional on them coalescing { steps ago

* as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time
is drawn from distribution of coalescence times (branch lengths)
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p(wn):/[ '] e 2Unty(¢)dt
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Effective time to real times and neutral diversity ==

* need to translate step-times into real times to get the distribution of actual coalescence time
between two randomly chosen individuals ¥ (7)

co oo k
k=0 m=0 ¢=0

longer of the actual o — average over class
mutation timestime for § ~ distribution of actual coalescence probability to coalesce frequencies
coalescence in class k- time conditional on them coalescing ( steps ago

* as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time
is drawn from distribution of coalescence times (branch lengths)
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* non-zero peak in distribution - unlikely for two individuals to be extremely closely related - from peak in fitness distribution
e non-exponential distribution - difference from neutral case o



Connection to data

) 4
X

X X
X X
X X

X X

X
X X

X X
X X

We can now calculate the expected distribution of any statistic
describing variation when negative selection is operating.

We know a bit more about what we're looking for.
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Summary

- expansion of coalescence framework to negative selection PRF
- idea: effectively see how individuals move through fithess distribution
- do not follow individual ancestry
- count time is steptimes )(
- the genetic variability cannot be mimicked by effective population size

- approach works for weak and strong selection
- strong selection: reproduce results of background selection

- weak selection: deviations from neutrality, background selection predictions Ud/ S
- weak selection: heterozygosity signatures clearly distinct from neutral models
- coalescent probabilities depend on time varying ancestry dependent N,

effective population size

* mean coalescence path approximation - weak selection, large N
« coalescence in zeroth class determined by time to get there <mg>=2Uy/s

* no N dependence

- beneficial mutations
« positive and negative selection
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