Statistically characterizing antibody diversity

work with Thierry Mora,William Bialek, Curt Callan

The effects of negative selection on the evolution of linked sites

Aleksandra M Walczak
Laboratoire de Physique Théorique - ENS, CNRS

Michael Desai, Harvard
Joshua Plotkin, University of Pennsylvania
Lauren Nicolaisen, Harvard

Inferring evolutionary processes

Understanding evolutionary processes:

- test consistency of data with null models
- currently: easy to use neutral or weak selection models
- disagreement: selection, demography, geography ...

Goal: develop null models with selection

- test consistency of data with null models with selection
- rule out models also when neutrality does not apply
- infer selective parameters from data

Evolutionary scenarios

Genetic Drift
Well understood
But what do deviations mean?

What should we look at? What do we expect?

Model the fate of each site in the genome

Calculate the fate of each mutant forward in time.

Model the fate of each site in the genome

Calculate the fate of each mutant forward in time.

Fate of each mutation is not in steady state
But there is a steady state distribution of the distribution of mutant frequencies

Nearby mutations are not independent

	Base Position
	11111112222222333344
	1456702334591112449134612
	5947903053732366187800800
Haplotypes	7442152069361506795967889
Chimpanzee	CCGGTTATGCCGAGAATACGGCGCC
A	--ACCC--TGT--AC-CC----T-
B	--ACCC--TGT--AC-C------T-
B1	--ACCC--TGT--AC-C---A--T-
C	---CCC--TGT--AC-C------T-
D	-A-----C-*-T-----T--T---
E	TA-----C---------T--T---
F	-A----CC---------TA-
G	-A-----C------G--T---C-T
H	-A----CC--*----G--T---C--
I	-A-----C--*A------T-A-C--
J	-A-----C-*-------T
	[Harris and Hey 1999]

Strong correlations between mutations.

Mutations are physically linked.

Recombination breaks linkage.

No recombination - fully linked sites

No selection: Coalescent Theory

No selection: Coalescent Theory

The whole sequence shares a common genealogy.

No selection: Coalescent Theory

The whole sequence shares a common genealogy.

Cannot easily handle selection, despite 20 years of effort.

Comparison to the neutral null model

Is this data consistent with neutral well-mixed random-mating population?
What can we infer about the evolutionary history of this population?

Comparison to the neutral null model

Is this data consistent with neutral well-mixed random-mating population?
What can we infer about the evolutionary history of this population?

Are the coalescent trees that lead to some aspect of the observed diversity likely?

Evolution of the fitness distribution

Evolution of the fitness distribution

Evolution of the fitness distribution

$$
\frac{d h_{k}(t)}{d t}=U_{d} h_{k-1}-U_{d} h_{k}-s\left(k-k_{a v}\right) h_{k}
$$

In steady state:

$$
\hat{h}_{k}=e^{-U_{d} / s} \frac{U_{d}^{k}}{k!s}
$$

Many fluctuating lineages maintain the balance

- each fitness class is not genetically homogenous
- each class composed of many lineages
- different alleles with the same total fitness

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

- diffusion limit of Wright-Fisher model
- mutation decoupled from selection
- perfect linkage
- infinite alleles model, but keeps track of how many deleterious mutations each individual has

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

- diffusion limit of Wright-Fisher model
- mutation decoupled from selection
- perfect linkage

New alleles created at (mutation) rate:

$$
\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}
\text { per genome } \\
\text { per generation }
\end{gathered}
$$

- infinite alleles model, but keeps track of how many deleterious mutations each individual has

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

- diffusion limit of Wright-Fisher model
- mutation decoupled from selection
- perfect linkage

New alleles created at (mutation) rate:

$$
\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}
\text { per genome } \\
\text { per generation }
\end{gathered}
$$

Experience effective selective pressure:

$$
s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s
$$

- infinite alleles model, but keeps track of how many deleterious mutations each individual has

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

- diffusion limit of Wright-Fisher model
- mutation decoupled from selection
- perfect linkage

New alleles created at (mutation) rate:

$$
\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}
\text { per genome } \\
\text { per generation }
\end{gathered}
$$

Experience effective selective pressure:

$$
s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s
$$

- infinite alleles model, but keeps track of how many deleterious mutations each individual has

$$
\hat{h}_{k}=e^{-U_{d} / s} \frac{U_{d}^{k}}{k!s}
$$

θ_{k} and s_{k} determined by state of other fluctuating alleles: self-consistency.

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

New alleles created at (mutation) rate:
$\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}\text { per genome } \\ \text { per generation }\end{gathered}$

Experience effective selective pressure:

$s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s$
θ_{k} and s_{k} determined by state of other fluctuating alleles: self-consistency:

$$
\hat{h}_{k}=e^{-U_{d} / s} \frac{U_{d}^{k}}{k!s}
$$

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

New alleles created at (mutation) rate:
$\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}\text { per genome } \\ \text { per generation }\end{gathered}$

Experience effective selective pressure:

$s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s$
θ_{k} and s_{k} determined by state of other fluctuating alleles: self-consistency:

$$
\hat{h}_{k}=e^{-U_{d / s}} \frac{U_{d}^{k}}{k!s}
$$

no neutral mutations:

- $s_{k}<0$, each class except for $\mathbf{k}=0$ is always receiving new individuals due to mutations
- older individuals must die out to conserve steady state fitness distribution
- $\mathrm{k}=0$ class drifts neutrally - fitness advantage balanced by loss of individuals to less fit classes

Many fluctuating lineages maintain the balance

Each class is maintained by flux in of new mutant alleles as old alleles drift and go extinct.

New alleles created at (mutation) rate:
$\frac{\theta_{k}}{2}=N h_{k-1} U_{d}+N h_{k} U_{n} \quad \begin{gathered}\text { per genome } \\ \text { per generation }\end{gathered}$

Experience effective selective pressure:

$s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s$
θ_{k} and s_{k} determined by state of other fluctuating alleles: self-consistency:

$$
\hat{h}_{k}=e^{-U_{d} / s} \frac{U_{d}^{k}}{k!s}
$$

no neutral mutations:

- $s_{k}<0$, each class except for $\mathbf{k}=0$ is always receiving new individuals due to mutations
- older individuals must die out to conserve steady state fitness distribution
- $\mathrm{k}=0$ class drifts neutrally - fitness advantage balanced by loss of individuals to less fit classes
with neutral mutations:
- $s_{k}<0$, effective selection even more negative
- even $s_{0}<0$, all classes effectively selected against!

Allelic diversity within each class

Balance between creation and destruction of alleles

Allelic diversity within each class

Balance between creation and destruction of alleles

Allelic diversity within each class

Balance between creation and destruction of alleles
\rightarrow Distribution of probability of seeing an allele frequency x :

$$
f_{k}(x) d x=\theta_{k} \frac{1-e^{-2 N s_{k}(1-x)}}{\left(1-e^{-2 N s_{k}}\right) x(1-x)} d x
$$

Poisson Random Field (PRF) gives
distribution of lineages in given fitness class

$$
+
$$

self-consistency condition - fluctuations of alleles affect the mean fitness and the rate of mutations to less-fit alleles

$$
h_{k}=\int_{0}^{1} x f_{k}(x) d x
$$

Fluctuations of particular mutations are not independent. Fluctuations of alleles are. ${ }^{27}$

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene
The model: $\quad p\left(x ; x_{0}, t\right) \quad \begin{aligned} & \text { probability distribution of derived allele } \\ & \text { frequency } x \text { at time } t, \text { given } x_{0} \text { at time } t_{0}\end{aligned}$

$-\mathbf{-}$	x
$-\boldsymbol{-}$	$1-x$

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene
The model:

$$
p\left(x ; x_{0}, t\right) \quad \begin{aligned}
& \text { probability distribution of derived allele } \\
& \text { frequency } x \text { at time } t, \text { given } x_{0} \text { at time } t_{0}
\end{aligned}
$$

$$
\begin{array}{ccc}
q\left(x_{0} ; x, t\right) & \text { backward equation: } \\
\mathbf{+} & \partial_{t} q\left(x_{0} ; x, t\right)=v\left(x_{0}\right) \frac{\partial q\left(x_{0} ; x, t\right)}{\partial x_{0}}+\frac{D\left(x_{0}\right)}{2} \frac{\partial^{2} q\left(x_{0} ; x, t\right)}{\partial x_{0}^{2}} \\
& \text { absorbing boundary conditions } & v\left(x_{0}\right)=2 N s x_{0}\left(1-x_{0}\right) \\
\text { at } x=1 \text { or } x=0 & D\left(x_{0}\right)=x_{0}\left(1-x_{0}\right)
\end{array}
$$

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene
The model:

$$
p\left(x ; x_{0}, t\right) \quad \begin{align*}
& \text { probability distribution of derived allele } \\
& \text { frequency } x \text { at time } t, \text { given } x_{0} \text { at time } t_{0}
\end{align*}
$$

$$
\begin{array}{ccc}
q\left(x_{0} ; x, t\right) & \text { backward equation: } \\
\mathbf{+} & \partial_{t} q\left(x_{0} ; x, t\right)=v\left(x_{0}\right) \frac{\partial q\left(x_{0} ; x, t\right)}{\partial x_{0}}+\frac{D\left(x_{0}\right)}{2} \frac{\partial^{2} q\left(x_{0} ; x, t\right)}{\partial x_{0}^{2}} \\
& \text { absorbing boundary conditions } & v\left(x_{0}\right)=2 N s x_{0}\left(1-x_{0}\right) \\
\text { at } x=1 \text { or } x=0 & D\left(x_{0}\right)=x_{0}\left(1-x_{0}\right)
\end{array}
$$

$T\left(x_{0}\right)=\int_{0}^{1} \tilde{f}\left(x ; x_{0}\right) d x \quad$ - mean time until absorption (MFPT)
\rightarrow mean time derived allele frequency spends in the interval $(x, x+d x): \quad \tilde{f}(x)=\frac{1-e^{2 N s(1-x)}}{1-e^{2 N s}} \frac{2}{x(1-x)}$

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene The model:

$$
p\left(x ; x_{0}, t\right) \quad \begin{aligned}
& \text { probability distribution of derived allele } \\
& \text { frequency } x \text { at time } t, \text { given } x_{0} \text { at time } t_{0}
\end{aligned}
$$

$$
\begin{array}{ccc}
q\left(x_{0} ; x, t\right) \quad \text { backward equation: } & \partial_{t} q\left(x_{0} ; x, t\right)=v\left(x_{0}\right) \frac{\partial q\left(x_{0} ; x, t\right)}{\partial x_{0}}+\frac{D\left(x_{0}\right)}{2} \frac{\partial^{2} q\left(x_{0} ; x, t\right)}{\partial x_{0}^{2}} \\
& \begin{array}{l}
\text { absorbing boundary conditions } \\
\text { at } x=1 \text { or } x=0
\end{array} & v\left(x_{0}\right)=2 N s x_{0}\left(1-x_{0}\right) \\
& D\left(x_{0}\right)=x_{0}\left(1-x_{0}\right)
\end{array}
$$

$T\left(x_{0}\right)=\int_{0}^{1} \tilde{f}\left(x ; x_{0}\right) d x \quad$ - mean time until absorption (MFPT)
\rightarrow mean time derived allele frequency spends in the interval $(x, x+d x): \quad \tilde{f}(x)=\frac{1-e^{2 N s(1-x)}}{1-e^{2 N s}} \frac{2}{x(1-x)}$
Generalize to multiple alleles, assume:

- mutations arise at Poisson times
- each mutation forms a new allele
- independent alleles - each mutant follows an independent Wright-Fisher process

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene The model:

$$
p\left(x ; x_{0}, t\right) \quad \begin{aligned}
& \text { probability distribution of derived allele } \\
& \text { frequency } x \text { at time } t, \text { given } x_{0} \text { at time } t_{0}
\end{aligned}
$$

$$
\begin{array}{ccc}
q\left(x_{0} ; x, t\right) & \text { backward equation: } \quad \partial_{t} q\left(x_{0} ; x, t\right)=v\left(x_{0}\right) \frac{\partial q\left(x_{0} ; x, t\right)}{\partial x_{0}}+\frac{D\left(x_{0}\right)}{2} \frac{\partial^{2} q\left(x_{0} ; x, t\right)}{\partial x_{0}^{2}} \\
& \begin{array}{l}
\text { absorbing boundary conditions } \\
\text { at } x=1 \text { or } x=0
\end{array} & v\left(x_{0}\right)=2 N s x_{0}\left(1-x_{0}\right) \\
& D\left(x_{0}\right)=x_{0}\left(1-x_{0}\right)
\end{array}
$$

$T\left(x_{0}\right)=\int_{0}^{1} \tilde{f}\left(x ; x_{0}\right) d x \quad$ - mean time until absorption (MFPT)
\rightarrow mean time derived allele frequency spends in the interval $(x, x+d x): \quad \tilde{f}(x)=\frac{1-e^{2 N s(1-x)}}{1-e^{2 N s}} \frac{2}{x(1-x)}$
Generalize to multiple alleles, assume:

- mutations arise at Poisson times
- each mutation forms a new allele
- independent alleles - each mutant follows an independent Wright-Fisher process
$\int_{x_{1}}^{x_{2}} \theta \tilde{f}(x) d x=\int_{x_{1}}^{x_{2}} f(x) d x$ - expected number of sites with derived allele/lineage frequency in a given range:

$$
f(x) d x=\theta \frac{1-e^{2 N s(1-x)}}{\left(1-e^{2 N s}\right) x(1-x)} d x
$$

Poisson Random Field traditionally

PRF - qualitatively determines the intensity of selection on a particular gene The model:

$$
\begin{array}{ccc}
p\left(x ; x_{0}, t\right) & \begin{array}{l}
\text { probability distribution of derived allele } \\
\text { frequency } x \text { at time } t \text {, given } x_{0} \text { at time } t_{0}
\end{array} \\
q\left(x_{0} ; x, t\right) & \text { backward equation: } & \partial_{t} q\left(x_{0} ; x, t\right)=v\left(x_{0}\right) \frac{\partial q\left(x_{0} ; x, t\right)}{\partial x_{0}}+\frac{D\left(x_{0}\right)}{2} \frac{\partial^{2} q\left(x_{0} ; x, t\right)}{\partial x_{0}^{2}} \\
& \text { absorbing boundary conditions } & \begin{array}{l}
v\left(x_{0}\right)=2 N s x_{0}\left(1-x_{0}\right)
\end{array} \\
& \text { at } x=1 \text { or } x=0 & D\left(x_{0}\right)=x_{0}\left(1-x_{0}\right)
\end{array}
$$

$T\left(x_{0}\right)=\int_{0}^{1} \tilde{f}\left(x ; x_{0}\right) d x \quad$ - mean time until absorption (MFPT)
$\rightarrow \quad$ mean time derived allele frequency spends in the interval $(x, x+d x): \quad \tilde{f}(x)=\frac{1-e^{2 N s(1-x)}}{1-e^{2 N s}} \frac{2}{x(1-x)}$
Generalize to multiple alleles, assume:

- mutations arise at Poisson times
- each mutation forms a new allele
- independent alleles - each mutant follows an independent Wright-Fisher process
$\int_{x_{1}}^{x_{2}} \theta \tilde{f}(x) d x=\int_{x_{1}}^{x_{2}} f(x) d x$ - expected number of sites with derived allele/lineage frequency in a given range:

$$
f(x) d x=\theta \frac{1-e^{2 N s(1-x)}}{\left(1-e^{2 N s}\right) x(1-x)} d x
$$

The number of sites that have i copies of the derived allele are Poisson distributed with mean:

Allelic diversity within each class

Balance between creation and destruction of alleles
\rightarrow Distribution of probability of seeing an allele frequency x :

$$
f_{k}(x) d x=\theta_{k} \frac{1-e^{-2 N s_{k}(1-x)}}{\left(1-e^{-2 N s_{k}}\right) x(1-x)} d x
$$

Poisson Random Field (PRF) gives
distribution of lineages in given fitness class

$$
+
$$

self-consistency condition - fluctuations of alleles affect the mean fitness and the rate of mutations to less-fit alleles

$$
h_{k}=\int_{0}^{1} x f_{k}(x) d x
$$

Fluctuations of particular mutations are not independent. Fluctuations of alleles are.

Allelic diversity within each class

Balance between creation and destruction of alleles
\rightarrow Distribution of probability of seeing an allele frequency x :

$$
f_{k}(x) d x=\theta_{k} \frac{1-e^{-2 N s_{k}(1-x)}}{\left(1-e^{-2 N s_{k}}\right) x(1-x)} d x
$$

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

$$
+
$$

self-consistency condition - fluctuations of alleles affect the mean fitness and the rate of mutations to less-fit alleles

$$
h_{k}=\int_{0}^{1} x f_{k}(x) d x
$$

Fluctuations of particular mutations are not independent. Fluctuations of alleles are. ${ }^{35}$

Self-consistency condition

Poisson Random Field (PRF) gives distribution of lineages in given fitness class $+$
steady state distribution of fitness classes

$$
\begin{gathered}
h_{k}=\int_{0}^{1} x f_{k}(x) d x \\
\int_{0}^{1} \frac{1-e^{-2 \gamma_{k} x}}{x} d x=\frac{1-e^{-2 \gamma_{k}}}{2\left|\gamma_{k}\right|} \\
N\left|s_{k}\right| \gg 1
\end{gathered}
$$

Self-consistency condition

Poisson Random Field (PRF) gives distribution of lineages in given fitness class steady state distribution of fitness classes

$$
\begin{gathered}
h_{k}=\int_{0}^{1} x f_{k}(x) d x \\
\int_{0}^{1} \frac{1-e^{-2 \gamma_{k} x}}{x} d x=\frac{1-e^{-2 \gamma_{k}}}{2\left|\gamma_{k}\right|}
\end{gathered}
$$

$$
N\left|s_{k}\right| \gg 1
$$

$$
s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s
$$

close to $k_{a v}$:

$$
N\left(U_{d}+U_{n}\right) \gg 1
$$

Self-consistency condition

Poisson Random Field (PRF) gives distribution of lineages in given fitness class
steady state distribution of fitness classes

$$
\begin{gathered}
h_{k}=\int_{0}^{1} x f_{k}(x) d x \\
\int_{0}^{1} \frac{1-e^{-2 \gamma_{k} x}}{x} d x=\frac{1-e^{-2 \gamma_{k}}}{2\left|\gamma_{k}\right|} \\
\downarrow\left|s_{k}\right| \gg 1
\end{gathered} s_{k}=-U_{d}-U_{n}-\left(k-k_{a v}\right) s
$$

close to $k_{a v}$:

$$
\begin{aligned}
& N\left(U_{d}+U_{n}\right) \gg 1 \\
& \downarrow \\
& N U_{d} \gg 1 \quad \text { or } \quad N U_{n} \gg 1 \quad \longleftarrow \text { self-consistency holds }
\end{aligned}
$$

Self-consistency condition

Poisson Random Field (PRF) gives distribution of lineages in given fitness class

For $N\left(U_{d}+U_{n}\right)<1$ PRF breaks down:

- the growth of some mutants is limited by size of population
- lineages are no longer independent

Expected genetic variation

What is the probability of a particular allelic configuration?
(n_{1} individuals with allele $1, \mathrm{n}_{2}$ individuals with allele $2, \ldots$)
Homozygosity: $Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}} \quad \begin{aligned} & \text { Sample } \mathrm{n}=2 \text { individuals. What } \\ & \text { is the probability that they } \\ & \text { have the same genotype? }\end{aligned}$
"Bizygosity": $\begin{aligned} Q_{2,1} & =\sum_{k} \int 3 x^{2}(1-x) f_{k}(x) d x \\ & =3 \sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}\left(1-\frac{1}{N s_{k}}\right)\end{aligned}$
Sample $n=3$ individuals. What is the probability that two have the same alleles and one is different?

Comparison to known results

Sample n individuals.

What is the probability of a particular allelic configuration?
(n_{1} individuals with allele $1, n_{2}$ individuals with allele $2, \ldots$)
\leadsto generalization of Ewens Sampling Formula (ESF)

$$
P\left(n_{1}, \ldots, n_{2}\right)=\frac{n!}{\theta(\theta+1) \ldots(\theta+n-1)} \prod_{j=1}^{n} \frac{\theta^{n_{j}}}{j^{n_{j}} n_{j}!}
$$

- neutral model
- steady state with respect to mutation and drift
- infinite alleles
- sample size $\mathrm{n} \ll \mathrm{N}$ - population size

Comparison to known results

Sample n individuals.

What is the probability of a particular allelic configuration?
(n_{1} individuals with allele $1, \mathrm{n}_{2}$ individuals with allele $2, \ldots$)
\Rightarrow generalization of Ewens Sampling Formula (ESF)

$$
P\left(n_{1}, \ldots, n_{2}\right)=\frac{n!}{\theta(\theta+1) \ldots(\theta+n-1)} \prod_{j=1}^{n} \frac{\theta^{n_{j}}}{j^{n_{j}} n_{j}!}
$$

- neutral model
- steady state with respect to mutation and drift
- infinite alleles
- sample size $\mathrm{n} \ll \mathrm{N}$ - population size

Effective Population Size Approximation (EPS):

- deleterious mutations are purged quickly from the population
- all individuals are recently descended from neutral individuals
- only the zero-class matters
- results in neutral population with an effective reduced population size
- makes predictions about diversity at individual sites
- only makes predictions for neutral sites

$$
N_{e}=N h_{0}=N e^{-U_{d} / s}
$$

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:
neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:

- deleterious mutations decrease the homozygozity, $U_{d} \approx s$
- deleterious mutations decrease homozygosity less than neutral ones (they must eventually die)
- deleterious mutations are not rare for $U_{d}>s$, NM-ESF breaks down
- for $U_{d}>s$ still significant difference between NSESF and our results
- important parameter: are mutations purged slowly enough to matter $U_{d} \approx s$
- contrary to intuition from EPS, more deleterious mutations cannot decrease diversity

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:

- deleterious mutations decrease the homozygozity, $U_{d} \approx s$
- deleterious mutations decrease homozygosity less than neutral ones (they must eventually die)
- deleterious mutations are not rare for $U_{d}>s$, NM-ESF breaks down
- for $U_{d}>s$ still significant difference between NSESF and our results
- important parameter: are mutations purged slowly enough to matter $U_{d} \approx s$
- contrary to intuition from EPS, more deleterious mutations cannot decrease diversity

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:
$\theta=2 N\left(U_{n}+U_{d}\right)$

- deleterious mutations decrease the homozygozity, $U_{d} \approx s$
- deleterious mutations decrease homozygosity less than neutral ones (they must eventually die)
- deleterious mutations are not rare for $U_{d}>s$, NM-ESF breaks down
- for $U_{d}>s$ still significant difference between NSESF and our results
- important parameter: are mutations purged slowly enough to matter $U_{d} \approx s$
- contrary to intuition from EPS, more deleterious mutations cannot decrease diversity

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutations: $\quad \theta=2 N U_{n}$
neutral case, $U_{d}=0: \quad \theta=2 N U_{n} \gg 1$

$$
\begin{aligned}
Q_{2} & =\frac{1}{\theta} \\
Q_{2}^{E S F} & =\frac{1}{1+\theta}
\end{aligned}
$$

- all neutral models agree: ESF, BGS

NS-ESF - neglect selection against deleterious mutations:
$\theta=2 N\left(U_{n}+U_{d}\right)$

- deleterious mutations decrease the homozygozity, $U_{d} \approx s$
- deleterious mutations decrease homozygosity less than neutral ones (they must eventually die)
- deleterious mutations are not rare for $U_{d}>s$, NM-ESF breaks down
- for $U_{d}>s$ still significant difference between NSESF and our results
- important parameter: are mutations purged slowly enough to matter $U_{d} \approx s$
- contrary to intuition from EPS, more deleterious mutations cannot decrease diversity

Expected genetic variation

Homozygosity: $\quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:

Expected genetic variation

$$
\text { Homozygosity: } \quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}
$$

NM-ESF - neglect deleterious mutations: $\theta=2 N U_{n}$

NS-ESF - neglect selection against deleterious mutations:

- for strong selection mutations eliminated quickly - neutral mutations dominate - NM-ESF holds
- for very weak selection, deleterious mutations are like neutral - NS-ESF holds
- regions where no neutral theory holds
- EPS underestimates size of most fit for weak selection

Expected genetic variation

$$
\text { Homozygosity: } \quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}
$$

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

J_{d}

- for strong selection mutations eliminated quickly - neutral mutations dominate - NM-ESF holds
- for very weak selection, deleterious mutations are like neutral - NS-ESF holds
- regions where no neutral theory holds
- EPS underestimates size of most fit for weak selection

Expected genetic variation

$$
\text { Homozygosity: } \quad Q_{2}=\sum_{k} \int x^{2} f_{k}(x) d x=\sum_{k=0}^{\infty} \frac{h_{k}}{2 N s_{k}}
$$

EPS - change in reduced effective population size of "neutral" population:

$$
\theta=2 N\left(U_{n}+U_{d}\right) e^{-U_{d} /|s|}
$$

NM-ESF - neglect deleterious mutatio
NS-ESF - neglect selection against
deleterious mutations:
NM-ESF - neglect deleterious mutatio
NS-ESF - neglect selection against
deleterious mutations:

$$
\theta=2 N\left(U_{n}+U_{d}\right)
$$

$$
\begin{gathered}
U_{d}=10^{-4.5} \\
U_{n}=10^{-4}
\end{gathered}
$$

- for strong selection mutations eliminated quickly - neutral mutations dominate - NM-ESF holds
- for very weak selection, deleterious mutations are like neutral - NS-ESF holds
- regions where no neutral theory holds
- EPS underestimates size of most fit for weak selection

Comparison with simulations

- MC of Wright-Fisher population
- constant size N
- N individuals sampled with replacement in each generation
- sampling according to relative fitness in the population
- Poisson number of deleterious and neutral mutations introduced in each generation
- mutations introduced randomly and independently among individuals
- keep track of frequencies of all genotypes
- genotype - set of mutation sites

Statistics to describe deviation from neutrality

```
neutral ESF result:
compute effective
    mutation rate:
    0e}
calculate other
statistics:
    Q e,1 , Q e
```

Compute expected $\mathrm{Q}_{2,1}$ or Q_{3} Given Q_{2} Expected deviation from neutral ratio $\begin{gathered}Q_{1,1}^{e} / Q_{2,1} \\ Q_{3}^{e} / Q_{3}\end{gathered}$

Statistics to describe deviation from neutrality

$$
\begin{array}{cc}
\text { neutral ESF result: } \\
Q_{2}^{E S F}=\frac{1}{1+\theta_{e}} & \begin{array}{c}
\text { compute effective } \\
\text { mutation rate: }
\end{array}
\end{array} \begin{gathered}
\text { calculate other } \\
\text { statistics: }
\end{gathered}
$$

Compute expected $\mathrm{Q}_{2,1}$ or Q_{3} Given Q_{2} Expected deviation from neutral ratio $Q_{2,1}^{e} / Q_{2,1}$ Q_{3}^{e} / Q_{3}

Statistics to describe deviation from neutrality

$$
\begin{array}{cc}
\text { neutral ESF result: } \\
Q_{2}^{E S F}=\frac{1}{1+\theta_{e}} & \begin{array}{c}
\text { compute effective } \\
\text { mutation rate: }
\end{array}
\end{array} \begin{gathered}
\text { calculate other } \\
\text { statistics: }
\end{gathered}
$$

Compute expected $\mathrm{Q}_{2,1}$ or Q_{3} Given Q_{2}
Expected deviation from neutral ratio $Q_{2,1}^{e} / Q_{2,1}$
Q_{3}^{e} / Q_{3}

There is no effective population size that reproduces the statistics consistently

Tracing the genealogies

We now know the probability of different allelic configurations
What is the relationship among alleles?

An effective coalescent approach

Trace the ancestry of each individual through the fitness distribution

An effective coalescent approach

Trace the ancestry of each individual through the fitness distribution

An effective coalescent approach

Trace the ancestry of each individual through the fitness distribution

An effective coalescent approach

Trace the ancestry of each individual through the fitness distribution

Effective coalescent probabilities

Sample 2 individuals from class k

Effective coalescent probabilities

Sample 2 individuals from class k
Coalescent probability in class k: $\quad P_{c}^{k, k \rightarrow k}=\int \frac{x^{2}}{h_{k}^{2}} f_{k}(x) d x$

Effective coalescent probabilities

```
C
\[
f_{k}(x) d x=\theta_{k} \frac{1-e^{-2 N s_{k}(1-x)}}{\left(1-e^{-2 N s_{k}}\right) x(1-x)} d x
\]
fitness
```


Sample 2 individuals from class k

Coalescent probability in class \mathbf{k} : $\quad P_{c}^{k, k \rightarrow k}=\int \frac{x^{2}}{h_{k}^{2}} f_{k}(x) d x$
Coalescent probability in class $\mathrm{k}-1$:

Effective coalescent probabilities

Sample 2 individuals from class k
Coalescent probability in class k: $\quad P_{c}^{k, k \rightarrow k}=\int \frac{x^{2}}{h_{k}^{2}} f_{k}(x) d x$
Coalescent probability in class $\mathrm{k}-1$:

$P_{c}^{k, k \rightarrow k-2}=\ldots$

Effective coalescent probabilities

Sample 2 individuals from class k
Coalescent probability in class k: $\quad P_{c}^{k, k \rightarrow k}=\int \frac{x^{2}}{h_{k}^{2}} f_{k}(x) d x$
General coalescent probability in class $k-\ell$:
$P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x f_{k-\ell}}{h_{k-l}} y G_{k-\ell}\left(y \rightarrow x, \mid t_{2}-t_{1} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2}\right.$
probability an individual comes from class k and lineage with frequency x
probability that a lineage in class k - ℓ changes in frequency from x to y in time $\left|t_{2}-t_{1}\right|$
joint distribution of times t_{1} and t_{2} - times when
lineages in class k where founded by mutations

Non-conditional approximation

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2}
$$

Non-conditional approximation

$$
\begin{aligned}
& P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
& \quad \begin{array}{l}
\text { y integral is just mean } y \text { - deterministic } \\
\text { result for the change in the frequency of } \\
\text { the lineage }
\end{array} \\
& P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d t_{1} d t_{2}
\end{aligned}
$$

Non-conditional approximation

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{\substack{\text { y integral is just mean y - deterministic } \\
\text { result for the change in the frequency of } \\
\text { the lineage }}}^{k-\ell}\left(t_{1}, t_{2}\right) d x d t_{1} d t_{2}
\end{aligned}
$$

Assume:

- non-conditional approximation: the times at which the two individuals moved from one fitness class to another is independent

Non-conditional approximation

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{\substack{\text { integral is just mean y - deterministic } \\
\text { result for the change in the frequency of } \\
\text { the lineage }}}^{k-\ell}\left(t_{1}, t_{2}\right) d x d t_{1} d t_{2}
\end{aligned}
$$

Assume:

- non-conditional approximation: the times at which the two individuals moved from one fitness class to another is independent

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k}^{k-\ell}\left(t_{1}\right) Q_{k+m}^{k-\ell}\left(t_{2}\right) d x d t_{1} d t_{2}
$$

[generally not true because moving between fitness classes assumes no coalescence - but small correction]

Non-conditional approximation

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{\substack{\text { y integral is just mean y - deterministic } \\
\text { result for the change in the frequency of } \\
\text { the lineage }}}^{k-\ell}\left(t_{1}, t_{2}\right) d x d t_{1} d t_{2}
\end{aligned}
$$

Assume:

- non-conditional approximation: the times at which the two individuals moved from one fitness class to another is independent

$$
\begin{aligned}
& P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k}^{k-\ell}\left(t_{1}\right) Q_{k+m}^{k-\ell}\left(t_{2}\right) d x d t_{1} d t_{2} \\
& \text { distribution of mutant timings: } \\
& Q_{k}^{k-\ell}(t)=Q_{k}^{k-1}(t) * Q_{k}^{k-2}(t) * \ldots Q_{k-\ell+1}^{k-\ell}(t) \text { and } Q_{k-\ell+1}^{k-\ell}(t)=s(k-\ell+1) e^{-s(k-\ell+1) t}
\end{aligned}
$$

[generally not true because moving between fitness classes assumes no coalescence - but small correction]

Non-conditional approximation

$$
\left.\left.\begin{array}{rl}
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k, k+m}^{k-\ell} \begin{array}{c}
\text { integral is just mean y - deterministic } \\
\text { result for the change in the frequency of }
\end{array} \\
\text { the lineage }
\end{array}\right), t_{1}, t_{2}\right) d x d t_{1} d t_{2} \quad l
$$

Assume:

- non-conditional approximation: the times at which the two individuals moved from one fitness class to another is independent

$$
\begin{aligned}
& P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k}^{k-\ell}\left(t_{1}\right) Q_{k+m}^{k-\ell}\left(t_{2}\right) d x d t_{1} d t_{2} \\
& \text { distribution of mutant timings: } \\
& Q_{k}^{k-\ell}(t)=Q_{k}^{k-1}(t) * Q_{k}^{k-2}(t) * \ldots Q_{k-\ell+1}^{k-\ell}(t) \text { and } Q_{k-\ell+1}^{k-\ell}(t)=s(k-\ell+1) e^{-s(k-\ell+1) t}
\end{aligned}
$$

[generally not true because moving between fitness classes assumes no coalescence - but small correction]

Non-conditional approximation

$$
\left.\begin{array}{rl}
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x f_{k-\ell}}{h_{k-l}} \frac{y G_{k-\ell}\left(y \rightarrow x,\left|t_{2}-t_{1}\right|\right)}{h_{k-l}} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d y d t_{1} d t_{2} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k, k+m}^{k-\ell}\left(t_{1}, t_{2}\right) d x d t_{1} d t_{2} \\
\text { result for is the change in the frequency of } \\
\text { the lineage }
\end{array}\right)
$$

Assume:

- non-conditional approximation: the times at which the two individuals moved from one fitness class to another is independent

$$
\begin{aligned}
& P_{c}^{k, k+m \rightarrow k-\ell}=\int \frac{x^{2} f_{k-\ell}}{h_{k-l}^{2}} e^{-s(k-\ell)\left|t_{2}-t_{1}\right|} Q_{k}^{k-\ell}\left(t_{1}\right) Q_{k+m}^{k-\ell}\left(t_{2}\right) d x d t_{1} d t_{2} \\
& \text { distribution of mutant timings: } \\
& Q_{k}^{k-\ell}(t)=Q_{k}^{k-1}(t) * Q_{k}^{k-2}(t) * \ldots Q_{k-\ell+1}^{k-\ell}(t) \text { and } Q_{k-\ell+1}^{k-\ell}(t)=s(k-\ell+1) e^{-s(k-\ell+1) t}
\end{aligned}
$$

[generally not true because moving between fitness classes assumes no coalescence - but small correction]

In non-conditional approximation: $\quad P_{c}^{k, k+m \rightarrow k-\ell}=\frac{1}{N h_{k-\ell} s(k-\ell)} A_{\ell}^{k, m}$
Easy formula for coefficient:

$$
A_{\ell}^{k, m}=\frac{\binom{k+m}{k-\ell}\binom{k}{k-\ell}}{\binom{2 k+m}{2 \ell+m}}
$$

Effective coalescence probabilities

Effective coalescence probabilities

Effective coalescence probabilities

Comparison to variable population size

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\frac{1}{N h_{k-\ell} s(k-\ell)} A_{\ell}^{k, m}
$$

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
$$

Comparison to variable population size

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{N h_{k-\ell}(s(k-\ell))^{\prime}} A_{\ell}^{k, m} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
\end{aligned}
$$

Comparison to variable population size

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\overbrace{N h_{k-\ell}(k-\ell)}^{1} A_{\ell}^{k, m} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
\end{aligned}
$$

Comparison to variable population size

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\overbrace{N h_{k-\ell}(k-\ell)}^{1} A_{\ell}^{k, m} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
\end{aligned}
$$

lineage spends $\sim 1 / s_{k}$ generations in each class
\rightarrow per generation coalescence probability in class k is $1 / n_{k}$

Comparison to variable population size

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\overbrace{N h_{k-\ell}(k-\ell)}^{1} A_{\ell}^{k, m} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
\end{aligned}
$$

lineage spends $\sim 1 / s_{k}$ generations in each class
\rightarrow per generation coalescence probability in class k is $1 / n_{k}$
historically varying population size - different effective population sizes depending on initial position in fitness distribution

Comparison to variable population size

$$
\begin{aligned}
P_{c}^{k, k+m \rightarrow k-\ell} & =\overbrace{N h_{k-\ell}(k-\ell)}^{1} A_{\ell}^{k, m} \\
P_{c}^{k, k+m \rightarrow k-\ell} & =\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
\end{aligned}
$$

lineage spends $\sim 1 / s_{k}$ generations in each class
\rightarrow per generation coalescence probability in class k is $1 / n_{k}$
historically varying population size - different effective population sizes depending on initial position in fitness distribution

Comparison to variable population size

 position in fitness distribution

Comparison to variable population size

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\frac{1}{N h_{k-\ell}(k-\ell)} A_{\ell}^{k, m}
$$

$$
P_{c}^{k, k+m \rightarrow k-\ell}=\frac{1}{n_{k-\ell} s_{k-\ell}} A_{\ell}^{k, m}
$$

lineage spends $\sim 1 / s_{k}$ generations in each class
\rightarrow per generation coalescence probability in class k is $1 / n_{k}$
historically varying population size - different effective population sizes depending on initial

\rightarrow really strange variation in population size for two individuals from different classes

From coalescence probabilities to selected diversity

From coalescence probabilities to selected diversity

Analogous expressions apply for k, k, k "

$$
P(\tau=\ell)=P\left(\pi_{d}=2 \ell+m\right)=P_{c}^{k, k+m \rightarrow k-\ell} \prod_{j=0}^{\ell-1}\left(1-P_{c}^{k, k+m \rightarrow k-j}\right)
$$

Average over distribution of $k, k^{\prime}, k^{\prime \prime}$:

$$
\rho\left(\pi_{d}\right)=\sum_{\ell=0}^{\pi_{d} / 2} \sum_{k=0}^{\infty} H\left(k, k+m=k+\pi_{d}-2 \ell\right) P_{k}^{k+m=k+\pi_{d}-2 \ell}(\tau=\ell)
$$

Scaling of $\left.<\pi_{d}\right\rangle$

- large selection - weak N dependence
- mean coalescence path approximation for large N and large $\mathrm{U}_{\mathrm{d}} / \mathrm{s}$ (weaker selection) :
- large number of lineages in each fitness class - coalescence events unlikely
- all coalescence happens in zeroth class (like in EPS)
- coalescence time is dominated by time it takes to get to zeroth class (unlike EPS)

- for small N - larger probability to coalesce in bulk - smaller $<\pi_{d}>$

Distribution of per site heterozygosity π_{d}

$$
\text { FGS: } \begin{aligned}
\rho\left(\pi_{d}=r\right) & =\sum_{k=r-k-m} H(k, k+m) \\
& =e^{-2 U_{d} / s} \frac{1}{r!}\left(\frac{2 U_{d}}{s}\right)^{r}
\end{aligned}
$$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

$$
\Psi(t)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{\ell=0}^{k} \Psi(t \mid, k+m, \ell) \phi_{k}^{k+m}(\tau=\ell) H(k, k+m)
$$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

- as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time is drawn from distribution of coalescence times (branch lengths)

$$
\rho\left(\pi_{n}\right)=\int \frac{\left[2 U_{n} t\right]^{\pi_{n}}}{\pi_{n}!} e^{-2 U_{n} t} \Psi(t) d t
$$

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$

- as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time is drawn from distribution of coalescence times (branch lengths)

Effective time to real times and neutral diversity

- need to translate step-times into real times to get the distribution of actual coalescence time between two randomly chosen individuals $\Psi(t)$
longer of the actual mutation times+time for coalescence in class $\mathrm{k}-\ell$

$$
\Psi(t)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{\ell=0}^{k} \underbrace{\substack{\text { average over class } \\ \text { frequencies }}}_{\substack{\text { distribution of actual coalescence } \\ \text { probability to coalesce } \\ \ell(t \mid, k+m, \ell}}
$$

- as in the traditional coalescent - neutral mutations distributed according to a Poisson process where time is drawn from distribution of coalescence times (branch lengths)

- non-zero peak in distribution - unlikely for two individuals to be extremely closely related - from peak in fitness distribution
- non-exponential distribution - difference from neutral case

Connection to data

We can now calculate the expected distribution of any statistic describing variation when negative selection is operating.

We know a bit more about what we're looking for.

Summary

- expansion of coalescence framework to negative selection
- idea: effectively see how individuals move through fitness distribution
- do not follow individual ancestry
- count time is steptimes
- the genetic variability cannot be mimicked by effective population size
- approach works for weak and strong selection
- strong selection: reproduce results of background selection
- weak selection: deviations from neutrality, background selection predictions
- weak selection: heterozygosity signatures clearly distinct from neutral models
- coalescent probabilities depend on time varying ancestry dependent effective population size
- mean coalescence path approximation - weak selection, large \mathbf{N}
- coalescence in zeroth class determined by time to get there
- no N dependence
- beneficial mutations
- positive and negative selection

MM Desai, AM Walczak, JB Plotkin, arXiv:IOIO.2478vI
MM Desai, AM Walczak, LE Nicolaisen, JB Plotkin, arXiv:IOIO.2479v I

